Fefferman–Graham Expansions for Asymptotically Schroedinger Space-Times

Jelle Hartong

Niels Bohr Institute

Nordic String Theory Meeting Copenhagen, February 20, 2012

Based on work in progress in collaboration with Blaise Rollier

Introduction

 Many systems in nature exhibit critical points with non-relativistic scale invariance. Such systems typically have Lifshitz symmetries:

 $D_{z} : \qquad \vec{x} \rightarrow \lambda \vec{x} \qquad t \rightarrow \lambda^{z} t ,$ $H : \qquad t \rightarrow t + c ,$ $P_{i} : \qquad x^{i} \rightarrow x^{i} + a^{i} ,$ $M_{ij} : \qquad x^{i} \rightarrow R^{i}{}_{j} x^{j} .$

 Lifshitz algebra (only nonzero commutators shown, left out M_{ij} and z ≠ 1):

$$[D_z, H] = zH, \qquad [D_z, P_i] = P_i.$$

- An example of a symmetry group that also displays non-relativistic scale invariance but which is larger than Lifshitz is the Schroedinger group.
- Additional symmetries are Galilean boosts V_i
 (xⁱ → xⁱ + vⁱt) and a particle number symmetry N.
- Schroedinger algebra (only nonzero commutators shown, left out M_{ij} and $z \neq 1, 2$):

 $[D_z, H] = zH, \qquad [D_z, P_i] = P_i, \qquad [D_z, N] = (2 - z)N,$ $[D_z, V_i] = (1 - z)V_i, \qquad [H, V_i] = -2P_i, \qquad [P_i, V_j] = N\delta_{ij}.$

• When z = 2 there is an additional special conformal symmetry C.

- Aim: to construct holographic techniques for (strongly coupled) systems with NR symmetries.
- From a different perspective, Schroedinger space-times form interesting examples of non-AdS space-times for which it appears to be possible to construct explicit holographic techniques.
- Schroedinger holography initiated by: [Son, 2008] [Balasubramanian, McGreevy, 2008].

Outline Talk

- Geometric definition of z = 2 Schroedinger space-times
- Causal structure
- The Schroedinger boundary
- Asymptotically Schroedinger (ASch) space-times:
 - The model
 - From AAdS to ASch
 - The FG expansions: what we know so far

Schroedinger space-time

• A (d+3)-dimensional Schroedinger space-time:

$$ds^{2} = -\frac{\gamma^{2}}{r^{2z}}dt^{2} + \frac{1}{r^{2}}\left(-2dtd\xi + dr^{2} + d\vec{x}^{2}\right) \,.$$

- $\xi = \text{cst slices are Lifshitz space-times.}$
- $\frac{dtd\xi}{r^2}$ preserves Lifshitz symmetries.
- Extra symmetries: $N \ (\xi \to \xi + c)$ and Galilean boost invariance $V_i \ (x^i \to x^i + v^i t, \xi \to \xi + \frac{1}{2} \vec{v}^2 t + \vec{v} \cdot \vec{x}).$
- $\operatorname{sch}_z(d+3) \subset \operatorname{so}(2, d+2)$: the deformation term breaks all the symmetries of AdS that are not in $\operatorname{sch}_z(d+3)$.
- For z = 2 all tidal forces are bounded and the space-time is completely regular.

Geometric Definition

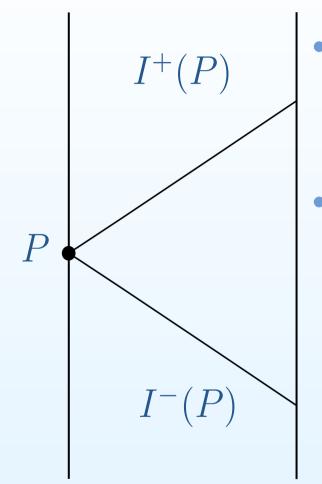
• The metric of a z = 2 Schroedinger space-time can be written as

$$g_{\mu\nu}^{\rm Sch} = g_{\mu\nu}^{\rm AdS} - A_{\mu}A_{\nu}$$

where A_{μ} is any AdS null Killing vector [Duval, Hassaïne, Horváthy, 2008].

