
Symmetries of scattering amplitudes in N = 4 SYM

Jan Plefka

Humboldt-Universität zu Berlin

based on work with

Fernando Alday, Lance Dixon, James Drummond,
Johannes Henn and Theodor Schuster

Nordic String Meeting, Copenhagen, 21.02.2012



N = 4 super Yang Mills: Most symmetric interacting 4d QFT

Field content: All fields in adjoint of SU(N), N ×N matrices

Gluons: Aµ
6 real scalars: ΦI
4× 4 real fermions: ΨαA

Action: Unique model completely fixed by SUSY

S =
1

gYM
2

∫
d4xTr

[
1
4F

2
µν + 1

2(DµΦI)
2 − 1

4 [ΦI ,ΦJ ][ΦI ,ΦJ ]+

Ψ̄A
α̇σ

α̇β
µ DµΨβ A − i

2ΨαAσ
AB
I εαβ [ΦI ,Ψβ B]− i

2Ψ̄α̇ Aσ
AB
I εα̇β̇ [ΦI , Ψ̄β̇ B]

]

βgYM = 0 : Quantum Conformal Field Theory, 2 parameters: N & λ = gYM
2N

Shall consider ’t Hooft planar limit: N →∞ with λ fixed.

Is the 4d interacting QFT with highest degree of symmetry!

⇒ “H-atom of gauge theories”
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Superconformal symmetry

Symmetry: so(2, 4)⊗ so(6) ⊂ psu(2, 2|4)

Poincaré: pαα̇ = pµ (σµ)α̇β, lαβ, l̄α̇β̇

Conformal: kαα̇, d (c : central charge)

R-symmetry: rAB

Poncaré Susy: qαA, q̄α̇A

Conformal Susy: sαA, s̄
A
α̇
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Scattering amplitudes in N = 4 SYM

Consider n-particle scattering amplitude

p1

p2
p3

pn−1pn

hn
hn−1

h1

h2

h3

S

Planar amplitudes most conveniently expressed in color ordered formalism:

An({pi, hi, ai}) =δ(4)(

n∑

i=1

pi)
∑

σ∈Sn/Zn
gn−2 tr[taσ1 . . . taσn ]

×An({pσ1 , hσ1}, . . . , {pσ1 , hσ1};λ = g2N)

An: Color ordered amplitude. Color structure is stripped off.

Helicity of ith particle: hi = 0 scalar, hi = ±1 gluon, hi = ±1
2 gluino
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Spinor helicity formalism

Express momentum and polarizations via commuting spinors λα, λ̃α̇:

pαα̇ = (σµ)αα̇ pµ = λαλ̃α̇ ⇔ pµ p
µ = det pαα̇ = 0

Choice of helicity determines polarization vector εµ of external gluon

h = +1 εαα̇ =
λαµ̃α̇

[λ̃ µ̃]
[λ̃ µ̃] := εα̇β̇ λ̃α̇µ̃β̇

h = −1 ε̃αα̇ =
µαλ̃α̇

〈λµ〉 〈λµ〉 := εαβ λ
αµβ

µ, µ̄ arbitrary reference spinors.

E.g. scalar products: 2 p1 · p2 = 〈λ1, λ2〉 [λ̃2, λ̃1] = 〈1, 2〉 [2, 1]

Helicity assignments:

h(λα) = −1/2 h(λ̃α̇) = +1/2
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Trees



Gluon Amplitudes and Helicity Classification

Classify gluon amplitudes by # of helicity flips

By SUSY Ward identities: An(1+, 2+, . . . , n+) = 0 = An(1−, 2+, . . . , n+)
true to all loops

Maximally helicity violating (MHV) amplitudes

An(1+, . . . , i−, . . . , j−, . . . n+) = δ(4)(
∑

i

pi)
〈i, j〉4

〈1, 2〉 〈2, 3〉 . . . 〈n, 1〉 [Parke,Taylor]

Next-to-maximally helicity amplitudes (NkMHV) have more involved structure!Weak coupling expansion of integral equation

MHV

NMHV

N2MHV

A4,2

A5,2 A5,3

A6,2 A6,3 A6,4

. . .. . .. . .. . .

