

De Sitter vacua in type IIB string theory/ F-theory by Kähler uplifting

Markus Rummel University of Hamburg

JHEP 1201 (2012) 020 + work in progress with J. Louis, D. Martinez-Pedrera, A. Westphal

Nordic String Theory Meeting, Copenhagen 21.02.2012

Outline:

- 1. Introduction: De Sitter vacua in Type IIB/ F-Theory
- 2. A sufficient condition for de Sitter vacua
- 3. Towards an explicit example: $\mathbb{CP}_{1,1,1,6,9}$
- 4. Conclusions & Outlook

1. Introduction: De Sitter vacua in Type IIB/ F-Theory

Introduction: De Sitter vacua in String Theory

Cosmology:

- Acceleration of the universe on large scales is observed.
- Simplest explanation: Small cosmological constant.

String Theory:

- Consistent quantum gravity and unification candidate.
- Can contain constructions leading to the MSSM.
- ⇒ Can one construct (metastable) 4D de Sitter vacua with small cosmological constant?
- ► Compactification to 4D yield moduli that have to be stabilized to obtain a vacuum.
- ► Focus on geometric (Kähler, complex structure) moduli and dilaton.

Introduction: IIB/ F-theory Compactifications

IIB on orientifolded Calabi-Yau 3-fold X:

- Spectrum: 3-form field strength $G_3 = F_3 - S H_3$, ...
- Moduli: $h^{1,1}(X)$ Kähler, $h^{2,1}(X)$ complex structure and dilaton.

F-theory on elliptically fibred Calabi-Yau 4-fold Z:

- Spectrum: 4-form field strength G_4, \dots
- ▶ Moduli: $h^{1,1}(Z) 1$ Kähler, $2h^{3,1}(Z)$ complex structure.

The theories are equivalent in the Sen limit $g_s \to 0$. [Sen '96]

The D=4, $\mathcal{N}=1$ effective supergravity Lagrangian of the compactification is

$$\mathcal{L} = K_{a\bar{b}} D_{\mu} \phi^{a} D^{\mu} \phi^{\bar{b}} - V + ...,$$

$$\mathcal{L} = \mathcal{K}_{a\bar{b}} D_{\mu} \phi^a D^{\mu} \phi^{\bar{b}} - V + ..., \quad \boxed{V = e^K \left(\mathcal{K}^{a\bar{b}} D_a W \overline{D_b W} - 3 |W|^2 \right)}$$

Introduction: Kähler moduli stabilization

Kähler moduli T_i are stabilized by the **interplay of non-perturbative effects:** [Kachru, Kallosh, Linde, Trivedi '03]

- ▶ D3-instantons.
- ► Gaugino condensation of stacks of *N* D7-branes wrapping a rigid Divisor.

$$W_{\text{n.p.}} = \sum_{i} A_i e^{-a_i T_i}, \quad a_i = \frac{2\pi}{N_i}$$

In F-theory, a_i is determined by the ADE singularity at the degeneration point of the fibred torus.

and lpha' corrections: [Becker, Becker, Haack, Louis '02]

$$K = -2\ln\left(\hat{\mathcal{V}}(T_i) + \alpha'^3\hat{\xi}(S)\right), \quad \hat{\xi}(S) \propto \underbrace{\left(-\chi\right)}_{=2(h^{2,1}-h^{1,1})} \cdot (S+\bar{S})^{3/2}$$

Introduction: Complex structure moduli stabilization

 \triangleright Complex structure moduli z^a are stabilized by **fluxes**:

$$\frac{1}{2\pi\alpha'}\int F_3 = 2\pi f \in 2\pi\mathbb{Z}, \qquad \frac{1}{2\pi\alpha'}\int H_3 = 2\pi h \in 2\pi\mathbb{Z}.$$

For a symplectic basis $\{A^a, B_b\}$ for the $2h^{2,1} + 2$ three cycles the period vector Π is defined as the integral over the holomorphic 3-form Ω :

$$\Pi = \left(z^a, \frac{\partial G}{\partial z^b}\right) = \left(\int_{\Omega} \Omega , \int_{\Omega} \Omega\right), \quad \text{with prepotential G}.$$

► The Kähler and superpotential are then:

De Sitter vacua in type IIB string theory/ F-theory by Kähler uplifting

$$\mathcal{K} = -\log\left(i\int_X \Omega\wedge\bar{\Omega}\right) = -\log\left(-i\,\Pi^\dagger\Sigma\Pi\right), \text{ with sympl. matrix } \Sigma.$$