- The isometries of $g_{\mu\nu}^{\rm Sch}$ are all AdS Killing vectors that commute with A^{μ} .
- All AdS null Killing vectors are hypersurface orthogonal.
- A^{μ} is also hypersurface orthogonal with respect to $g_{\mu\nu}^{\text{Sch}}$.

Causal structure for $g_{\mu\nu}^{\rm Sch} = g_{\mu\nu}^{\rm AdS} - A_{\mu}A_{\nu}$



 All points inside I[±](P) can be connected to P via timelike curves (both for AdS and Sch).

On AdS points outside $I^{\pm}(P)$ can be connected to P via null and spacelike geodesics. These correspond to curves on Sch with tangent u^{μ} s.t. $g_{\mu\nu}^{\text{Sch}}u^{\mu}u^{\nu} = \kappa = k - (P_{+})^{2}$ with $u^{\mu}A_{\mu} = -P_{+}$.

 On AdS the geodesic parameter P₊ ≠ 0 can be boosted without affecting the geodesic curve s.t. κ < 0.

Causal structure

- Hence on Sch the only points that cannot be connected by a timelike curve are separated by null and spacelike geodesics with P₊ = 0, i.e. the lightlike hypersurfaces generated by A^µ.
- All points on such a lightlike hypersurface have the same chronological past and future: Sch is a non-distinguishing space-time with a Galilean-like causal structure.
- On Sch the only achronal sets are the lightlike hypersurfaces generated by A^{μ} .

The Sch boundary (barred: Sch, unbarred: AdS)

• Let Ω be a defining function for the AdS space, i.e. $\Omega > 0$ in the bulk and $\Omega = 0$ at the boundary and

$$g^{\mu\nu}\frac{\partial_{\mu}\Omega}{\Omega}\frac{\partial_{\nu}\Omega}{\Omega}|_{\Omega=0} = 1.$$

- The Riemann tensor of a Sch space-time (metric $\bar{g}_{\mu\nu} = g_{\mu\nu} - A_{\mu}A_{\nu}$) satisfies $\bar{R}_{\mu\nu\rho\sigma}A^{\sigma} = (-g_{\mu\rho}g_{\nu\sigma} + g_{\mu\sigma}g_{\nu\rho})A^{\sigma}$.
- Conformally rescaling $\bar{g}_{\mu\nu} = \Omega^{-2} \tilde{\bar{g}}_{\mu\nu}$, using that

$$\bar{R}_{\mu\nu\rho\sigma} = -\Omega^{-4}\bar{\bar{g}}^{\kappa\tau}\partial_{\kappa}\Omega\partial_{\tau}\Omega\left(\tilde{\bar{g}}_{\mu\rho}\tilde{\bar{g}}_{\nu\sigma} - \tilde{\bar{g}}_{\mu\sigma}\tilde{\bar{g}}_{\nu\rho}\right) + \dots$$

contracting with A^{σ} we get

$$\bar{g}^{\mu\nu}\frac{\partial_{\mu}\Omega}{\Omega}\frac{\partial_{\nu}\Omega}{\Omega}|_{\Omega=0} = 1.$$

The Sch boundary

$$\bar{g}^{\mu\nu}\frac{\partial_{\mu}\Omega}{\Omega}\frac{\partial_{\nu}\Omega}{\Omega}|_{\Omega=0} - g^{\mu\nu}\frac{\partial_{\mu}\Omega}{\Omega}\frac{\partial_{\nu}\Omega}{\Omega}|_{\Omega=0} = \left(A^{\mu}\frac{\partial_{\mu}\Omega}{\Omega}\right)^{2}|_{\Omega=0} = 1 - 1 = 0$$

since $\bar{g}^{\mu\nu} = g^{\mu\nu} + A^{\mu}A^{\nu}$.