2

An,m : gn−m+ gm−

[Picture from T. McLoughlin]
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On-shell superspace

Augment λαi and λ̃α̇i by Grassmann variables ηAi A = 1, 2, 3, 4 [Nair]

On-shell superspace (λαi , λ̃
α̇, ηAi ) with on-shell superfield:

ϕ(p, η) = G+(p) + ηAΓA(p) +
1

2
ηAηBSAB(p) +

1

3!
ηAηBηCεABCDΓ̄D(p)

+
1

4!
ηAηBηCηD εABCDG

−(p)

Superamplitudes:
〈
ϕ(λ1, λ̃1, η1)ϕ(λ2, λ̃2, η2) . . . ϕ(λn, λ̃n, ηn)

〉

Packages all n-parton gluon±-gluino±1/2-scalar amplitudes

General form of tree superamplitudes:

An =
δ(4)(

∑
i λi λ̃i) δ

(8)(
∑

i λi ηi)

〈1, 2〉 〈2, 3〉 . . . 〈n, 1〉 Pn({λi, λ̃i, ηi})

Conservation of super-momentum: δ(8)(
∑

i λ
αηAi ) = (

∑
i λ

αηAi )8

η-expansion of Pn yields NkMHV-classification of superamps as h(η) = −1/2

Pn = PMHV
n + η4 PNMHV

n + η8 PNNMHV
n + . . .+ η4n−8 PMHV

n
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Symmetries



su(2, 2|4) invariance

Superamplitude: (i = 1, . . . , n)

Atree
n ({λi, λ̃i, ηi}) =

δ(4)(
∑

i λ
α
i λ̃

α̇
i ) δ(8)(

∑
i λ

α
i η

A
i )

〈1, 2〉 〈2, 3〉 . . . 〈n, 1〉 Pn({λi, λ̃i, ηi})

Realization of psu(2, 2|4) generators in on-shell superspace, e.g. [Witten]

pαα̇ =

n∑

i=1

λαi λ̃
α̇
i qαA =

n∑

i=1

λαi η
A
i ⇒ obvious symmetries

kαα̇ =
n∑

i=1

∂

∂λαi

∂

∂λ̃α̇i
sαA =

n∑

i=1

∂

∂λαi

∂

∂ηAi
⇒ less obvious sym

Invariance: { p, k, l, l̄, d, r, q, q̄, s, s̄, ci }Atree
n ({λαi , λ̃α̇i , ηAi }) = 0

N.B.: Local invariance hiAn = 1 · An
Helicity operator: hi = − 1

2 λ
α
i ∂i α + 1

2 λ̃
α̇
i ∂i α̇ + 1

2 η
A
i ∂i A = 1− ci
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su(2, 2|4) invariance

The su(2, 2|4) generators acting in on-shell superspace (λαi , λ̃
α̇
i , η

A
i ):

pα̇α =
∑

i

λ̃α̇i λ
α
i , kαα̇ =

∑

i

∂iα∂iα̇ ,

mα̇β̇ =
∑

i

λ̃i(α̇∂iβ̇), mαβ =
∑

i

λi(α∂iβ) ,

d =
∑

i

[12λ
α
i ∂iα + 1

2 λ̃
α̇
i ∂iα̇ + 1], rAB =

∑

i

[−ηAi ∂iB + 1
4δ
A
Bη

C
i ∂iC ] ,

qαA =
∑

i

λαi η
A
i , q̄α̇A =

∑

i

λ̃α̇i ∂iA ,

sαA =
∑

i

∂iα∂iA, s̄Aα̇ =
∑

i

ηAi ∂iα̇ ,

∂iα :=
∂

∂λαi
∂iA :=

∂

∂ηAi
.

