

LHC diffraction results

Luiz Mundim for ATLAS and CMS collaborations

Outlook

- ATLAS detector
- ATLAS results
 - Inelastic pp cross section
 - Rapidity gap cross section

- CMS detector
- CMS results
 - Evidence of hard diff. dijet
 - Inel. pp cross section
 - Exc. γγ and e⁺e⁻ production

ATLAS results

俞

ATLAS detector

俞

 $\langle \diamond | \diamond \rangle$

Diffractive topologies

inelastic pp cross section

First measurement of total inelastic cross section at $\sqrt{\sigma} = 7$ TeV, using an integrated luminosity of 20.3 ± 0.7 μ b⁻¹ taken by ATLAS during a 8h fill in March 31st, 2010.

http://cdsweb.cern.ch/record/1342115

â

Data

- peak instantaneous luminosity = 1.2x10²⁷ cm⁻² s⁻¹
 - mean number of interactions per crossing = 0.01
- uses scintillator counters to detect inelastic collisions (MBTS)
- measurement restricted to a kinematic range of $\xi > 5 \times 10^{-6}$ ($M_X > 15.7$ GeV)

MC

- PYTHIA6, PYTHIA8 and PHOJET
 - to predict properties of inelastic collisions
 - ✓ $pp \rightarrow pX$ (SD);
 - ✓ $pp \rightarrow XY (DD)$
 - ND
 - > extrapolate to $\xi > M_{p}/\sqrt{s}$

Event selection

- 1

- $\xi = M_x / \sqrt{s} > 5 \times 10^{-6} \longrightarrow \epsilon_{MBTS} > 50\%$
- inclusive sample: 2 or more hits with charge > 0.15 pC on MBTS (2.1 < $|\eta| < 3.8$)
- diffractive sample: single-sided events

â

fraction of diffractive events

the cross section

$$\sigma_{inel}(\xi > 5 \times 10^{-6}) = \frac{(N - N_{BG})}{\epsilon_{trig} \times \int L \, dt} \times \frac{1 - f_{\epsilon < 5 \times 10^{-6}}}{\epsilon_{sel}}$$

$$\sigma_{inel} = \sigma_{ND} + \sigma_{SD} + \sigma_{DD}$$

MC-dependent

10

ω

Inelastic cross section

Rapidity gap cross section

Inelastic cross section is measured differentially in terms of $\Delta \eta^F$ at $\sqrt{\sigma} = 7$ TeV, using an integrated luminosity of 7.1 μ b⁻¹ collected during the first LHC run.

A new algorithm is presented to identify rapidity gaps in the final state of minimum bias data.

http://cdsweb.cern.ch/record/1416082

ω

Data

- peak instantaneous luminosity
 = 1.1×10²⁷ cm⁻² s⁻¹
 - mean number of interactions per crossing = 0.005
- uses MBTS as trigger
- Liquid Argon (EM) calorimeter
- Hadronic calorimeter

MC

- PYTHIA 6
 - DL (ε=1.085; α'=0.25GeV) as default for MC-based corrections
 - other MC models for uncertainties

Event selection

 \mathbf{h}

 events with hits in at least 2 segments of MBTS with charge > 0.15 pC

Rapidity gap reconstruction

- clusters with cells for which $S(E/\sigma_{noise})>4$
- at least one cell (outside the tile cal.) with $S > S_{th}(\eta)$
- the measured energy of the clusters are discriminated using a given value of p_T^{cut}

An interval of η is taken as having final state particles if at least one cluster passes the noise suppression requirements and has $p_T > p_T^{cut}$ or if there is at least one good inner detector track with $p_T > p_T^{cut}$ 俞

Cell energy significance

17

hadron level x reconstruction

 $\mathbf{\hat{h}}$

18

俞

CMS results

 $\langle \diamond | \diamond \rangle$

Evidence for hard diffractive dijet production

The cross section for dijet production with $p_T^{jet} > 20 \text{ GeV}$ is measured as function of the fractional momentum loss in SD pp collisions at $\sqrt{\sigma} = 7$ TeV, using the CMS detector with an integrated luminosity of 2.7 nb⁻¹

http://cms-physics.web.cern.ch/cms-physics/public/FWD-10-004-pas.pdf

 \mathbf{n}

Data

- integrated luminosity = 2.7 nb⁻¹
 - average pile-up of 0.09
- jet trigger with $p_{\tau} > 6 \text{ GeV}$ (uncorrected)

1**C**

- ND
 - PYTHIA6 (Z2 AND D6T)
 - **PYTHIA8** \succ
- Diffractive dijets
 - POMPYT
 POMWIG $\ \ \mathsf{IP} \ \mathsf{flux} \to \mathsf{HERA}$

