Single-top quark production

Production of single top quark events

Cross sections	$\begin{array}{c} \mathbf{1.96~TeV}\\ \mathbf{m}_{\mathrm{t}} = \mathbf{173~GeV} \end{array}$	$\begin{array}{c} 7 \ \mathrm{TeV} \\ \mathbf{m}_{\mathrm{t}} = 172.5 \ \mathrm{GeV} \end{array}$
t-channel	$2.1 \pm 0.1 \text{ pb}$	$64.6 \pm 2.4 \mathrm{pb}$
Wt	$0.25 \pm 0.03 \text{ pb}$	$15.7 \pm 1.1 \text{ pb}$
s channel	$1.05\pm0.05~pb$	$4.6 \pm 0.2 \text{ pb}$

Single-top-quark and antiquark cross sections are different for t- and s-channel at the LHC!

Calculations by N. Kidonakis: Phys.Rev.D83 (2011) 091503, Phys.Rev.D82 (2010) 054018,2010, Phys.Rev.D81 (2010) 054028 at NLO + NNLL resummation (NNLO_{approx})

Dominic Hirschbühl 💥

Motivation

- Test of standard model predictions
 - •Establish all three production channels
 - •Cross section $\propto |V_{tb}|^2$
 - Test of the unitarity of the CKM Matrix
 - \bullet Hints for existence of a $4^{\rm th}$ generation
 - Test of the b-quark structure function: DGLAP evolution
 - t-channel cross section ratio @ LHC is sensitive to the top quark/anti-top quark ratio in PDFs
 - Test V-A structure of Wtb vertex, i.e top quark polarization.

Motivation

- Test of standard model predictions
 - •Establish all three production channels
 - •Cross section $\propto |V_{tb}|^2$
 - Test of the unitarity of the CKM Matrix
 - Hints for existence of a 4^{th} generation
 - Test of the b-quark structure function: DGLAP evolution
 - t-channel cross section ratio @ LHC is sensitive to the top quark/anti-top quark ratio in PDFs
 - Test V-A structure of Wtb vertex, i.e top quark polarization.
- •Probe and preparation for searches for new physics
 - anomalous Wtb couplings
 - charged heavy Bosons W', H+ etc.
 - 4th generation fermions b'
 - FCNC, Monotops

Motivation

- Test of standard model predictions
 - •Establish all three production channels
 - •Cross section $\propto |V_{tb}|^2$
 - Test of the unitarity of the CKM Matrix
 - Hints for existence of a 4th generation
 - Test of the b-quark structure function: DGLAP evolution
 - t-channel cross section ratio @ LHC is sensitive to the top quark/anti-top quark ratio in PDFs
 - Test V-A structure of Wtb vertex, i.e top quark polarization.
- •Probe and preparation for searches for new physics
 - anomalous Wtb couplings
 - charged heavy Bosons W', H+ etc.
 - 4th generation fermions b'
 - FCNC, Monotops
- Single top as a complementary environment
 - Different color structure, fewer reconstruction ambiguities
 - Redo measurements of top properties:
 - m_t, W polarization in top decay, ...

Single top event selection

- •Lepton selection (electron / muon):
 - Isolated
 - Also some acceptance from leptonic tau decays
- Jets
 - Anti-k_T algorithm @ LHC
 - Cone algorithm @ Tevatron
 - $|\eta|$: within tracker acceptance for Wt & s-channel
 - including forward calorimeters for t-channel
 - Identification of b-quark jets
 - Number of jets: 2 4
- Missing transverse energy
- QCD multijet veto

Background processes

Event signature:

- One (lepton+jets) or two (di-lepton) real W bosons
- One high-P_T central **b-jet** (from top quark)

