Symmetries of scattering amplitudes in $\mathcal{N}=4$ SYM

Jan Plefka

Humboldt-Universität zu Berlin

based on work with

Fernando Alday, Lance Dixon, James Drummond, Johannes Henn and Theodor Schuster

Nordic String Meeting, Copenhagen, 21.02.2012

$\mathcal{N}=4$ super Yang Mills: Most symmetric interacting 4d QFT

- Field content: All fields in adjoint of $S U(N), N \times N$ matrices
- Gluons: A_{μ}
- 6 real scalars: Φ_{I}
- $4 \times \mathbf{4}$ real fermions: $\Psi_{\alpha A}$
- Action: Unique model completely fixed by SUSY

$$
\begin{aligned}
S= & \frac{1}{g_{\mathrm{YM}}{ }^{2}} \int d^{4} x \operatorname{Tr}\left[\frac{1}{4} F_{\mu \nu}^{2}+\frac{1}{2}\left(D_{\mu} \Phi_{I}\right)^{2}-\frac{1}{4}\left[\Phi_{I}, \Phi_{J}\right]\left[\Phi_{I}, \Phi_{J}\right]+\right. \\
& \left.\bar{\Psi}_{\dot{\alpha}}^{A} \sigma_{\mu}^{\dot{\alpha} \beta} \mathcal{D}^{\mu} \Psi_{\beta A}-\frac{i}{2} \Psi_{\alpha A} \sigma_{I}^{A B} \epsilon^{\alpha \beta}\left[\Phi^{I}, \Psi_{\beta B}\right]-\frac{i}{2} \bar{\Psi}_{\dot{\alpha} A} \sigma_{I}^{A B} \epsilon^{\dot{\alpha} \dot{\beta}}\left[\Phi^{I}, \bar{\Psi}_{\dot{\beta} B}\right]\right]
\end{aligned}
$$

- $\beta_{g_{\mathrm{YM}}}=0$: Quantum Conformal Field Theory, 2 parameters: $N \& \lambda=g_{\mathrm{YM}}{ }^{2} N$
- Shall consider 't Hooft planar limit: $N \rightarrow \infty$ with λ fixed.
- Is the 4 d interacting QFT with highest degree of symmetry!
\Rightarrow "H-atom of gauge theories"

Superconformal symmetry

- Symmetry: $\mathfrak{s o}(2,4) \otimes \mathfrak{s o}(6) \subset \mathfrak{p s u}(2,2 \mid 4)$

Poincaré: $\quad p^{\alpha \dot{\alpha}}=p_{\mu}\left(\sigma^{\mu}\right)^{\dot{\alpha} \beta}, \quad l_{\alpha \beta}, \quad \bar{l}_{\dot{\alpha} \dot{\beta}}$
Conformal: $k_{\alpha \dot{\alpha}}, d \quad(c$: central charge)
R-symmetry: $r_{A B}$
Poncaré Susy: $\quad q^{\alpha A}, \bar{q}_{A}^{\dot{\alpha}}$
Conformal Susy: $s_{\alpha A}, \bar{s}_{\dot{\alpha}}^{A}$

Scattering amplitudes in $\mathcal{N}=4$ SYM

- Consider n-particle scattering amplitude

- Planar amplitudes most conveniently expressed in color ordered formalism:

$$
\begin{aligned}
A_{n}\left(\left\{p_{i}, h_{i}, a_{i}\right\}\right)= & \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \sum_{\sigma \in S_{n} / Z_{n}} g^{n-2} \operatorname{tr}\left[t^{a_{\sigma_{1}}} \ldots t^{a_{\sigma_{n}}}\right] \\
& \times \mathcal{A}_{n}\left(\left\{p_{\sigma_{1}}, h_{\sigma_{1}}\right\}, \ldots,\left\{p_{\sigma_{1}}, h_{\sigma_{1}}\right\} ; \lambda=g^{2} N\right)
\end{aligned}
$$

\mathcal{A}_{n} : Color ordered amplitude. Color structure is stripped off.
Helicity of i th particle: $h_{i}=0$ scalar, $h_{i}= \pm 1$ gluon, $h_{i}= \pm \frac{1}{2}$ gluino

Spinor helicity formalism

- Express momentum and polarizations via commuting spinors $\lambda^{\alpha}, \tilde{\lambda}^{\dot{\alpha}}$:

$$
p^{\alpha \dot{\alpha}}=\left(\sigma^{\mu}\right)^{\alpha \dot{\alpha}} p_{\mu}=\lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}} \quad \Leftrightarrow \quad p_{\mu} p^{\mu}=\operatorname{det} p^{\alpha \dot{\alpha}}=0
$$

- Choice of helicity determines polarization vector ε^{μ} of external gluon

$$
\begin{array}{lll}
h=+1 & \varepsilon^{\alpha \dot{\alpha}}=\frac{\lambda^{\alpha} \tilde{\mu}^{\dot{\alpha}}}{[\tilde{\lambda} \tilde{\mu}]} & {[\tilde{\lambda} \tilde{\mu}]:=\epsilon^{\dot{\alpha} \dot{\beta}} \tilde{\lambda}_{\dot{\alpha}} \tilde{\mu}_{\dot{\beta}}} \\
h=-1 & \tilde{\varepsilon}^{\alpha \dot{\alpha}}=\frac{\mu^{\alpha} \tilde{\lambda}^{\dot{\alpha}}}{\langle\lambda \mu\rangle} & \langle\lambda \mu\rangle:=\epsilon_{\alpha \beta} \lambda^{\alpha} \mu^{\beta}
\end{array}
$$

$\mu, \bar{\mu}$ arbitrary reference spinors.