N.B: For collinear momenta (λi ∼ λi+1) important additional length changing
terms, due to holomorphic anomaly ∂

∂λ̃α̇
1
〈λ,µ〉 = 2πµ̃α̇ δ

2(〈λ, µ〉)
[Bargheer, Beisert, Galleas, Loebbert,McLoughlin] [Korchemsky, Sokatchev] [Skinner,Mason][Arkani-Hamed, Cachazo, Kaplan]
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su(2, 2|4) invariance
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Dual conformal symmetry

J. Henn Scattering amplitudes, Wilson loops, and dual superconformal symmetry DESY Zeuthen December 11, 2008 - p. 11/23

Gluon scattering amplitudes / Wilson loops duality

⇐⇒

. . .

x1 x2

x3 xµ
i+1 − xµ

i = pµ
i

. . .
xn−1

xnp1

p2p3

.

.

.

pn−1 pn

ln W (Cn) = div + F (WL)(a, pi · pj) + O(ε)

! Proposal: MHV gluon amplitudes at are dual to light-like Wilson loops

F (A)(a, pi · pj) = F (WL)(a, pi · pj) + O(1/Nc) + const

! motivated at strong coupling via AdS/CFT [Alday, Maldacena ’07]

! field theory:

" valid at one loop [Drummond,Korchemsky,Sokatchev ’07],[Brandhuber, Heslop, Travaglini ’07]

" two-loop calculation for n = 4, 5 points [Drummond,J.H.,Korchemsky,Sokatchev ’07]

" result agrees with BDS formula!

# Why is the result so simple?

Trees are dual superconformal invariant: (θi − θi+1)
αA = λαi η

A
i

[Drummond, Henn, Korchemsky, Sokatchev]

Dual conformal generator: Kµ =
∑

i (2xµi x
ν
i − x2i ηµν) ∂

∂xνi
+ ferms

Translate to original on-shell superspace: xαα̇i =
i−1∑

j=1

λαj λ̃
α̇
j + xαα̇1 etc.

⇒ Kαα̇ =

n∑

i=1

xα̇βi λαi
∂

∂λβi
+ xαβ̇i+1 λ̃

α̇
i

∂

∂λ̃β̇i

+ λ̃α̇i θ
αB
i+1

∂

∂ηBi
+ xαα̇i

Nonlocal structure!
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Yangian symmetry of scattering amplitudes in N = 4 SYM

Superconformal + Dual superconformal algebra = Yangian Y [psu(2, 2|4)]
[Drummond, Henn, JP]

[J (0)
a , J

(0)
b }= fab

c J (0)
c conventional superconformal symmetry

[J (0)
a , J

(1)
b }= fab

c J (1)
c from dual conformal symmetry

with nonlocal generators J (1)
a = f cba

∑

1<j<i<n

J
(0)
i,b J

(0)
j,c

and super Serre relations (representation dependent). [Dolan,Nappi,Witten]

In particular: Bosonic invariance p
(1)
αα̇An = 0 with

p
(1)
αα̇ = Kαα̇ + ∆Kαα̇

=
1

2

∑

i<j

(li, α
γδγ̇α̇ + l̄i, α̇

γ̇δγα − di δγαδγ̇α̇) pj, γγ̇ + q̄i, α̇C q
C
j,α − (i↔ j)

In fact J
(0)
a and p(1) generate all of Y [psu(2, 2|4)]
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Loops



Higher loops and Higgs regulator

Beyond tree-level: Need of regularization (IR divergences) a priori breaks
conformal and dual conformal symmetry

Standard regularization method Dim reduction 10→ 4− ε
Alternative method: Massive or Higgs regulator [Alday, Henn, JP, Schuster]

Close connection to 6d amplitudes in N = (1, 1) super Yang-Mills

String picture serious:

N D3-branes

M D3-branes

z = 0

zi = 1/mi

(a)

