Search for Higgs Boson Decays into Gauge Bosons with ATLAS

> Rustem Ospanov for the ATLAS collaboration

University of Pennsylvania

April 12, 2012

- Overview
- $\blacktriangleright \ H \to \gamma \gamma$
- $H \rightarrow ZZ$
- $H \rightarrow WW$
- Combination

SM Higgs boson

- Higgs mechanism gives an explanation for the Electroweak Symmetry breaking and generation of the W and Z masses
- Predicts a not yet observed neutral scalar particle with unknown mass and small cross-section
- Direct searches at LEP set lower bound m_H > 114.4 GeV at 95% CL
- ► Tevatron excludes 100 < m_H < 106 GeV and 147 < m_H < 179 GeV at 95% CL</p>
- Searching for the Higgs boson is one of the primary goals of LHC
- Higgs searches require sophisticated detectors designed to stringent performance requirements for particle identification, object energy/momentum measurements, E_T^{miss} measurement, b-tagging, etc

Higgs production

	ggF	VBF	WH/ZH	tŦĦ
QCD scale	+12% - 8%	$\pm 1\%$	$\pm 1\%$	+3% - 9%
$PDF+\alpha_S$	$\pm 8\%$	±4%	±4%	$\pm 8\%$

Higgs decays

- Higgs couples to mass
- WW and ZZ dominate when kinematically allowed
- Many competing channels for m_H < 160 GeV
- SM backgrounds inhibit searches in channels with jets and/or neutrinos
- $B(W \to l\nu) = 10.8\%$ $B(Z \to ll) = 3.4\%$
- Width for $m_H < 170$ GeV: $\Gamma_H < 100$ MeV

ATLAS experiment

- ATLAS is 93.5% efficient during stable LHC collisions
- Recorded $\int \mathcal{L} = 5.25 \ \textit{fb}^{-1}$
- Luminosity uncertainty is 3.9%
- High trigger efficiency for Higgs searches
 - Single lepton, di-lepton and di-photon triggers

LHC peak luminosity in 2011:

- $\mathcal{L}_{peak} \approx 3.6 \times 10^{33} cm^{-2} s^{-1}$
- pp inelastic $\approx 210 \ MHz$
- $Z \rightarrow \mu\mu \approx 3 Hz$
- ► $H[125 \text{ GeV}] \rightarrow WW \rightarrow l\nu l\nu$ $\approx 0.0003 \text{ Hz}$

Higgs Boson Decays into Gauge Bosons

Channel	<i>m_H</i> range (GeV)	$\int \mathcal{L}$ (fb ⁻¹)	Reference
$H ightarrow \gamma \gamma$	110 - 150	4.9	arXiv:1202.1414
$H \rightarrow ZZ \rightarrow 4I$	110 - 600	4.8	arXiv:1202.1415
H ightarrow ZZ ightarrow II u u	200 - 600	4.7	CONF-2012-016
H ightarrow ZZ ightarrow Ilqq	200 - 500	4.7	CONF-2012-017
$H \rightarrow WW \rightarrow l \nu l \nu$	110 - 600	4.7	CONF-2012-012
H ightarrow WW ightarrow I u qq	300 - 600	4.7	CONF-2012-018

- A mass resonance search for $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4I$
- A counting experiment for final states with neutrinos
- Limited mass resolution for final states with jets

Statistical procedure:

- ▶ Profile likelihood ratio to test signal strength $\mu = \sigma / \sigma_{SM}$ (Eur.Phys.J.C71:1554,2011)
- Exclusion limits on µ are set at a 95% confidence level with the CLs method (J. Phys. G 28 (2002) 2693-2704)
- ► Look Elsewhere Effect for resonance searches (Eur.Phys.J.C70:525,2010)

Run Number: 191190, Event Number: 19448322 Date: 2011-10-16 16:11:14 CEST

$H \rightarrow \gamma \gamma$

 $\sigma \approx$ 40 fb

pprox 70 signal events expected in 4.9 fb^{-1}

ggF: 87% **VBF: 7%** W/ZH: 5%

 $m_{\gamma\gamma}^2 =$ $2E_1E_2(1-\cos\alpha)$

$H \rightarrow \gamma \gamma$: analysis strategy

- Two isolated photons with $p_T > 40,25$ GeV
- Search for a narrow mass peak in di-photon mass spectrum
- Requires excellent EM energy resolution
- Split events in 9 categories to optimize signal/background
- Irreducible SM backgrounds are fitted from sidebands
 - Background composition measured from data (for cross-checks)