- E.g. scalar products: $2 p_{1} \cdot p_{2}=\left\langle\lambda_{1}, \lambda_{2}\right\rangle\left[\tilde{\lambda}_{2}, \tilde{\lambda}_{1}\right]=\langle 1,2\rangle[2,1]$
- Helicity assignments:

$$
h\left(\lambda^{\alpha}\right)=-1 / 2 \quad h\left(\tilde{\lambda}^{\dot{\alpha}}\right)=+1 / 2
$$

Trees

Gluon Amplitudes and Helicity Classification

Classify gluon amplitudes by \# of helicity flips

- By SUSY Ward identities: $\mathcal{A}_{n}\left(1^{+}, 2^{+}, \ldots, n^{+}\right)=0=\mathcal{A}_{n}\left(1^{-}, 2^{+}, \ldots, n^{+}\right)$ true to all loops
- Maximally helicity violating (MHV) amplitudes

$$
\mathcal{A}_{n}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots n^{+}\right)=\delta^{(4)}\left(\sum_{i} p_{i}\right) \frac{\langle i, j\rangle^{4}}{\langle 1,2\rangle\langle 2,3\rangle \ldots\langle n, 1\rangle} \quad \text { [Parke, Taylor] }
$$

- Next-to-maximally helicity amplitudes ($\mathrm{N}^{k} \mathrm{MHV}$) have more involved structure!

On-shell superspace

- Augment λ_{i}^{α} and $\tilde{\lambda}_{i}^{\dot{\alpha}}$ by Grassmann variables $\eta_{i}^{A} \quad A=1,2,3,4$
- On-shell superspace ($\lambda_{i}^{\alpha}, \tilde{\lambda}^{\dot{\alpha}}, \eta_{i}^{A}$) with on-shell superfield:

$$
\begin{aligned}
\varphi(p, \eta) & =G^{+}(p)+\eta^{A} \Gamma_{A}(p)+\frac{1}{2} \eta^{A} \eta^{B} S_{A B}(p)+\frac{1}{3!} \eta^{A} \eta^{B} \eta^{C} \epsilon_{A B C D} \bar{\Gamma}^{D}(p) \\
& +\frac{1}{4!} \eta^{A} \eta^{B} \eta^{C} \eta^{D} \epsilon_{A B C D} G^{-}(p)
\end{aligned}
$$

- Superamplitudes:

Packages all n-parton gluon ${ }^{ \pm}$-gluino ${ }^{ \pm 1 / 2}$-scalar amplitudes

- General form of tree superamplitudes:

Conservation of super-momentum:

- n-expansion of \mathcal{P}_{n} vields $\mathbf{N}^{k} \mathbf{M H V}$-classification of superamps as $h(\eta)=-1 / 2$

On-shell superspace

- Augment λ_{i}^{α} and $\tilde{\lambda}_{i}^{\dot{\alpha}}$ by Grassmann variables $\eta_{i}^{A} \quad A=1,2,3,4$
[Nair]
- On-shell superspace $\left(\lambda_{i}^{\alpha}, \tilde{\lambda}^{\dot{\alpha}}, \eta_{i}^{A}\right)$ with on-shell superfield:

$$
\begin{aligned}
\varphi(p, \eta) & =G^{+}(p)+\eta^{A} \Gamma_{A}(p)+\frac{1}{2} \eta^{A} \eta^{B} S_{A B}(p)+\frac{1}{3!} \eta^{A} \eta^{B} \eta^{C} \epsilon_{A B C D} \bar{\Gamma}^{D}(p) \\
& +\frac{1}{4!} \eta^{A} \eta^{B} \eta^{C} \eta^{D} \epsilon_{A B C D} G^{-}(p)
\end{aligned}
$$

- Superamplitudes: $\left\langle\varphi\left(\lambda_{1}, \tilde{\lambda}_{1}, \eta_{1}\right) \varphi\left(\lambda_{2}, \tilde{\lambda}_{2}, \eta_{2}\right) \ldots \varphi\left(\lambda_{n}, \tilde{\lambda}_{n}, \eta_{n}\right)\right\rangle$

Packages all n-parton gluon ${ }^{ \pm}$-gluino ${ }^{ \pm 1 / 2}$-scalar amplitudes

- General form of tree superamplitudes:

$$
\mathbb{A}_{n}=\frac{\delta^{(4)}\left(\sum_{i} \lambda_{i} \tilde{\lambda}_{i}\right) \delta^{(8)}\left(\sum_{i} \lambda_{i} \eta_{i}\right)}{\langle 1,2\rangle\langle 2,3\rangle \ldots\langle n, 1\rangle} \mathcal{P}_{n}\left(\left\{\lambda_{i}, \tilde{\lambda}_{i}, \eta_{i}\right\}\right)
$$

Conservation of super-momentum: $\quad \delta^{(8)}\left(\sum_{i} \lambda^{\alpha} \eta_{i}^{A}\right)=\left(\sum_{i} \lambda^{\alpha} \eta_{i}^{A}\right)^{8}$