• We thus find that the Sch boundary is at $\Omega = 0$ and that Ω satisfies the same conditions as on AdS with the additional condition that

$$A^{\mu} \frac{\partial_{\mu} \Omega}{\Omega} |_{\Omega=0} = 0 \,.$$

A^μ is tangential to the boundary. Since furthermore A^μ is a null Killing vector in the bulk of AdS it is also a null Killing vector of the AdS boundary metric.

- The fact that A^µ is tangent to the Sch boundary suggests that the Sch boundary inherits the non-relativistic causal structure of the Sch space-time.
- Since the only achronal sets are the lightlike hypersurface generated by A^µ expanding away from the boundary along a normal achronal curve, so that radial and time dependence do not mix, is only possible when A^µ is tangential to the boundary.
- We have not defined a Sch boundary metric. This will not be needed for the construction of FG expansions.

Asymptotically Schroedinger space-times

• For simplicity consider ASch solutions of the massive vector model

$$S = \int d^{d+3}x \sqrt{-\bar{g}} \left(\bar{R} - \frac{1}{4}\bar{F}^2 - (d+2)\bar{A}^2 + (d+1)(d+2) \right)$$

 In string theory ASch space-times are solutions to such Lagrangians that also have scalars. Setting these scalars to constants typically enforces two constraints

$$\bar{A}^2 = 0, \qquad \bar{F}^2 = 0.$$

 Goal: to solve the equations of motion of the massive vector model subject to these two constraints such that the solutions are ASch.

From AAdS to ASch

- We write again $\bar{g}_{\mu\nu} = g_{\mu\nu} A_{\mu}A_{\nu}$ where $\bar{g}_{\mu\nu}$ is now ASch and $g_{\mu\nu}$ an AAdS space admitting a defining function satisfying the same conditons as for a pure Sch space-time.
- The equations of motion for A^{μ} and $g_{\mu\nu}$ are

$$\begin{aligned} R_{\mu\nu} + (d+2)g_{\mu\nu} &= \frac{1}{2} \left(\mathcal{L}_A S_{\mu\nu} - S_{\mu\rho} S^{\rho}{}_{\nu} \right) ,\\ \nabla_{\mu} S^{\mu\nu} &= 0 ,\\ \nabla_{\mu} A^{\mu} &= 0 ,\\ A_{\mu} A^{\mu} &= 0 ,\\ F_{\mu\nu} F^{\mu\nu} &= -2 \left(A^{\mu} \nabla_{\mu} A_{\nu} \right) A^{\rho} \nabla_{\rho} A^{\nu} ,\end{aligned}$$
here $S_{\mu\nu} = \nabla_{\mu} A_{\nu} + \nabla_{\nu} A_{\mu}$ and $F_{\mu\nu} = \nabla_{\mu} A_{\nu} - \nabla_{\nu} A_{\mu}.$

Fefferman–Graham expansions

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = \frac{dr^2}{r^2} + \frac{1}{r^2}h_{ab}dx^a dx^b, \quad A^{\mu}\partial_{\mu} = rA'^r\partial_r + A^a\partial_a,$$

$$h_{ab} = g_{(0)ab} + \dots,$$

$$A^a = A^a_{(0)} + \dots,$$

$$A'^r = 0 + \dots.$$

- The expansion for h_{ab} is identical to the AAdS case (without matter) as long as $\mathcal{L}_A S_{\mu\nu} - S_{\mu\rho} S^{\rho}{}_{\nu} = 0$. (This is a generalization of FG expansions for ASch spaces that can be obtained via TsT where $S_{\mu\nu} = 0$.)
- For a pure Sch space $A_{(0)}^a$ is a boundary hypersurface orthogonal (HSO) null Killing vector. For ASch spaces this is relaxed to $A_{(0)}^a$ being tangent to a HSO, expansion and shear free, null geodesic congruence.

Conclusions and future work

- We have defined Sch spaces in terms of AdS quantities.
- This allowed for a definition of the Sch boundary in terms of a defining function.
- This sets the boundary conditions for the FG construction for ASch spaces.
- In progress: working out the details of the FG expansion.
- Potential applications:
 - Holographic renormalization
 - The asymptotic symmetry group