Figure 1: (a) String theory description for the scattering of M gluons in the large N limit. Putting
the M D3-branes at different positions zi != 0 serves as a regulator and also allows us to exhibit dual
conformal symmetry. (b) Gauge theory analogue of (a): a generic scattering amplitude at large N (here:
a sample two-loop diagram).

between the M separated D3-branes, which are our external scattering states. Then there are
the “heavy” gauge fields corresponding to the strings stretching between the coincident N D3-
branes and one of the M branes. These are the massive particles running on the outer line of the
diagrams, see figure 1. In doing so, we argue that dual conformal symmetry, suitably extended to
act on the Higgs masses as well, is an exact, i.e. unbroken, symmetry of the scattering amplitudes.

This unbroken symmetry has very profound consequences. It was already noticed in [17] that
the integrals contributing to loop amplitudes in N = 4 SYM have very special properties under
dual conformal transformations, but this observation was somewhat obscured by the infrared
regulator. With our infrared regularisation, the dual conformal symmetry is exact and hence so
is the symmetry of the integrals. Therefore, the loop integrals appearing in our regularisation will
have an exact dual conformal symmetry. This observation severely restricts the class of integrals
allowed to appear in an amplitude. As a simple application, triangle sub-graphs are immediately
excluded.

The alert reader might wonder whether computing a scattering amplitude with several, dis-
tinct Higgs masses might not be hopelessly complicated. In fact, this is not the case. The
different masses are crucial for the unbroken dual conformal symmetry to work. However, once
we have used this symmetry in order to restrict the number of basis loop integrals, we can set all
Higgs masses equal and think about the common mass as a regulator. As we will show in several
examples, computing the small mass expansion in this regulator is particularly simple. In fact,
to two loops, only very simple (two-) and (one-)fold Mellin-Barnes integrals were needed.

4

Field Theory: Higgsing U(N +M)→ U(N)× U(1)M .
One brane for every scattered particle, N �M .
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Higgsing N = 4 Super Yang-Mills

Action

Ŝ
U(N+M)
N=4 =

∫
d4xTr

(
−1

4
F̂ 2
µν −

1

2
(DµΦ̂I)

2 +
g2

4
[Φ̂I , Φ̂J ]2 + ferms

)
,

Decompose into N +M blocks

Âµ =

(
(Aµ)ab (Aµ)aj
(Aµ)ia (Aµ)ij

)
, Φ̂I =

(
(ΦI)ab (ΦI)aj
(ΦI)ia δI9

mi
g δij + (ΦI)ij

)

a, b = 1, . . . , N , i, j = N + 1, . . . , N +M ,

Yields mass terms and novel bosonic 3-point interactions proportional to mi

Renders amplitudes IR finite. Has ‘light’ (mi −mj) and ‘heavy’ mi W-bosons

N D3-branes

M D3-branes

z = 0

zi = 1/mi

(a)

p2 p3

p4p1

i2i2

i3

i3

i4i4

i1

i1

j k

(b)

Figure 1: (a) String theory description for the scattering of M gluons in the large N limit. Putting
the M D3-branes at different positions zi != 0 serves as a regulator and also allows us to exhibit dual
conformal symmetry. (b) Gauge theory analogue of (a): a generic scattering amplitude at large N (here:
a sample two-loop diagram).

moving M D3-branes away from the N parallel D3-branes and also separating these M distinct
branes from one another. One then has “light” gauge fields corresponding to strings stretching
between the M separated D3-branes, which are our external scattering states. Then there are
the “heavy” gauge fields corresponding to the strings stretching between the coincident N D3-
branes and one of the M branes. These are the massive particles running on the outer line of the
diagrams, see figure 1. In doing so, we argue that dual conformal symmetry, suitably extended to
act on the Higgs masses as well, is an exact, i.e. unbroken, symmetry of the scattering amplitudes.