- η-expansion of \mathcal{P}_{n} yields $\mathbf{N}^{k} \mathrm{MHV}$-classification of superamps as $h(\eta)=-1 / 2$

$$
\mathcal{P}_{n}=\mathcal{P}_{n}^{\mathrm{MHV}}+\eta^{4} \mathcal{P}_{n}^{\mathrm{NMHV}}+\eta^{8} \mathcal{P}_{n}^{\mathrm{NNMHV}}+\ldots+\eta^{4 n-8} \mathcal{P}_{n}^{\overline{\mathrm{MHV}}}
$$

Symmetries

$\mathfrak{s u}(2,2 \mid 4)$ invariance

- Superamplitude: $(i=1, \ldots, n)$

$$
\mathbb{A}_{n}^{\text {tree }}\left(\left\{\lambda_{i}, \tilde{\lambda}_{i}, \eta_{i}\right\}\right)=\frac{\delta^{(4)}\left(\sum_{i} \lambda_{i}^{\alpha} \tilde{\lambda}_{i}^{\dot{\alpha}}\right) \delta^{(8)}\left(\sum_{i} \lambda_{i}^{\alpha} \eta_{i}^{A}\right)}{\langle 1,2\rangle\langle 2,3\rangle \ldots\langle n, 1\rangle} \mathcal{P}_{n}\left(\left\{\lambda_{i}, \tilde{\lambda}_{i}, \eta_{i}\right\}\right)
$$

- Realization of $\mathfrak{p s u}(2,2 \mid 4)$ generators in on-shell superspace, e.g.

$$
\begin{array}{lll}
p^{\alpha \dot{\alpha}}=\sum_{i=1}^{n} \lambda_{i}^{\alpha} \tilde{\lambda}_{i}^{\dot{\alpha}} & q^{\alpha A}=\sum_{i=1}^{n} \lambda_{i}^{\alpha} \eta_{i}^{A} & \Rightarrow \text { obvious symmetries } \\
k_{\alpha \dot{\alpha}}=\sum_{i=1}^{n} \frac{\partial}{\partial \lambda_{i}^{\alpha}} \frac{\partial}{\partial \tilde{\lambda}_{i}^{\dot{\alpha}}} & s_{\alpha A}=\sum_{i=1}^{n} \frac{\partial}{\partial \lambda_{i}^{\alpha}} \frac{\partial}{\partial \eta_{i}^{A}} &
\end{array}
$$

- Invariance: $\left\{p, k, l, \bar{l}, d, r, q, \bar{q}, s, \bar{s}, c_{i}\right\} \mathbb{A}_{n}^{\text {tree }}\left(\left\{\lambda_{i}^{\alpha}, \tilde{\lambda}_{i}^{\dot{\alpha}}, \eta_{i}^{A}\right\}\right)=0$
- N.B.: Local invariance $h_{i} \mathbb{A}_{n}=1 \cdot \mathbb{A}_{n}$

Helicity operator: $\quad h_{i}=-\frac{1}{2} \lambda_{i}^{\alpha} \partial_{i \alpha}+\frac{1}{2} \tilde{\lambda}_{i}^{\dot{\alpha}} \partial_{i \dot{\alpha}}+\frac{1}{2} \eta_{i}^{A} \partial_{i A}=1-c_{i}$

$\mathfrak{s u}(2,2 \mid 4)$ invariance

- The $\mathfrak{s u}(2,2 \mid 4)$ generators acting in on-shell superspace $\left(\lambda_{i}^{\alpha}, \tilde{\lambda}_{i}^{\dot{\alpha}}, \eta_{i}^{A}\right)$:

$$
\begin{array}{ll}
p^{\dot{\alpha} \alpha}=\sum_{i} \tilde{\lambda}_{i}^{\dot{\alpha}} \lambda_{i}^{\alpha}, & k_{\alpha \dot{\alpha}}=\sum_{i} \partial_{i \alpha} \partial_{i \dot{\alpha}}, \\
\bar{m}_{\dot{\alpha} \dot{\beta}}=\sum_{i} \tilde{\lambda}_{i(\dot{\alpha}} \partial_{i \dot{\beta})}, & m_{\alpha \beta}=\sum_{i} \lambda_{i(\alpha} \partial_{i \beta)}, \\
d=\sum_{i}\left[\frac{1}{2} \lambda_{i}^{\alpha} \partial_{i \alpha}+\frac{1}{2} \tilde{\lambda}_{i}^{\dot{\alpha}} \partial_{i \dot{\alpha}}+1\right], & r_{B}^{A}=\sum_{i}\left[-\eta_{i}^{A} \partial_{i B}+\frac{1}{4} \delta_{B}^{A} \eta_{i}^{C} \partial_{i C}\right], \\
q^{\alpha A}=\sum_{i} \lambda_{i}^{\alpha} \eta_{i}^{A}, & \bar{q}_{A}^{\dot{\alpha}}=\sum_{i} \tilde{\lambda}_{i}^{\dot{\alpha}} \partial_{i A}, \\
s_{\alpha A}=\sum_{i} \partial_{i \alpha} \partial_{i A}, & \bar{s}_{\dot{\alpha}}^{A}=\sum_{i} \eta_{i}^{A} \partial_{i \dot{\alpha}}, \\
\partial_{i \alpha}:=\frac{\partial}{\partial \lambda_{i}^{\alpha}} & \partial_{i A}:=\frac{\partial}{\partial \eta_{i}^{A}} .
\end{array}
$$