Background estimation - strategy

Using MC modeling Using modeling and Using MC but normalization normalization from data acceptance and (Mostly "fake" from data modeling backgrounds) $N = \sigma \cdot \varepsilon \cdot \mathscr{L}$ $N_{W+jets}^{pretag} = N_{data}^{pretag} - N_{qcd}^{pretag} - N_{MC}^{pretag}$ QCD model from data Candidate Events $N_{\Phi,n}^{tag} = N^{pretag} F_{\Phi,n}^{pretag} P_{\Phi,n}^{tag}.$ MC processes Data
$$\begin{split} N^{iag}_{bada-bkg,2} &= N^{pretag}_{bada-bkg,2} \cdot (F^{pretag}_{bb,2} + F^{iag}_{bb,2} + K^{pretag}_{cctobb} \cdot F^{pretag}_{bb,2} + P^{iag}_{ccc} + F^{pretag}_{cc,2} + F^{pretag}_{cc,2} + F^{pretag}_{cc,2} + F^{pretag}_{cc,2} + F^{pretag}_{cc,2} + F^{pretag}_{cc,2} + F^{pretag}_{bc,2} + F^{pretag}_{bb,2} + F^{pretag}_{bb,$$
+ $k_{c_{1}c_{2}}^{pretag} \cdot F_{c_{1}}^{pretag} \cdot P_{c_{2}}^{lag} + k_{l_{1}c_{2}}^{pretag} \cdot F_{l_{1}}^{pretag} \cdot P_{l_{2}}^{lag}$ Discriminant Fit in extrapolation to sideband signal region

Similar approaches of all 4 experiments – details are different

Dominic Hirschbühl

Signal modeling – t - channel

Signal modeling – Wt production

Model:

MC@NLO + Herwig 🍸

Powheg + Pythia 🌹

The definition of the tW process mixes with top-pair production @ NLO.

Two possible solutions:

- The "diagram removal" approach (DR): All ambiguous diagrams at NLO are excluded from the definition of signal (chosen as default)
- The "diagram subtraction" approach (DS): Subtracts a gauge-invariant term, cancelling locally the contribution of ttbar diagrams

The differences between the methods are small at the end of the analysis chain and taken as a systematic uncertainty.

SM@LHC - Copenhagen 11.04.2012

t- and s-channel single top quark production

Only

- Combined search (t+s channel)
- 2 D search (t- vs. s-channel)
- t-channel search \rightarrow all 4 experiments
- s-channel search \rightarrow only ATLAS

Combined (s+t) - channel analyses

- Using SM ratio between s- and t-channel
 - Three MVA techniques combined to super-discriminants.
 - One powerful neural network
- Statistical analysis:
 - Bayesian method

Combined (s+t) - channel analyses

SM@LHC - Copenhagen 11.04.2012

- Measure both channels simultaneously
- Separate trainings for t- and s-channel (only D0)

$$\begin{split} \sigma_s &= 0.98 \pm 0.63 \text{ pb (rel. unc.:} \pm 64\%) \\ \sigma_t &= 2.90 \pm 0.59 \text{ pb (rel. unc.:} \pm 20\%) \\ \end{split}$$
 First observation of t-channel alone with 5.5 σ

$$\sigma_{s} = 1.81 + 0.63 \text{ pb}$$

relative unc.: +35% / -32%
$$\sigma_{t} = 1.49 + 0.47 \text{ pb}$$

relative unc.: +32% / -28%

W

b

SM: $\sigma_t = 64.6 \text{ pb}$

80000000000 B

t-channel @ LHC

- Uses 1.04 fb⁻¹ of 2011 data set.
- Neural Network based discriminant.
- Statistical analysis:
 - Maximum likelihood fit using the full output distribution
 - Simultaneous determination of background rates

Observed cross section: $\sigma_t = 83 \pm 4 \text{ (stat.)} {}^{+20}_{-19} \text{ (syst.) pb}$ relative unc.: +24% / -23%

b

From cut based analyses: $\sigma(t) = 59 \pm 6 \text{ (stat.)}^{+17} _{-16} \text{ (syst.) pb}$ $\sigma(\overline{t}) = 33 \pm 5 \text{ (stat.)}^{+12} _{-11} \text{ (syst.) pb}$