 - **PYTHIA8** \succ
 - $dPDF \rightarrow HI$ fit B V
 - **CD** neglected ~

Event selection

- at least two jets with p_{τ} >20 GeV within $|\eta|$ <4.4 (standard CMS quality cuts)
- High quality vertex (|z|<24cm; tracks with $|\eta|$ <2.5)
- more then 25% of high quality tracks (if N_{trks}>10)
 - reduce noise and beam related background
- to enhance the diff. contribution: $\eta_{max(min)} < 3(>-3)$
 - gap of 1.9 units (rejects most of the pile-up events)

Consistent with HERA data

Proton momentum loss

inelastic pp cross section

Measurement of total inelastic cross section at $\sqrt{s} = 7$ TeV, using an integrated luminosity of 2.78 μ b⁻¹ taken by CMS.

https://cdsweb.cern.ch/record/1433413/files/QCD-11-002-pas.pdf

 $\mathbf{\hat{m}}$

Data

- based on HF calorimeter
 pileup: 0.12 0.07
- BPTX AND \rightarrow zero-bias trigger
- BPTX XOR \rightarrow background
- Random trigger → noise estimation

MC

- PYTHIA 6
- PYTHIA 8
- PHOJET

Event selection

more than 5(4) GeV in any of the HFs

俞

the cross section

fraction of bkg

/events($\xi < \xi_{cut}$)

$$\sigma_{inel}(\xi > 5 \times 10^{-6}) = \frac{N_{inel}(1 - f_{\xi})F_{pileup}}{\mathcal{L} \epsilon_{\xi}}$$
efficiency

Experimental measurement of the Inelastic pp cross section

 $\Leftrightarrow | \Rightarrow$

σ_{inel} x collision energy

exclusive $\gamma\gamma$ and e⁺e⁻ pair

Search for central exclusive $\gamma\gamma$ production and observation of central exclusive e^+e^- production at $\sqrt{\sigma} = 7$ TeV at CMS as an ideal way to improve the understanding of diffractive processes and the dynamics of IP exchange; the dielectron also provides an excellent control sample for other exclusive channels, since this is a QED process known with an accuracy better than 1%.

http://cms-physics.web.cern.ch/cms-physics/public/FWD-11-004-pas.pdf

exclusive diagrams

 $\mathbf{\hat{h}}$

39

 $\mathbf{\hat{m}}$

Data

- integrated luminosity of 36 pb⁻¹
 - no PU events
- 2 (L1/HLT) triggers of EM shower with $E_{T} > 5$ GeV
 - HLT: < >2.5 rad + low had activity
- ECAL+tracker+HCAL+µ ch.

MC

- EXHUME (γγ)
- LPAIR (e⁺e⁻)
- LUND(JETSET) for the fragmentation of the excited proton

Event selection

 \mathbf{A}

- 2 γ (e) with E_T > 5.5 GeV and $|\eta| < 2.5$
- rejection of cosmic ray (t<2ns; \$\$\phi\$>2.5 rad)
- no additional particles in the subdetectors

Expected events

Table 4: Summary of the number of background events expected for both exclusive diphoton and dielectron analyses with statistical uncertainties.

exclusive $\gamma\gamma$ production		exclusive e ⁺ e ⁻ production	
Background	Events	Background	Events
exclusive e ⁺ e ⁻	0.11 ± 0.03	exclusive Y(1S,2S,3S) $\rightarrow e^+e^-$	negligible
cosmic ray	negligible	cosmic ray	0.04 ± 0.01
non-exclusive	1.68 ± 0.40	non-exclusive	0.80 ± 0.28
exclusive $\pi^0\pi^0$ and $\eta\eta$	negligible	exclusive $\pi^+\pi^-$	negligible
Total	1.79 ± 0.40	Total	0.84 ± 0.28

Table 5: Predicted numbers of dielectron events to be observed for both exclusive and semiexclusive e^+e^- production for an integrated luminosity of 36 pb⁻¹.

Process	L	σ	ε	nEvents
el-el	$36\pm1.4{\rm pb}^{-1}$	3.74±0.04 pb	$0.0481 {\pm} 0.0055$	6.48±0.07 (theo.)±0.78 (syst.)
inel-el	$36\pm1.4{\rm pb}^{-1}$	3.34±0.67 pb ×2	0.0343 ± 0.0035	8.25±1.65 (theo.)±0.90 (syst.)
inel-inel	$36\pm1.4{\rm pb}^{-1}$	3.52±0.70 pb	0.0117 ± 0.0011	1.48 ± 0.29 (theo.) ± 0.15 (syst.)
Total				16.2±1.7 (theo.)±1.2 (syst.)