$\mathfrak{s u}(2,2 \mid 4)$ invariance

- The $\mathfrak{s u}(2,2 \mid 4)$ generators acting in on-shell superspace $\left(\lambda_{i}^{\alpha}, \tilde{\lambda}_{i}^{\dot{\alpha}}, \eta_{i}^{A}\right)$:

$$
\begin{array}{ll}
p^{\dot{\alpha} \alpha}=\sum_{i} \tilde{\lambda}_{i}^{\dot{\alpha}} \lambda_{i}^{\alpha}, & k_{\alpha \dot{\alpha}}=\sum_{i} \partial_{i \alpha} \partial_{i \dot{\alpha}}, \\
\bar{m}_{\dot{\alpha} \dot{\beta}}=\sum_{i} \tilde{\lambda}_{i(\dot{\alpha}} \partial_{i \dot{\beta})}, & m_{\alpha \beta}=\sum_{i} \lambda_{i(\alpha} \partial_{i \beta)}, \\
d=\sum_{i}\left[\frac{1}{2} \lambda_{i}^{\alpha} \partial_{i \alpha}+\frac{1}{2} \tilde{\lambda}_{i}^{\dot{\alpha}} \partial_{i \dot{\alpha}}+1\right], & r_{B}^{A}=\sum_{i}\left[-\eta_{i}^{A} \partial_{i B}+\frac{1}{4} \delta_{B}^{A} \eta_{i}^{C} \partial_{i C}\right], \\
q^{\alpha A}=\sum_{i} \lambda_{i}^{\alpha} \eta_{i}^{A}, & \bar{q}_{A}^{\dot{\alpha}}=\sum_{i} \tilde{\lambda}_{i}^{\dot{\alpha}} \partial_{i A}, \\
s_{\alpha A}=\sum_{i} \partial_{i \alpha} \partial_{i A}, & \bar{s}_{\dot{\alpha}}^{A}=\sum_{i} \eta_{i}^{A} \partial_{i \dot{\alpha}}, \\
\partial_{i \alpha}:=\frac{\partial}{\partial \lambda_{i}^{\alpha}} & \partial_{i A}:=\frac{\partial}{\partial \eta_{i}^{A}} .
\end{array}
$$

- N.B: For collinear momenta $\left(\lambda_{i} \sim \lambda_{i+1}\right)$ important additional length changing terms, due to holomorphic anomaly $\frac{\partial}{\partial \dot{\lambda} \dot{\alpha}} \frac{1}{\langle\lambda, \mu\rangle}=2 \pi \tilde{\mu}_{\dot{\alpha}} \delta^{2}(\langle\lambda, \mu\rangle)$
[Bargheer, Beisert, Galleas, Loebbert,McLoughlin] [Korchemsky, Sokatchev] [Skinner,Mason][Arkani-Hamed, Cachazo, Kaplan]

Dual conformal symmetry

$$
x_{i+1}^{\mu}-x_{i}^{\mu}=p_{i}^{\mu}
$$

- Trees are dual superconformal invariant: $\left(\theta_{i}-\theta_{i+1}\right)^{\alpha A}=\lambda_{i}^{\alpha} \eta_{i}^{A}$
[Drummond, Henn, Korchemsky, Sokatchev]
- Dual conformal generator:

$$
K^{\mu}=\sum_{i}\left(2 x_{i}^{\mu} x_{i}^{\nu}-x_{i}^{2} \eta^{\mu \nu}\right) \frac{\partial}{\partial x_{i}^{\nu}}+\text { ferms }
$$

- Translate to original on-shell superspace:

Dual conformal symmetry

$$
x_{i+1}^{\mu}-x_{i}^{\mu}=p_{i}^{\mu}
$$

- Trees are dual superconformal invariant: $\left(\theta_{i}-\theta_{i+1}\right)^{\alpha A}=\lambda_{i}^{\alpha} \eta_{i}^{A}$
[Drummond, Henn, Korchemsky, Sokatchev]
- Dual conformal generator:

$$
K^{\mu}=\sum_{i}\left(2 x_{i}^{\mu} x_{i}^{\nu}-x_{i}^{2} \eta^{\mu \nu}\right) \frac{\partial}{\partial x_{i}^{\nu}}+\text { ferms }
$$

- Translate to original on-shell superspace: $x_{i}^{\alpha \dot{\alpha}}=\sum_{j=1}^{i-1} \lambda_{j}^{\alpha} \tilde{\lambda}_{j}^{\dot{\alpha}}+x_{1}^{\alpha \dot{\alpha}}$ etc.

$$
\Rightarrow \quad K^{\alpha \dot{\alpha}}=\sum_{i=1}^{n} x_{i}^{\dot{\alpha} \beta} \lambda_{i}^{\alpha} \frac{\partial}{\partial \lambda_{i}^{\beta}}+x_{i+1}^{\alpha \dot{\beta}} \tilde{\lambda}_{i}^{\dot{\alpha}} \frac{\partial}{\partial \tilde{\lambda}_{i}^{\dot{\beta}}}+\tilde{\lambda}_{i}^{\dot{\alpha}} \theta_{i+1}^{\alpha B} \frac{\partial}{\partial \eta_{i}^{B}}+x_{i}^{\alpha \dot{\alpha}}
$$

Nonlocal structure!