Observed significance 7.2σ

t-channel @ LHC

- Uses 1.14 fb^{-1} (muons), 1.51 fb^{-1} (electrons) of 2011 data
- Cut on reconstructed top-quark mass: 130 < m(lvb) < 220 GeV
- Single discriminate variable $|\eta|$ light jet
- Main background (W+jets) determined in side band
- Statistical analysis:
 - Maximum likelihood fit to $|\eta|$ light jet

Main systematics from:

- Jet energy scale +9.2% / -6.2%
- W+heavy flavour extr. ±7.1%
- Q^2 tchannel $\pm 7.0\%$

 $\begin{array}{l} \text{Observed cross section:} \\ \sigma_{t} = 70.2 \pm 5.2 \; (\text{stat.}) \pm 10.4 \; (\text{syst.}) \\ \pm 3.4 \; (\text{lumi.}) \text{pb} \\ \text{relative unc.: } \pm 17\% \end{array}$

Vtb measurements

- Using cross section result measure $|V_{tb}|$ Assume Standard Model (V-A) coupling
- and $|V_{tb}| >> |V_{ts}|, |V_{td}|$ (Consistent with BR(t \rightarrow Wb) measurements)

I * tb I		$ V_{tb,meas} ^2 = rac{\sigma_{meas}}{\sigma_{SM}} \cdot V_{tb,SM} ^2$			
Experiment	Channel	$ \mathbf{V_{tb}} $	rel. exp. precision		
CDF & DØ discovery (3.2 fb ⁻¹ & 2.3 fb ⁻¹)	s+t channel	0.88 ± 0.07 (exp.) ± 0.07 (theo.)	8.0%		
CDF (7.5fb ⁻¹)	s+t+Wt	0.96+-0.09 (exp.) +- 0.05 (theo.)	9.4%		
DØ (5.4 fb ⁻¹)	t-channel	$1.02 + 0.10_{-0.11}$ (exp. + theo.)	+8.7% / -9.9%		
CMS (1.14 fb ⁻¹ / 1.51 fb ⁻¹)	t-channel	1.04 ± 0.09 (exp.) ± 0.02 (theo.)	8.7%		
ATLAS (1.04 fb ⁻¹)	t-channel	$1.13 + 0.14_{-0.13}$ (exp. + theo.)	11.9%		
Combination of CMS & ATLAS results are in progress.					
SM@LHC - Copenhagen 11.04.2012 Dominic Hirschbühl 🎒 Bergische Universität Wuppertal 📈 17					

s-channel – analysis

- Smallest cross section of single top processes
- First analysis @ ATLAS with 0.7 pb⁻¹
- Cut based analyses
- Rate of main background (W+jets) estimated in data

• Statistical analysis: Profile likelihood

Selection	Signal	Background	S/ \sqrt{B}
Preselection Only	104	153802	0.26
Number of tagged jets=2	18	415	0.88
$30 < m_{top,jet2} < 247 \text{ GeV/c}^2$	17	349	0.91
$p_T(jet1, jet2) < 189 \text{ GeV/c}$	17	346	0.91
$m_T(W) < 111 \text{ GeV/c}$	17	318	0.95
$0.43 < \Delta R(b - jet1, lepton) < 3.6$	17	308	0.97
$123 < m_{top, jet1} < 788 \text{ GeV/c}^2$	17	302	0.98
$0.74 < \Delta R(b - jet1, b - jet2) < 4.68$	16	269	0.98

Cuts are optimized including systematics

Main systematics from (effect on xs unc.):

- MC Statistics ± 70%
- MC generator modeling +20%/-60%
- Luminosity

 $\pm 50\%$

Wt channel

Two channels according to W decay modes:

- **Dilepton channel** both Ws: $W \rightarrow ev \text{ or } W \rightarrow \mu v$ $\rightarrow 2 \text{ charged leptons, } E_T^{miss}, 1 \text{ b-jet}$
- Lepton + jets channel $W \rightarrow ev \text{ or } W \rightarrow \mu v + W \rightarrow qqbar$ $\rightarrow 1 \text{ charged lepton, } E_T^{miss},$
 - 1 b-jet + 2 light quark jets