Selected events

Table 1: Number of diphoton (dielectron) candidates remaining after each selection step.

exclusive diphoton analysis		exclusive dielectron analysis		
selection criterion	events remaining	selection criterion	events remaining	
Trigger	3 023 496	Trigger	3 023 496	
Photon reconstruction	1 683 526	Electron reconstruction	132 271	
Photon identification	40 6 9 2	Electron identification	2 648	
Cosmic ray rejection	34234	Cosmic ray rejection	2 129	
Exclusivity requirement	0	Exclusivity requirement	17	
		1	1	

Central exclusive yy cross section (limits)

 \mathbf{n}

 $\langle \diamond | \diamond \rangle$

exclusive e⁺e⁻ (Data vs MC)

45

Final remarks

- both ATLAS and CMS showed good capabilities for diffraction studies
- The inelastic pp cross section measured by both ATLAS and CMS was presented, showing good agreement
- the dijet production cross section measurement shows strong evidence of hard diffraction, being well described with a GSP compatible with the one measured at CDF
- an upper limit for the cross section of the exclusive production of central $\gamma\gamma$ is presented and is compatible with the LO and NLO calculation
- the number of exclusive e⁺e⁻ found in the data was 17 events, as predicted by LPAIR generator
- pileup is a major problem for the forward analysis, so forward proton taggers would greatly improve all diffractive analysis

Backup

ATLAS forward detectors

 $\widehat{\mathbf{h}}$

the gap cross section

$\frac{d\sigma}{dt dM_X^2} = G_{3I\!P}(0) s^{2\alpha_{I\!P}(t)-2} \left(M_X^2\right)^{\alpha_{I\!P}(0)-2\alpha_{I\!P}(t)} f(t)$

ŵ

50

hard diffraction MC-Data comparison

 $\mathbf{\hat{h}}$

hard diffraction MC-Data comparison

hard diffraction MC-Data comparison (η_{max} <3)

ω

Systematic uncertainties

Uncertainty source	$0.0003 < \widetilde{\xi} < 0.002$	$0.002 < \widetilde{\xi} < 0.004$	$0.0045 < \widetilde{\xi} < 0.01$
1. Jet energy scale	(+26/-19)%	(+21/-20)%	(+28/-16)%
2. Jet energy resolution	(+5/-3)%	(+2/-1)%	(+3/-1)%
3. Calorimeter energy scale	(+7/-14)%	(+14/-8)%	(+12/-10)%
4. MC uncertainty	(+5/-6)%	(+3/-14)%	(+3/-3)%
5. HF threshold	(+0/-6)%	(+2/-0)%	(+2/-0)%
6. Tracks p_T threshold	(+0/-1)%	(+1/-0)%	(+0/-2)%
7. One vertex selection	(+6/-0)%	(+0/-1)%	(+1/-0)%
8. Calorimeter jets	(+0/-4)%	(+0/-4)%	(+2/-4)%
9. $\widetilde{\xi^+}$, $\widetilde{\xi^-}$ difference	$\pm 8\%$	$\pm 8\%$	±11%
10. η_{max} (η_{min}) cut	(+0/-0)%	(+3/-0)%	(+9/-0)%
11. Trigger efficiency	±3%	±3%	±3%
12. Luminosity	$\pm 4\%$	$\pm 4\%$	$\pm 4\%$

Table 1: The systematic uncertainties on the cross section in the three $\tilde{\xi}$ bins.

ŵ

inclusive cross section for forward jets and for dijets

Measurement of the inclusive production cross section for forward jets and for dijets events with at least one in the central and another in the forward pseudo rapidity regions at $\sqrt{s} = 7$ TeV, using the CMS detector.

\rightarrow provides information on multi-parton production with LRG

https://cdsweb.cern.ch/record/1421692/files/FWD-11-002-submitted.pdf

 $\mathbf{\hat{m}}$

Data

- inclusive forward jets \rightarrow jet trigger with $p_{\tau} > 15 \text{ GeV}$
- dijet measurement \rightarrow 2 jets with $\Sigma E_T > 30 \text{ GeV}$
- integrated luminosity of
 3.14 ± 0.14 pb⁻¹
- HCAL, ECAL and HF

MC

- PYTHIA6 (D6T & Z2)
- PYTHIA8 (I)
- HERWIG6
 - \succ underlying event \rightarrow JIMMY
- HERWIG++
- + NLO predictions

Event selection

- primary vertex with at least 5 tracks
- |z| < 24cm
- > 25% of good tracks in events with more than 10 tracks
- events with anomalous noise in HF (like hit in the PMT window) are rejected
- jets (anti- k_T ; R=0.5) with p_T > 35 GeV/c

inclusive forward jets

 $\Leftrightarrow | \Rightarrow$

forward-central dijets

俞

 $\Leftrightarrow | \Rightarrow$

forward-central dijets

60