Yangian symmetry of scattering amplitudes in $\mathcal{N}=4$ SYM

- Superconformal + Dual superconformal algebra $=$ Yangian $Y[\mathfrak{p s u}(2,2 \mid 4)]$
[Drummond, Henn, JP]

$$
\begin{array}{ll}
{\left[J_{a}^{(0)}, J_{b}^{(0)}\right\}=f_{a b}{ }^{c} J_{c}^{(0)}} & \text { conventional superconformal symmetry } \\
{\left[J_{a}^{(0)}, J_{b}^{(1)}\right\}=f_{a b}{ }^{c} J_{c}^{(1)}} & \text { from dual conformal symmetry }
\end{array}
$$

with nonlocal generators

$$
J_{a}^{(1)}=f^{c b}{ }_{a} \sum_{1<j<i<n} J_{i, b}^{(0)} J_{j, c}^{(0)}
$$

and super Serre relations (representation dependent).

- In particular: Bosonic invariance $p_{\alpha \dot{\alpha}}^{(1)} \mathbb{A}_{n}=0$ with

$$
\begin{aligned}
p_{\alpha \dot{\alpha}}^{(1)} & =K_{\alpha \dot{\alpha}}+\Delta K_{\alpha \dot{\alpha}} \\
& =\frac{1}{2} \sum_{i<j}\left(l_{i, \alpha}^{\gamma} \delta_{\dot{\alpha}}^{\dot{\gamma}}+\bar{l}_{i, \dot{\alpha}} \dot{\gamma}_{\alpha}^{\gamma} \delta_{\alpha}^{\gamma}-d_{i} \delta_{\alpha}^{\gamma} \delta_{\dot{\alpha}}^{\dot{\gamma}}\right) p_{j, \gamma \dot{\gamma}}+\bar{q}_{i, \dot{\alpha} C} q_{j, \alpha}^{C}-(i \leftrightarrow j)
\end{aligned}
$$

- In fact $J_{a}^{(0)}$ and $p^{(1)}$ generate all of $Y[\mathfrak{p s u}(2,2 \mid 4)]$

Loops

Higher loops and Higgs regulator

- Beyond tree-level: Need of regularization (IR divergences) a priori breaks conformal and dual conformal symmetry
- Standard regularization method Dim reduction $10 \rightarrow 4-\epsilon$
- Alternative method: Massive or Higgs regulator
- Close connection to 6 d amplitudes in $\mathcal{N}=(1,1)$ super Yang-Mills
- String picture serious:

- Field Theory: Higgsing $U(N+M) \rightarrow U(N) \times U(1)^{M}$. One brane for every scattered particle, $N \gg M$.

Higgsing $\mathcal{N}=4$ Super Yang-Mills

- Action

$$
\hat{S}_{\mathcal{N}=4}^{U(N+M)}=\int d^{4} x \operatorname{Tr}\left(-\frac{1}{4} \hat{F}_{\mu \nu}^{2}-\frac{1}{2}\left(D_{\mu} \hat{\Phi}_{I}\right)^{2}+\frac{g^{2}}{4}\left[\hat{\Phi}_{I}, \hat{\Phi}_{J}\right]^{2}+\text { ferms }\right),
$$

- Decompose into $N+M$ blocks

$$
\begin{gathered}
\hat{A}_{\mu}=\left(\begin{array}{ll}
\left(A_{\mu}\right)_{a b} & \left(A_{\mu}\right)_{a j} \\
\left(A_{\mu}\right)_{i a} & \left(A_{\mu}\right)_{i j}
\end{array}\right), \quad \hat{\Phi}_{I}=\left(\begin{array}{cc}
\left(\Phi_{I}\right)_{a b} & \left(\Phi_{I}\right)_{a j} \\
\left(\Phi_{I}\right)_{i a} & \delta_{\mathbf{I 9}} \frac{\mathbf{m}_{\mathbf{i}}}{\mathrm{g}} \delta_{\mathrm{ij}}+\left(\Phi_{I}\right)_{i j}
\end{array}\right) \\
a, b=1, \ldots, N, \quad i, j=N+1, \ldots, N+M,
\end{gathered}
$$

- Yields mass terms and novel bosonic 3-point interactions proportional to m_{i}
- Renders amplitudes IR finite. Has 'light' $\left(m_{i}-m_{j}\right)$ and 'heavy' m_{i} W-bosons

One loop test of extended dual conformal symmetry 1

- Consider the (special) purely scalar amplitude:

$$
A_{4}=\left\langle\Phi_{4}\left(p_{1}\right) \Phi_{5}\left(p_{2}\right) \Phi_{4}\left(p_{3}\right) \Phi_{5}\left(p_{4}\right)\right\rangle=i g_{\mathrm{YM}}^{2}\left(1+\lambda I^{(1)}\left(s, t, m_{i}\right)+O\left(\lambda^{2}\right)\right)
$$

$I^{(1)}\left(s, t, m_{i}\right)$: Massive box integral in dual variables $\left(p_{i}=x_{i}-x_{i_{+}}\right)$

$$
\int_{p_{1}}^{i_{i_{4}}}=\int_{i_{4}}^{i_{i}}
$$

- Reexpressed in 5d variables $\hat{x}^{M}: \hat{x}_{i}^{\mu}:=x_{i}^{\mu}, \quad \hat{x}_{i}^{4}:=m_{i}, \quad i=1 \ldots 4$

$$
I^{(1)}\left(s, t, m_{i}\right)=\hat{x}_{13}^{2} \hat{x}_{24}^{2} \int d^{5} \hat{x}_{5} \frac{\delta\left(\hat{x}_{5}^{M=4}\right)}{\hat{x}_{15}^{2} \hat{x}_{25}^{2} \hat{x}_{35}^{2} \hat{x}_{45}^{2}}
$$