This exact symmetry has very profound consequences. It was already noticed in [18] that
the integrals contributing to loop amplitudes in N = 4 SYM have very special properties under
dual conformal transformations, but this observation was somewhat obscured by the infrared
regulator. With our infrared regularisation, the dual conformal symmetry is exact and hence so
is the symmetry of the integrals. Therefore, the loop integrals appearing in our regularisation will
have an exact dual conformal symmetry. This observation severely restricts the class of integrals
allowed to appear in an amplitude. As a simple application, triangle sub-graphs are immediately
excluded.

The alert reader might wonder whether computing a scattering amplitude with several, dis-
tinct Higgs masses might not be hopelessly complicated. In fact, this is not the case. The
different masses are crucial for the exact dual conformal symmetry to work. However, once we
have used this symmetry in order to restrict the number of basis loop integrals, we can set all
Higgs masses equal and think about the common mass as a regulator. As we will show in several
examples, computing the small mass expansion in this regulator is particularly simple. In fact,

4
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One loop test of extended dual conformal symmetry 1

Consider the (special) purely scalar amplitude:

A4 = 〈Φ4(p1) Φ5(p2) Φ4(p3) Φ5(p4)〉 = ig2YM

(
1 + λ I(1)(s, t,mi) +O(λ2)

)

I(1)(s, t,mi): Massive box integral in dual variables (pi = xi − xi+1)

p2 p3

p4p1

i2i2

i3

i3

i4 i4

i1

i1

j

(a)

p2 p3

p4p1

(x2, m2)

(x3, m3)

(x4, m4)

(x1, m1)

(x5, 0)

(b)

Figure 3: (a) Double line notation of the gauge factor corresponding to a one-loop box integral. The
U(M) indices in determine the masses of the different propagators. (b) Dual diagram (thick black lines)
and dual coordinates. The fifth component of the dual coordinates corresponds to the radial AdS5

direction.

made in such a way that a proliferation of Feynman graphs is avoided. For example, at tree-level,
we need to compute only one Feynman diagram and we obtain 3

Atree
4 = ig2

YM . (17)

The corresponding one-loop calculation is carried out in appendix B. Introducing the notation

A4 = Atree
4 M4 , (18)

and using the result (71) we obtain

M4 = 1 − a

2
I(1)(s, t, mi) + O(a2) , (19)

where s = (p1 + p2)
2, t = (p2 + p3)

2 are the usual Mandelstam variables, mi are the Higgs masses
introduced in the previous section, and a = g2

YMN/(8π2), with gYM being the Yang-Mills coupling
constant.

The integral I(1) is a box integral, depicted in figure 3. In contrast to dimensional regular-
isation, it is defined in four dimensions and depends on several masses coming from the Higgs
mechanism. The integral is given by

I(1)(s, t, mi) = c0

∫
d4k

(s + (m1 − m3)
2)(t + (m2 − m4)

2)

(k2 + m2
1)((k + p1)2 + m2

2)((k + p1 + p2)2 + m2
3)(k − p4)2 + m2

4)
. (20)

3We redefine the coupling constant g = gYM/
√

2 in order to compare to results in the conventions of [13, 14].
Also, we omit writing the momentum conservation delta function δ(4)(p1 + p2 + p3 + p4).

10

=

∫
d4x5

(x213 + (m1 −m3)
2)(x224 + (m2 −m4)

2)

(x215 +m2
1)(x

2
25 +m2

2)(x
2
35 +m2

3)(x
2
45 +m2

4)

Reexpressed in 5d variables x̂M : x̂µi := xµi , x̂4i := mi , i = 1 . . . 4

I(1)(s, t,mi) = x̂213x̂
2
24

∫
d5x̂5

δ(x̂M=4
5 )

x̂215x̂
2
25x̂

2
35x̂

2
45

I(1)(s, t,mi) is extended dual conformal invariant: K̂µI
(1)(s, t,mi) = 0
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Extended dual conformal invariance

Extended dual conformal invariance

K̂µ I
(1)(s, t,mi) :=

4∑

i=1

[
2xiµ

(
xνi

∂

∂xνi
+mi

∂

∂mi

)
− (x2i +m2

i )
∂

∂xµi

]
I(1)(s, t,mi) = 0

mi is the fifth coordinate xM = (xµ,m).