CONF note with 35 pb-1 (lepton+jets) ATLAS-CONF-2011-027 CONF note with 0.70 fb-1 (dilepton) ATLAS-CONF-2011-104 Physics Analysis Summary (dilepton) CMS PAS TOP-11-022

Main systematics from:

- Jet energy scale ±35%
- Jet energy resolution ±31%
- Jet reconstruction eff. ±31%

Observed cross section (significance 1.2 σ): $\sigma_{Wt} = 14.4 + 5.3 - 5.1$ (stat.) + 9.7 - 9.4 pb

SM: $\sigma_t = 15.7 \text{ pb}$

Wt dilepton analysis @ CMS

- Cut & count analysis
- Main background (ttbar) fitted simultaneously, together with b-tagging efficiency
- Statistical analysis: Profile likelihood

Additional cuts: P_T system < 60 GeV</td> $H_T > 160$ GeV (only eµ channel)

Main systematics from:

- B-tagging
- Factorization/Renormalization scale
- DR/DS schema

Observed cross section : $\sigma_{Wt} = 22^{+9}$.7 (stat.+syst.) pb Significance 2.7 σ SM: $\sigma_t = 15.7$ pb

Dominic Hirschbühl 💥

New physics searches

FCNC single top quark production Previous analyses $\sigma_{\rm FCNC} < 17.3 \text{ pb} @ 95\% \text{ C.L.}$ $BR(t \rightarrow ug) < 5.7 \cdot 10^{-5}$, $BR(t \rightarrow cg) < 2.7 \cdot 10^{-4}$ submitted to PLB: arXiv:1203.0529 W' • m(W') > 863 ... 916 GeV PLB 699, 145 (2011) • $m(W'_R) > 1.13 \text{ TeV}$ **Charged Higgs** m(H+) = 180-185 GeV and $tan(\beta) = 20-70$ PRL 102, 191802 (2009) Monotop • $\sigma < 0.5 \text{ pb} @ 95\% \text{ C.L.}$ for a dark-matter particle mass of $0-150 \text{ GeV/c}^2$ arXiv:1202.5653 Anomalous couplings One-dimensional limits assuming $|V_{tb} \cdot f_{L_V}| = 1$ $|V_{tb} \cdot f_{L_T}|^2 < 0.11 |V_{tb} \cdot f_{R_V}|^2 < 0.50 |V_{tb} \cdot f_{R_T}|^2 < 0.05$ Phys.Lett. B708 (2012) 21-26

Summary / Conclusion

- Full suite of SM single top analyses performed
- All measurements are in agreement with the SM expectations
- Starting to enter the precision measurement regime

- Questions:
 - How to evaluate generator uncertainties?
 - 4-flavour vs. 5 flavor schema?
 - We would like to have an updated version of the 2D comparison made by Tait&Yuan 2000 of s-channel vs. t-channel including new physics models there.
 - Which precision measurements would you like to see to help nail down predictions for other /new physics.

🚢 LAT LRIMLINT

SM@LHC - Copenhagen 11.04.2012 Dominic Hirschbühl

Monte carlo samples

Process	CDF	D0	ATLAS	CMS
t-channel	Powheg+ Pythia	Comphep+Pythia	AcerMC+Pythia Wt: MC@NLO	Powheg+Pythia
Wt	Powheg+ Pythia		AcerMC+Pythia Wt: MC@NLO	Powheg+Pythia
s-channel	Powheg+ Pythia	Comphep+Pythia	AcerMC+Pythia Wt: MC@NLO	Powheg+Pythia
tt	Pythia	Alpgen+Pythia	MC@NLO + Herwig	Madgraph+Pythia
W+jets	Alpgen +Pythia	Alpgen+Pythia	Alpgen+Herwig	Madgraph+Pythia Data
Z+jets	Alpgen +Pythia	Alpgen+Pythia	Alpgen+Herwig	Madgraph+Pythia
WW,WZ,ZZ	Pythia	Pythia	Herwig	Pythia