- $I^{(1)}\left(s, t, m_{i}\right)$ is extended dual conformal invariant: $\hat{K}_{\mu} I^{(1)}\left(s, t, m_{i}\right)=0$

Extended dual conformal invariance

- Extended dual conformal invariance

$$
\begin{aligned}
& \hat{K}_{\mu} I^{(1)}\left(s, t, m_{i}\right):= \\
& \quad \sum_{i=1}^{4}\left[2 x_{i \mu}\left(x_{i}^{\nu} \frac{\partial}{\partial x_{i}^{\nu}}+m_{i} \frac{\partial}{\partial m_{i}}\right)-\left(x_{i}^{2}+m_{i}^{2}\right) \frac{\partial}{\partial x_{i}^{\mu}}\right] I^{(1)}\left(s, t, m_{i}\right)=0
\end{aligned}
$$

- m_{i} is the fifth coordinate $x^{M}=\left(x^{\mu}, m\right)$.
- Triangle and bubble graphs are forbidden by extended conformal symmetry!
- Indeed an explicit one-loop calculation shows the cancelation of triangles.
- Has been extended to higher loops \& higher multiplicities as well as Regge limit [Henn, Naculich, Schnitzer, Drummond]

Symmetries of massively regulated loop amplitudes

On shell superspace for $6 \mathrm{~d} \mathcal{N}=(1,1)$ sYM

4d massively regulated $\mathcal{N}=4$ SYM amplitudes

6 d massless $\mathcal{N}=(1,1) \mathrm{SYM}$ amps with $p^{5}+i p^{6}=m_{4 d}$
\& internal loop momenta in 4d

On shell 6d superspace:

- Lorentz group $S O(1,5) \simeq S U(4)^{*} \quad$ Little group $S O(4) \simeq S U(2) \times S U(2)$
- Helicity spinors: $\quad \lambda^{A a} \& \tilde{\lambda}_{A \dot{a}} \quad A=1,2,3,4 \quad a=1,2 \quad \dot{a}=1,2$
- 6d momentum: $\quad p^{A B}=\lambda^{A a} \lambda^{B b} \epsilon_{a b} \quad p_{A B}=\tilde{\lambda}_{A \dot{a}} \lambda_{B \dot{b}} \epsilon^{\dot{a} \dot{b}}=\frac{1}{2} \epsilon_{A B C D} p^{A B}$
- SUSY partners: $\quad \eta_{a} \& \tilde{\eta}^{\dot{a}}$
- Supertranslations: $\quad q^{A}=\lambda^{A a} \eta_{a} \quad \& \quad \tilde{q}_{A}=\tilde{\lambda}_{A \dot{a}} \tilde{\eta}^{\dot{a}}$
- On-shell superfield as η expansion:

$$
\Omega(p, \eta, \tilde{\eta})=\phi+\psi^{a} \eta_{a}+\tilde{\psi}_{a} \tilde{\eta}^{a}+\phi^{\prime} \eta^{2}+\phi^{\prime \prime} \tilde{\eta}^{2}+g_{a}^{\dot{a}} \eta^{a} \tilde{\eta}_{\dot{a}} \ldots+\phi^{\prime \prime} \eta^{2} \bar{\eta}^{2}
$$

- Perturbative results:
- 3,4,5 point amplitudes @ tree-level [Cheung, o' Connell]
- Super BCFW recursion [Dennen,Huang,Siegel]
- 4pt amplitude @ 1 \& 2 loops [Bern,Carrasco,Dennen,Huang,Ita]

Dual conformal symmetry for $6 \mathrm{~d} \mathcal{N}=(1,1)$ SYM

- Introduce dual on-shell superspace

$$
x_{i}^{A B}-x_{i+1}^{A B}=p_{i}^{A B} \quad \theta_{i}^{A}-\theta_{i+1}^{A}=q_{i}^{A} \quad \tilde{\theta}_{i A}-\tilde{\theta}_{i+1 A}=\tilde{q}_{i A}
$$

- Dual conformal generator:

$$
K^{\mu}=\sum_{i}\left(2 x_{i}^{\mu} x_{i}^{\nu}-x_{i}^{2} \eta^{\mu \nu}\right) \frac{\partial}{\partial x_{i}^{\nu}}+\theta_{i}^{A}\left(\sigma^{\mu}\right)_{A B} x_{i}^{B C} \frac{\partial}{\partial \theta_{i}^{C}}+\ldots
$$

- Statement: K^{μ} is symmetry of $6 \mathrm{~d} \delta$-fct. stripped super amplitudes
[Dennen, Huang]

$$
\left(K^{\mu}+2 \sum_{i} x_{i}^{\mu}\right) \frac{\mathbb{A}_{n}^{L \text {-loop }}}{\delta^{(6)}(p) \delta^{(4)}(q) \delta^{(4)}(\tilde{q})}=0
$$

- True also for higher loops $L>0$ iff loop integration is in $4 \mathrm{~d} \Rightarrow$

Proof of extended dual conformal symmetry of Higgs-regulated $\mathcal{N}=4$ SYM!

From 6 to 4

Question:

May we interpret dual conformal K_{μ} as the level one Yangian generator $p_{\mu}^{(1)}$ of Higgs regulated $\mathcal{N}=4 \mathrm{SYM}$ upon dim reduction to 4 d ?