Triangle and bubble graphs are forbidden by extended conformal symmetry!

Indeed an explicit one-loop calculation shows the cancelation of triangles.

Has been extended to higher loops & higher multiplicities as well as Regge limit
[Henn, Naculich, Schnitzer, Drummond]
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Symmetries of massively regulated loop amplitudes
[JP, Schuster]



On shell superspace for 6d N = (1, 1) sYM

4d massively regulated N = 4
SYM amplitudes

KK red.
=

6d massless N = (1, 1) SYM amps
with p5 + ip6 = m4d

& internal loop momenta in 4d

On shell 6d superspace:

Lorentz group SO(1, 5) ' SU(4)∗ Little group SO(4) ' SU(2)× SU(2)

Helicity spinors: λAa & λ̃Aȧ A = 1, 2, 3, 4 a = 1, 2 ȧ = 1, 2

6d momentum: pAB = λAa λBb εab pAB = λ̃Aȧ λBḃ ε
ȧḃ = 1

2 εABCD p
AB

SUSY partners: ηa & η̃ȧ

Supertranslations: qA = λAa ηa & q̃A = λ̃Aȧ η̃
ȧ

On-shell superfield as η expansion:

Ω(p, η, η̃) = φ+ ψaηa + ψ̃aη̃
a + φ′ η2 + φ′′ η̃2 + gȧa η

a η̃ȧ . . .+ φ′′ η2 η̄2

Perturbative results:
3,4,5 point amplitudes @ tree-level [Cheung,O’Connell]

Super BCFW recursion [Dennen,Huang,Siegel]

4pt amplitude @ 1 & 2 loops [Bern,Carrasco,Dennen,Huang,Ita]
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Dual conformal symmetry for 6d N = (1, 1) SYM

Introduce dual on-shell superspace

xABi − xABi+1 = pABi θAi − θAi+1 = qAi θ̃i A − θ̃i+1A = q̃iA

Dual conformal generator:

Kµ =
∑

i

(2xµi x
ν
i − x2i ηµν)

∂

∂xνi
+ θAi (σµ)AB x

BC
i

∂

∂θCi
+ . . .

Statement: Kµ is symmetry of 6d δ-fct. stripped super amplitudes [Dennen,Huang]

(Kµ + 2
∑

i

xµi )
AL-loopn

δ(6)(p) δ(4)(q) δ(4)(q̃)
= 0

True also for higher loops L > 0 iff loop integration is in 4d ⇒
Proof of extended dual conformal symmetry of Higgs-regulated N = 4 SYM!

[16/21]



From 6 to 4

Question:
May we interpret dual conformal Kµ as the level one Yangian generator p

(1)
µ of

Higgs regulated N = 4 SYM upon dim reduction to 4d?

Needs to compactify to 4d: pAB =

(
mεαβ −pαβ̇
pα̇β −m̄ εα̇β̇

)

Helicity spinors for massive 4d particles:

pαα̇ = λαλ̃α̇ + µαµ̃α̇ (two sets of spinors)

with constraints 〈λµ〉 = m and [µ̃ λ̃] = m̄. Reality condition: m = m̄.
Inherited Lorentz symmetries of massively regulated N = 4 amplitudes

lαβ =
∑

i

λi (α∂i β) + µi (αδi β) l̄α̇β̇ = . . . ⇔ lµν

hαα̇ =
∑

i

µ̃i α̇∂i α − λ̃i α̇δi α + µi α∂̃i α̇ − λi αδ̃i α̇ ⇔ lµ5 + ilµ6

d =
∑

i

1
2(λαi ∂i α + λ̃α̇i ∂̃i α̇ + µαi δi α + µ̃α̇i δ̃i α̇) + 1 ⇔ l56

with δiα := ∂

∂µβi
∂iα := ∂

∂λβi
. Generators commute with m = m̄ constraint
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From 6 to 4