 $W_0=rac{1}{2\pi}\int_X G_3 \wedge \Omega = 2\pilpha'(f-S\,h)\cdot \Pi$. [Gukov, Vafa, Witten '00]

Markus Rummel

2. A sufficient condition for de Sitter vacua

Branches of de Sitter vacua

Manifold and flux choices $h^{1,1}$, $h^{2,1}$, W_0 , a_i , A_i determine what scenarios of moduli stabilization can be realized:

KKLT scenarios:[Giddings, Kachru, Polchinski '01][Kachru, Kallosh, Linde, Trivedi '03]

- ▶ Moduli stabilized supersymmetrically: $D_iW = 0 \Rightarrow AdS$ vacuum.
- ▶ Uplifting via $\overline{D3}$ -brane \Rightarrow explicit SUSY breaking.

LARGE Volume scenarios: [Balasubramanian, Berglund, Conlon, Quevedo'05]

- ▶ Volume can be tuned arbritrarily large ⇒ good decoupling limit.
- ▶ Uplifting to de Sitter via D-terms ⇒ strongly model dependent.

Kähler uplifting scenarios: [Balasubramanian, Berglund '05], [MR, Westphal '11]

- SUSY only broken spontaneously by F-term potential.
- No extra uplifting sector required ⇒ de Sitter vacua directly in a model independent way.

A sufficient condition for de Sitter for Kähler uplifting

If a 3-fold is 'swiss-cheese', i.e. $\hat{\mathcal{V}}(T_i) = \gamma_1 \text{Re}(T_1)^{3/2} - \sum_{i=2}^{n} \gamma_i \text{Re}(T_i)^{3/2}$ one can perform a complete perturbative moduli stabilization in the limit

- $ightharpoonup \hat{\mathcal{V}} \gg \hat{\xi}$ \Rightarrow Large Volume $\hat{\mathcal{V}}.$
- ▶ $|W_0| \gg Ae^{-at}$ \Rightarrow Non-perturbative effects are small.
- ▶ $D_iW(S,z^a) \simeq 0$ \Rightarrow Supersymmetric stabilization to 0-th order.

Sufficient for a de Sitter vacuum: [MR, Westphal '11]

- ► $3.65 < \frac{27|W_0|\hat{\xi}a^{3/2}}{64\sqrt{2}\gamma A} < 3.89.$
- $V_{z^az^b}^{(c.s.)} > 0$ to 0-th order.
- Need large gauge group SU(N), typically $N \sim 30 100$.

De Sitter vacua in type IIB string theory/ F-theory by Kähler uplifting Markus Rummel

3. Towards an explicit example: $\mathbb{CP}_{1,1,1,6,9}$

Moduli space of $\mathbb{CP}_{1,1,1,6,9}$ (I)

Consider Calabi-Yau 3-fold defined as degree 18 hypersurface in $\mathbb{CP}_{1,1,1,6,9}$: $(x_1,x_2,x_3,x_4,x_5) \sim (\lambda x_1,\lambda x_2,\lambda x_3,\lambda^6 x_4,\lambda^9 x_5)$, for example

$$x_1^{18} + x_2^{18} + x_3^{18} + x_4^3 + x_5^2 = 0$$

This 3-fold has $h^{1,1} = 2$ and $h^{2,1} = 272$.

Kähler moduli: [Denef, Douglas, Florea '04]

- ▶ Intersections: $\hat{\mathcal{V}} = \frac{\sqrt{2}}{18} \left(\text{Re}(T_1)^{3/2} \text{Re}(T_2)^{3/2} \right) \Rightarrow \text{ 'swiss cheese'}.$
- Non-perturbative effects: $W_{\text{n.p.}} = A_1 e^{-a_1 T_2} + A_2 e^{-a_2 T_2}$.
 - $a_1 = 2\pi/30 \Rightarrow E_8$ singularity in the F-theory description.
 - $ightharpoonup a_2 = 2\pi \Rightarrow \mathsf{D3}\text{-instanton}.$
 - ▶ $A_1, A_2 \simeq \mathcal{O}(1)$.