- Needs to compactify to 4d:
- Helicity spinors for massive 4d particles:

with constraints $\langle\lambda \mu\rangle=m$ and $[\tilde{\mu} \tilde{\lambda}]=\bar{m}$. Reality condition: $m=\bar{m}$.
- Inherited Lorentz symmetries of massively regulated $\mathcal{N}=4$ amplitudes

From 6 to 4

Question:

May we interpret dual conformal K_{μ} as the level one Yangian generator $p_{\mu}^{(1)}$ of Higgs regulated $\mathcal{N}=4 \mathrm{SYM}$ upon dim reduction to 4 d ?

- Needs to compactify to 4 d : $\quad p^{A B}=\left(\begin{array}{cc}m \epsilon_{\alpha \beta} & -p_{\alpha}{ }^{\dot{\beta}} \\ p^{\dot{\alpha}} & -\bar{m} \epsilon^{\dot{\alpha} \dot{\beta}}\end{array}\right)$
- Helicity spinors for massive 4d particles:

$$
p^{\alpha \dot{\alpha}}=\lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}}+\mu^{\alpha} \tilde{\mu}^{\dot{\alpha}}
$$

with constraints $\langle\lambda \mu\rangle=m$ and $[\tilde{\mu} \tilde{\lambda}]=\bar{m}$. Reality condition: $m=\bar{m}$.

- Inherited Lorentz symmetries of massively regulated $\mathcal{N}=4$ amplitudes

$$
\begin{aligned}
l_{\alpha \beta} & =\sum_{i} \lambda_{i(\alpha} \partial_{i \beta)}+\mu_{i(\alpha} \delta_{i \beta)} & \bar{l}_{\dot{\alpha} \dot{\beta}}=\ldots &
\end{aligned}
$$

with $\delta_{i \alpha}:=\frac{\partial}{\partial \mu_{i}^{\beta}} \quad \partial_{i \alpha}:=\frac{\partial}{\partial \lambda_{i}^{\beta}}$. Generators commute with $m=\bar{m}$ constraint

From 6 to 4

- Inherited supersymmetries of massively regulated $\mathcal{N}=4$ amplitudes

$$
\begin{aligned}
Q_{i \alpha}^{a} & =\lambda_{i \alpha} \bar{\xi}_{i}^{a}-\mu_{i \alpha} \xi_{i}^{a} & Q_{i \dot{\alpha}}^{a} & =\tilde{\lambda}_{i \dot{\alpha}} \xi_{i}^{a}+\tilde{\mu}_{i \dot{\alpha}} \bar{\xi}_{i}^{a} \\
\bar{Q}_{i \dot{\alpha} a} & =\tilde{\lambda}_{i \dot{\alpha}} \frac{\partial}{\partial \bar{\xi}_{i}^{a}}-\tilde{\mu}_{i \dot{\alpha}} \frac{\partial}{\partial \xi_{i}^{a}} & \bar{Q}_{i \alpha a} & =\lambda_{i \alpha} \frac{\partial}{\partial \xi_{i}^{a}}+\mu_{i \alpha} \frac{\partial}{\partial \bar{\xi}_{i}^{a}}
\end{aligned}
$$

with $\xi^{a}=\binom{\eta_{1}}{-\tilde{\eta}^{i}} \quad \bar{\xi}^{a}=\binom{\eta_{2}}{\tilde{\eta}^{2}}$

- Bosonic algebra: Standard 4d Poincaré plus:

$$
\begin{array}{rlr}
{\left[h_{\alpha \dot{\alpha}}, p_{\beta \dot{\beta}}\right]=2 \epsilon_{\alpha \beta} \epsilon_{\dot{\alpha} \dot{\beta}} m,} & {\left[h_{\alpha \dot{\alpha}}, m\right]=p_{\alpha \dot{\alpha}}} \\
{\left[h_{\alpha \dot{\alpha}}, h_{\beta \dot{\beta}}\right]=2 \epsilon_{\alpha \beta} \bar{l}_{\dot{\alpha} \dot{\beta}}+2 \epsilon_{\dot{\alpha} \dot{\beta}} l_{\alpha \beta},} & {\left[l_{\beta \gamma}, h_{\alpha \dot{\alpha}}\right]=\epsilon_{\alpha(\beta} h_{\gamma) \dot{\alpha}}}
\end{array}
$$

- SUSY algebra

$$
\begin{array}{ll}
\left\{Q_{\alpha}^{a}, \bar{Q}_{\dot{\alpha} b}\right\}=p_{\alpha \dot{\alpha}} \delta_{b}^{a} & \left\{Q_{\dot{\dot{\alpha}}}^{a}, \bar{Q}_{\alpha b}\right\}=p_{\alpha \dot{\alpha}} \delta_{b}^{a} \\
\left\{Q_{\alpha}^{a}, \bar{Q}_{\beta b}\right\}=m \epsilon_{\alpha \beta} \delta_{b}^{a} & \left\{Q_{\dot{\alpha}}^{a}, \bar{Q}_{\dot{\beta} b}\right\}=-m \epsilon_{\dot{\alpha} \dot{\beta}} \delta_{b}^{a}
\end{array}
$$