Inherited supersymmetries of massively regulated N = 4 amplitudes

Qai α = λi αξ̄
a
i − µi αξai Qai α̇ = λ̃i α̇ξ

a
i + µ̃i α̇ξ̄

a
i

Q̄i α̇ a = λ̃i α̇
∂

∂ξ̄ai
− µ̃i α̇

∂

∂ξai
Q̄i α a = λi α

∂

∂ξai
+ µi α

∂

∂ξ̄ai

with ξa =

(
η1

−η̃1̇

)
ξ̄a =

(
η2

η̃2̇

)
Bosonic algebra: Standard 4d Poincaré plus:

[hαα̇, pββ̇ ] = 2 εαβ εα̇β̇m, [hαα̇,m ] = pαα̇ ,

[hαα̇, hββ̇ ] = 2εαβ l̄α̇β̇ + 2εα̇β̇ lαβ , [ lβγ , hαα̇ ] = εα(β hγ)α̇ ,

SUSY algebra

{Qaα, Q̄α̇ b} = pαα̇ δ
a
b {Qaα̇, Q̄α b} = pαα̇ δ

a
b

{Qaα, Q̄β b} = mεαβ δ
a
b {Qaα̇, Q̄β̇ b} = −mεα̇β̇ δ

a
b

[18/21]



Nonlocal symmetries of massively regulates N = 4 SYM

Rewriting the 6d dual conformal Kµ (µ = 0, 1, 2, 3) in the massive on-shell 4d
superspace {λα, λ̃α̇;µα, µ̃α̇; ξa, ξ̄a} yields

Kαα̇ + ∆Kαα̇ + 2
∑

i

xi αα̇ − x1-terms

=
∑

i<j

[
(εα̇β̇ li αβ + εαβ l̄i α̇β̇ + εαβ εα̇β̇ di ) pββ̇j + hi αα̇mj

− Q̄i αaQaj α̇ − Q̄i α̇aQaj α − (i↔ j)

]
= p

(1)
αα̇

Is level-one Yangian like extension of translational part of Poincaré algebra

[hαα̇, p
(1)

ββ̇
] = 2 εαβ εα̇β̇m

(1)

with m(1) = 1
2

∑
j<i

[
hi γγ̇ p

γγ̇
j + 2dimj − Q̄i γaQaγj − Q̄

γ̇
i aQ

a
j γ̇ − (i↔ j)

]

[19/21]



Nonlocal symmetries of massively regulated N = 4 4d SYM

However, no ∞-dim symmetry structure emerges as p
(1)
αα̇ and m(1) form an ideal

of the algebra:

i = {p,m} ⊂ a [a(0), i(0)] = i(0) [a(0), i(1)] = i(1)

Conclusion:

{p,m, l, l̄, h, d; q, q̃ ; p(1),m(1)} AL-loop, N = 4 SYM
n

δ(6)(p) δ(4)(q) δ(4)(q̃)
= 0

Level 1 SUSY generators do not seem to exist

Analysis suggests ∞-dim symmetry structure hinges upon conformal symmetry
at level 0 as there

[k, p] ∼ l + l̄ + d

[20/21]



Summary and Outlook

Tree level amplitudes are invariant under an infinite dimensional Yangian
symmetry

Challenge at weak coupling: Does Yangian symmetry extend to the loop level?

Breaking of dual conformal invariance at loop level under control: Best seen in
massive (Higgs) regulator

Restriction of possible integrals at higher loops.

Established symmetry structure of massively regulated N = 4 SYM:

Superpoincaré + hµ + d+ p
(1)
µ +m(1)

Can breaking of standard conformal invariance at loop level be controlled?
∃ perturbative construction in dim. regularization [Sever,Vieira][Beisert,Henn,McLoughlin, JP]

Recent all loop claim [Caron-Huot,He]

Relation to massive regularization?

Does integrability determine the all loop planar scattering amplitudes?
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