Moduli space of $\mathbb{CP}_{1,1,1,6,9}$ (II)

Complex structure moduli:

- ► The full $h^{2,1}=272$ parameter prepotential G(z) is not known. But, the moduli space allows a $\Gamma=\mathbb{Z}_6\times\mathbb{Z}_{18}$ action, which fixes a 2 parameter subspace. [Greene, Plesser '89]
- ▶ Turn on flux only on the 2 invariant cylces $\Rightarrow D_iW = 0$ for the 270 non-invariant cycles \Rightarrow Effectively all 272 complex structure moduli stabilized.
- ► Prepotential can be obtained via mirror symmetry in the large complex structure limit: [Candelas, Font, Katz, Morrison '94]

$$G(z_1,z_2) = rac{17}{4}z_1 + rac{3}{2}z_2 + rac{1}{2}\left(rac{9}{2}z_1^2 + 3z_1z_2
ight) + rac{1}{6}\left(-9z_1^3 - 9z_1^2z_2 - 3z_1z_2^2
ight) \ + \xi + G_{\mathsf{instanton}}(e^{-2\pi z_1},e^{-2\pi z_2}), \quad \xi = rac{\zeta(3)(h^{1,1} - h^{2,1})}{(2\pi i)^3} \simeq -1.30843\,i\,.$$

Finding flux vacua

- ▶ The 3-fold fixes all free parameters except of the VEV's $\langle T_1 \rangle$, $\langle T_2 \rangle$, $\langle S \rangle$, $\langle z_1 \rangle$ and $\langle z_2 \rangle$ and flux vectors $f = \{f_i\}$, $h = \{h_i\}$, i = 1, ..., 6.
- ► D3-Tadpole constraint:

$$L = \int_{Z} G_4 \wedge G_4 = \int_{X} F_3 \wedge H_3 = L_{\mathsf{max}} - N_{D3}, \quad L_{\mathsf{max}} = \frac{\chi(Z)}{24}.$$

Strategy:

- ightharpoonup Fix $\langle S \rangle$, $\langle z_1 \rangle$ and $\langle z_2 \rangle$ to rational value.
- ▶ Neglect $G_{\text{instanton}}$ and set ξ to a rational value, such that:

$$0=\{\textit{W}_0,\textit{D}_{\textit{S}}\textit{W}_0,\textit{D}_{\textit{z}_1}\textit{W}_0,\textit{D}_{\textit{z}_2}\textit{W}_0\}=\textbf{A}\cdot\{\textit{f}_1,..,\textit{f}_6,\textit{h}_1,..,\textit{h}_6\}, \text{ with } \textbf{A}\in\mathbb{Q}^{8\times 12}.$$

- ▶ Find basis of solutions $\{f_i\}$, $\{h_i\}$ with minimal tadpole L.
- ▶ Generate shift in W_0 , $\langle S \rangle$, $\langle z_1 \rangle$ and $\langle z_2 \rangle$ for $\xi \in i\mathbb{R}$, $G_{\text{instanton}} \neq 0$.

Solutions and Kähler moduli stabilization

De Sitter vaccum can be constructed if:

- $ightharpoonup L < L_{\text{max}}$
- $\{W_0, g_s = \langle \operatorname{Re} S \rangle^{-1}, A\}$ fullfills:

$$1.25 < |W_0| A g_s^{-3/2} < 1.34,$$

$$V_{z^a z^b}^{(c.s.)} > 0.$$

Explicit example:

$$f,h = \{0,-16,56,-28,-12;4,0,0,0,-9,10\}, L = 408$$

TODO: Directly stabilize $V(T_1, T_2, S, z_1, z_2)$ numerically.

4. Conclusions & Outlook

Conclusions

- Sufficient condition for de Sitter with all moduli stabilized for all Calabi-Yau 3-folds of 'swiss cheese' type.
- Systematical understanding of de Sitter condition based on properties of the Calabi-Yau γ , ξ and fluxes W_0 (F-Theory data).
- Well controlled spontaneous SUSY breaking by F-Terms only.
- Explicit flux vaccum has been constructed which can be used for Kähler uplifting.
- Small cosmological constant by tuning background fluxes. [Bousso, Polchinski '00]

Outlook

Statistics of $\mathbb{CP}_{1,1,1,6,9}$:

- How many flux vacua allow Kähler uplifting?
- ▶ Scan over g_s , $\langle z_1 \rangle$, $\langle z_2 \rangle$ and ξ_{rational} .

Kähler uplifting: $\hat{\mathcal{V}} \simeq \gamma (6/a)^{3/2} \simeq \gamma N^{3/2} \Rightarrow \mathbb{CP}_{1.1.1.6.9}$: $\hat{\mathcal{V}} \sim 4$.

- ⇒ Engineer 4-fold more suitable for Kähler uplifting:
 - ▶ How much *N* can be realized in F-theory on a compact 4-fold?
 - ▶ How much survives in the Sen limit?
 - ► Rigidity of divisors? [Witten '96]