Nonlocal symmetries of massively regulates $\mathcal{N}=4$ SYM

- Rewriting the 6 d dual conformal $K^{\mu}(\mu=0,1,2,3)$ in the massive on-shell 4 d superspace $\left\{\lambda_{\alpha}, \tilde{\lambda}_{\dot{\alpha}} ; \mu_{\alpha}, \tilde{\mu}_{\dot{\alpha}} ; \xi^{a}, \bar{\xi}^{a}\right\}$ yields

$$
\begin{aligned}
& K_{\alpha \dot{\alpha}}+ \Delta K_{\alpha \dot{\alpha}}+2 \sum_{i} x_{i \alpha \dot{\alpha}}-x_{1} \text {-terms } \\
&=\sum_{i<j}\left[\left(\epsilon_{\dot{\alpha} \dot{\beta}} l_{i \alpha \beta}+\epsilon_{\alpha \beta} \bar{l}_{i \dot{\alpha} \dot{\beta}}+\epsilon_{\alpha \beta} \epsilon_{\dot{\alpha} \dot{\beta}} d_{i}\right) p_{j}^{\beta \dot{\beta}}+h_{i \alpha \dot{\alpha}} m_{j}\right. \\
&\left.\quad-\bar{Q}_{i \alpha a} Q_{j \dot{\alpha}}^{a}-\bar{Q}_{i \dot{\alpha} a} Q_{j \alpha}^{a}-(i \leftrightarrow j)\right]=\mathbf{p}_{\alpha \dot{\alpha}}^{(\mathbf{1})}
\end{aligned}
$$

Is level-one Yangian like extension of translational part of Poincaré algebra

$$
\left[h_{\alpha \dot{\alpha}}, p_{\beta \dot{\beta}}^{(1)}\right]=2 \epsilon_{\alpha \beta} \epsilon_{\dot{\alpha} \dot{\beta}} m^{(1)}
$$

with $\quad m^{(1)}=\frac{1}{2} \sum_{j<i}\left[h_{i \gamma \dot{\gamma}} p_{j}^{\gamma \dot{\gamma}}+2 d_{i} m_{j}-\bar{Q}_{i \gamma a} Q_{j}^{a \gamma}-\bar{Q}_{i}^{\dot{\gamma}}{ }_{a} Q_{j \dot{\gamma}}^{a}-(i \leftrightarrow j)\right]$

Nonlocal symmetries of massively regulated $\mathcal{N}=44 \mathrm{~d}$ SYM

- However, no ∞-dim symmetry structure emerges as $p_{\alpha \dot{\alpha}}^{(1)}$ and $m^{(1)}$ form an ideal of the algebra:

$$
\mathfrak{i}=\{p, m\} \subset \mathfrak{a} \quad\left[\mathfrak{a}^{(0)}, \mathfrak{i}^{(0)}\right]=\mathfrak{i}^{(0)} \quad\left[\mathfrak{a}^{(0)}, \mathfrak{i}^{(1)}\right]=\mathfrak{i}^{(1)}
$$

- Conclusion:

$$
\left\{p, m, l, \bar{l}, h, d ; q, \tilde{q} ; p^{(1)}, m^{(1)}\right\} \frac{\mathbb{A}_{n}^{L \text {-loop, } \mathcal{N}=4 \mathrm{SYM}}}{\delta^{(6)}(p) \delta^{(4)}(q) \delta^{(4)}(\tilde{q})}=0
$$

- Level 1 SUSY generators do not seem to exist
- Analysis suggests ∞-dim symmetry structure hinges upon conformal symmetry at level 0 as there

$$
[k, p] \sim l+\bar{l}+d
$$

Summary and Outlook

- Tree level amplitudes are invariant under an infinite dimensional Yangian symmetry
- Challenge at weak coupling: Does Yangian symmetry extend to the loop level?
- Breaking of dual conformal invariance at loop level under control: Best seen in massive (Higgs) regulator
- Restriction of possible integrals at higher loops.
- Established symmetry structure of massively regulated $\mathcal{N}=4$ SYM: Superpoincaré $+h_{\mu}+d+p_{\mu}^{(1)}+m^{(1)}$
- Can breaking of standard conformal invariance at loop level be controlled?
perturbative construction in dim. regularization
- Relation to massive regularization?
\square

Summary and Outlook

- Tree level amplitudes are invariant under an infinite dimensional Yangian symmetry
- Challenge at weak coupling: Does Yangian symmetry extend to the loop level?
- Breaking of dual conformal invariance at loop level under control: Best seen in massive (Higgs) regulator
- Restriction of possible integrals at higher loops.
- Established symmetry structure of massively regulated $\mathcal{N}=4 \mathrm{SYM}$: Superpoincaré $+h_{\mu}+d+p_{\mu}^{(1)}+m^{(1)}$
- Can breaking of standard conformal invariance at loop level be controlled?
\exists perturbative construction in dim. regularization [Sever,Vieira][Beisert,Henn,McLoughlin, JP] Recent all loop claim [Caron-Huot,He]
- Relation to massive regularization?

Summary and Outlook

- Tree level amplitudes are invariant under an infinite dimensional Yangian symmetry
- Challenge at weak coupling: Does Yangian symmetry extend to the loop level?
- Breaking of dual conformal invariance at loop level under control: Best seen in massive (Higgs) regulator
- Restriction of possible integrals at higher loops.
- Established symmetry structure of massively regulated $\mathcal{N}=4 \mathrm{SYM}$: Superpoincaré $+h_{\mu}+d+p_{\mu}^{(1)}+m^{(1)}$
- Can breaking of standard conformal invariance at loop level be controlled?
\exists perturbative construction in dim. regularization [Sever, Vieira][Beisert,Henn,McLoughin, JP] Recent all loop claim [Caron-Huot,He]
- Relation to massive regularization?

Does integrability determine the all loop planar scattering amplitudes?