$\gamma\gamma$	$j\gamma$	jj	Z/γ^*
$71\pm5\%$	$23 \pm 4\%$	$5\pm3\%$	$0.7\pm0.1\%$

$H\to\gamma\gamma$: photon identification and isolation

- Fine η granularity in the strip layer to reject π⁰
- EM shower shape to reject fake photons from jets $\approx O(8000)$ jet rejection 85% photon efficiency
- Longitudinal segmentation to measure shower direction and to improve energy measurement

- Select isolated photons
- Excellent description of data by MC (cross-check)
- Uncertainty on event normalization from the isolation cut is 5%

$H \rightarrow \gamma \gamma$: analysis categories

9 photon categories:

- Converted and unconverted
- Central, transition region and rest
- High and low p_T(γγ) orthogonal to the thrust axis divided at 40 GeV

$H \rightarrow \gamma \gamma$: analysis categories

9 photon categories:

- Converted and unconverted
- Central, transition region and rest
- High and low $p_T(\gamma\gamma)$ orthogonal to the thrust axis divided at 40 GeV

Worst: $\sigma = 2.3$ GeV, S/B=0.01

 $\sigma_{\rm CB}$ = 2.3 GeV

130

myy [GeV]

FWHM = 5.9 GeV

$H \rightarrow \gamma \gamma$: systematic uncertainties

Event yield:

Efficiency	$\pm 11\%$
Pileup effects	$\pm4\%$
Isolation	$\pm 5\%$
Trigger efficiency	$\pm 1\%$
Cross-section	+15% - 11%
Higgs <i>p</i> _T modeling	$\pm 1\%$
Total	pprox 20%

Mass resolution:

Calorimeter energy resolution	$\pm 12\%$
Photon energy calibration	$\pm 6\%$
Pileup effect	±3%
Photon angle	$\pm 1\%$
Total	pprox 14%

- Energy scale known to $\approx 0.5\%$ at m_Z
- Linear response at < 1%
- Electron response in data is transferred to photons with MC

 $H \rightarrow \gamma \gamma$

- Selected 22489 events
- *m_H* = 125 GeV:
 - Expect 69 signal events
 - Signal efficiency 35% for
- Fit signal with Crystal Ball + Gaussian
- Fit background with exponential
- Background modeling ±0.1 7.9 events depending on category

$H \rightarrow \gamma \gamma$: results

Consistency of observed data with background only hypothesis:

- The largest excess is at 126.5 GeV with local significance of 2.8 σ
- 1.5 σ with look-elsewhere effect in the range 110-150 GeV

Exclusion limits:

- SM Higgs excluded at 95% confidence level in the ranges 113-115 GeV and 134.5-136 GeV
- \blacktriangleright Effect from the energy scale uncertainty on the Higgs mass is $\approx 0.7~{\rm GeV}$

 $m_H = 130 \text{ GeV}$: $\sigma \approx 3 \text{ fb}$ $\approx 2.6 \text{ signal events}$ expected in 4.9 fb^{-1} ggF: 88% VBF: 7%

W/ZH: 5%

$H \rightarrow ZZ \rightarrow 4I$: analysis strategy

- Four isolated electrons or muons with $p_T > 20, 20, 7, 7$ GeV
- One pair of leptons must come from Z decay
- Search for a narrow mass resonance
- ▶ 4 event categories: 4*e*, $2e2\mu$, 4μ
- Irreducible SM ZZ* background
- Reducible Z+jets and $t\bar{t}$ backgrounds

 4μ : $\sigma = 2.0 \text{ GeV}$

 $4e: \sigma = 2.5 \text{ GeV}$

130

meeee [GeV]

150

Electrons

- Electron reconstruction and identification efficiency 85 – 90%
- ► Understand electron performance with benchmark data processes: J/ψ → ee, Z → ee and W → eν
- Track and calorimeter based isolation

Systematic uncertainties:

- ► Efficiency: < 3%
- ▶ Energy scale: < 1%</p>
- Energy resolution: < 0.5%</p>

Muons

- Muon reconstruction and identification efficiency > 95%
- Accurate alignment of inner detector and muon system (MS)
- Combined momentum measurement using ID and MS
- ID only momentum measurement for MS segments
- Track and calorimeter based isolation

Systematic uncertainty:

- ▶ Efficiency: < 1%
- Momentum resolution: < 1%</p>

$H \rightarrow ZZ \rightarrow 4I$: backgrounds

- ▶ Normalize *ZZ*^(*) from MC
- Normalize reducible backgrounds from control regions
 - Z+jets background relax lepton selection cuts
 - ▶ $t\overline{t} e\mu$ channel

		4μ	$2e2\mu$	4 <i>e</i>
ZZ ^(*)	$m_{4/} < 180 ~GeV$	2.1 ± 0.3	2.8 ± 0.6	1.2 ± 0.3
$Z + jet$ and $t\overline{t}$	$m_{4I} < 180 \; GeV$	0.16 ± 0.06	1.4 ± 0.5	1.6 ± 0.7
ZZ ^(*)	$m_{4/} > 180 ~GeV$	16.3 ± 3.4	25.2 ± 3.8	10.4 ± 1.5
$Z + jet$ and $t\overline{t}$	$m_{4I}>180~GeV$	0.02 ± 0.01	0.17 ± 0.08	0.18 ± 0.08

Relax impact parameter for $Z + \mu\mu$

Relax isolation cut for Z + ee

$H \rightarrow ZZ \rightarrow 4I$: four-lepton invariant mass

- Selected 71 candidate events
- Expect 62 ± 9 background events
- Fit four-lepton mass spectrum for Higgs signal

 $m_{4/} < 180 \text{ GeV}$:

	4μ	$2e2\mu$	4e
Total Bkg.	2.2 ± 0.3	4.3 ± 0.8	2.8 ± 0.8
$m_H = 130 { m GeV}$	1.00 ± 0.17	1.22 ± 0.21	0.43 ± 0.08
Data	3	3	2

$H \rightarrow ZZ \rightarrow 4I$: results

Consistency of observed data with background only hypothesis:

- \blacktriangleright Excesses at 125 GeV, 244 GeV and 500 GeV with local significances of 2.1, 2.2 and 2.1 σ
- ▶ None of these excesses is significant with the look-elsewhere effect included

Exclusion limits:

► SM Higgs is excluded in the mass ranges 134-156 GeV, 182-233 GeV, 256-265 GeV and 268-415 GeV at the 95% confidence level

$H \rightarrow ZZ \rightarrow 4I$: results

Consistency of observed data with background only hypothesis:

- \blacktriangleright Excesses at 125 GeV, 244 GeV and 500 GeV with local significances of 2.1, 2.2 and 2.1 σ
- ▶ None of these excesses is significant with the look-elsewhere effect included

Exclusion limits:

► SM Higgs is excluded in the mass ranges 134-156 GeV, 182-233 GeV, 256-265 GeV and 268-415 GeV at the 95% confidence level

$H \rightarrow ZZ \rightarrow I l \nu \nu$: analysis strategy

- Pair of isolated electrons or muons consistent with Z decay
- ▶ Require lepton $p_T > 20$ GeV and significant missing transverse energy
- Several analysis categories to improve signal sensitivity
- Control regions for main backgrounds
 - ► Top, di-bosons, Z+jets/W+jets

Lower pileup

Search for an excess of events in transverse mass distribution

Higher pileup

$H \rightarrow ZZ \rightarrow I l \nu \nu$: results

- Search for an excess of events in transverse mass distribution
- Split the analysis at $m_H = 280 \text{ GeV}$
- SM Higgs is excluded in the mass range 320-560 GeV at the 95% confidence level
- Main uncertainties are from background normalizations which are estimated from data

$H \to WW \to l \nu l \nu$

 $m_H = 125 \ GeV$: $\sigma \approx 100 \ fb$ $\approx 181 \ signal events$ expected in 4.9 fb^{-1} A larger rate but difficult and diverse backgrounds

$H \rightarrow WW \rightarrow l\nu l\nu$: analysis strategy

- Pair of isolated opposite sign leptons ($p_T > 25, 15 \text{ GeV}$)
- \blacktriangleright Veto Z with mass window $|m_{ll}-m_Z|<15$ GeV for $ee,\mu\mu$
- Three lepton flavor channels plus jet multiplicity bins:
 - ee, $e\mu$ and $\mu\mu$
 - $E_{T,miss}^{rel} > 45 \text{ GeV}(25 \text{ GeV})$ for ee and $\mu\mu$ (e μ)
- Irreducible background from SM WW
- ► Reducible backgrounds from SM processes with mis-identified objects: W+jets, Z+jets, $t\bar{t}$, single top, $W + \gamma$, $W + \gamma^*$, WZ, ZZ

$H \rightarrow WW \rightarrow l\nu l\nu$: jet multiplicity

Split by jet multiplicity:

- 0-jet: ggF vs. SM WW
 ±25% for σ_{ggF}(m_H = 125 GeV))
- ▶ 1-jet: ggF vs. SM WW and top $\pm 37\%$ for $\sigma_{ggF}(m_H = 125 \text{ GeV}))$
- 2-jet: VBF vs. SM WW and top ±5% for σ_{VBF}(m_H = 125 GeV))

Source ATLAS Preliminary → Data SM (syste) de tat) 1000 is = 7 TeV, ∫ L dt = 4.7 fb⁻¹ if if

Main detector uncertainties:

- ▶ Jet energy scale: 2 14% as a function of jet p_T and η
- ▶ Jet energy from pileup: < 5% for jet $p_T > 25$ GeV
- B-tagging: 5 14% as a function of jet p_T
- Missing energy: estimated by varying amount of pileup

$H \rightarrow WW \rightarrow l\nu l\nu$: selections

- ▶ 0-jet: p_{T,µµ,ee} > 45 GeV to suppress Z+jet
- 1-jet: veto events with b-jets and high p_T^{total}
- Kinematic cuts to reduce SM WW
- SM WW normalized from data for m_H < 200 GeV
- Top normalized from data b-tagged samples
- W+jet is taken fully from data
- ► Z/γ*+jet normalized from data
- Wγ, Wγ*, WZ and ZZ from MC

0-jet WW control region

1-jet top control region

$H \rightarrow WW \rightarrow l\nu l\nu$: results

- Fit transverse mass distribution
- SM Higgs boson is excluded in the range 130-260 GeV at the 95% confidence level

Stat only errors:

	0-jet	1-jet	2-jet
$m_H = 125 \ GeV$	37.7 ± 0.3	9.4 ± 0.1	0.8 ± 0.1
Total Bkg.	429 ± 27	134 ± 13	1.8 ± 0.4
Obs.	174	56	0

SM Higgs combination

SM Higgs combination

- SM Higgs boson is excluded in the ranges: 110-117.5, 118.5-122.5, 129-539 GeV at the 95% CL
- ► The combination includes additional channels: $H \rightarrow \tau \tau$, $H \rightarrow bb$, $H \rightarrow WW \rightarrow l\nu qq$, $H \rightarrow ZZ \rightarrow llqq$

SM Higgs combination

- An excess of events at $m_H \approx 126.5$ with a local significance 2.5 σ Expected significance for SM Higgs 2.9 σ Best-fit signal strength $\mu = 0.9 + 0.4 - 0.3$
- Global probability for such background fluctuation: $\approx 30\%$ in the range 110 - 600 GeV $\approx 10\%$ in the range 110 - 146 GeV

Conclusions and outlook

Congratulations to CERN for the fantastic LHC performance!

- ATLAS released SM Higgs boson searches in 12 distinct channels using full 2011 dataset
- Allowed Higgs mass is the ranges 117.5-118.5 GeV and 122.5-129 GeV at the 95% CL
- Observed an excess of events consistent with $m_H pprox$ 126.5 GeV
- This year we will know if this is the SM Higgs boson!

Backup

 $H \rightarrow \gamma \gamma$

$H \rightarrow ZZ \rightarrow IIqq$

- ▶ Pair of isolated electrons or muons ($p_T > 20$ GeV) consistent with Z decay
- Two central jets from the same vertex as leptons
- Separate light jets and b-jets to improve signal sensitivity
- Z+jet and $t\bar{t}$ background shapes taken from MC and checked with data
- Z+jet and $t\bar{t}$ normalizations taken from sidebands

$H \rightarrow ZZ \rightarrow IIqq$: results

- Search for an excess of events using invariant mass distribution of two leptons and two jets
- Split the analysis at $m_H = 300 \text{ GeV}$
- SM Higgs boson is excluded in the ranges 300-310 GeV and 360-400 GeV at the 95% confidence level

$H \rightarrow WW \rightarrow I \nu q q$

 $\sqrt{s}=7 \text{ TeV}$ $\int \text{L dt}=4.7 \text{ fb}^{-1}$ **ATLAS** Preliminary

550

50 600 m_н [GeV]

500

- Exactly one isolated electron or muon with $p_T > 40$ GeV
- Two central jets consistent with W decay
- Separate events by multiplicity of additional jets (ggF vs VBF)
- Search for an excess in event invariant mass distribution
- SM backgrounds are fitted from sidebands
- Approaching SM Higgs sensitivity

$H \rightarrow WW \rightarrow l\nu l\nu$: topological selections

- Require small opening between two leptons for low mass Higgs
- Apply di-lepton invariant mass cut for low mass Higgs

Combination

Combination

