Standard Model Higgs Theory in the realm of the LHC

Julien Baglio

Institut für Theoretische Physik (KIT), Karlsruhe (Germany)

SM@LHC 2012, April 12th, 2012

SM@LHC 2012, Copenhagen, 12/04/2012

Outline

- SM Higgs mechanism in brief
- Theory bounds and precision measurements
- Current status of the Higgs search

SM Higgs boson decays overview

3 SM Higgs production at the LHC

- Overview of the main channels
- Gluon fusion production
- Vector boson fusion
- Higgsstrahlung
- Associated Higgs production with $t\bar{t}$

Conclusion and outlook

The Brout–Englert–Higgs mechanism

• Consider a scalar SU(2)-doublet field ϕ , $Y_{\phi} = 1$, in a ϕ^4 potential:

$$\mathcal{L}_S = |D_\mu \phi|^2 - V(\phi), V(\phi) = -m^2 \phi^2 + \lambda \phi^4, D_\mu = \partial_\mu - \imath g T_\mathrm{a} W^\mathrm{a}_\mu - \imath g^\prime rac{\gamma}{2} B_\mu$$

 $T_a \text{ as } SU(2) \text{ generators } \& W^a_\mu SU(2) \text{ gauge bosons}$ $Y \text{ hypercharge } \& B_\mu U(1) \text{ gauge boson}$

• Use
$$W^{\pm}_{\mu} \equiv \frac{W^{1}_{\mu} \mp \imath W^{2}_{\mu}}{\sqrt{2}}, Z_{\mu} = \frac{gW^{3}_{\mu} - g'B_{\mu}}{\sqrt{g^{2} + {g'}^{2}}}, A_{\mu} = \frac{gW^{3}_{\mu} + g'B_{\mu}}{\sqrt{g^{2} + {g'}^{2}}}$$

The Brout–Englert–Higgs mechanism

• Consider a scalar SU(2)-doublet field ϕ , $Y_{\phi} = 1$, in a ϕ^4 potential:

$$\mathcal{L}_S = |D_\mu \phi|^2 - V(\phi), V(\phi) = -m^2 \phi^2 + \lambda \phi^4, D_\mu = \partial_\mu - \imath g T_\mathrm{a} W^\mathrm{a}_\mu - \imath g^\prime rac{\gamma}{2} B_\mu$$

 $T_a \text{ as } SU(2) \text{ generators } \& W^a_\mu SU(2) \text{ gauge bosons}$ $Y \text{ hypercharge } \& B_\mu U(1) \text{ gauge boson}$

• Use
$$W^{\pm}_{\mu} \equiv \frac{W^{1}_{\mu} \mp i W^{2}_{\mu}}{\sqrt{2}}, Z_{\mu} = \frac{g W^{3}_{\mu} - g' B_{\mu}}{\sqrt{g^{2} + {g'}^{2}}}, A_{\mu} = \frac{g W^{3}_{\mu} + g' B_{\mu}}{\sqrt{g^{2} + {g'}^{2}}}$$

VEV $\langle 0|\phi|0\rangle = \begin{pmatrix} 0\\ \frac{v}{\sqrt{2}} \end{pmatrix}$ and $\phi = \begin{pmatrix} 0\\ \frac{v+H(x)}{\sqrt{2}} \end{pmatrix}$:

mass terms for weak bosons through v one Higgs boson in the spectrum

[Higgs (1964); Brout, Englert (1964); Hagen, Kibble, Guralnik (1964)]

SM@LHC 2012, Copenhagen, 12/04/2012

Higgs boson couplings

After EWSB: Higgs boson couples to fermions and gauge bosons:

Hff \propto *m_f*: Higgs couples mostly to **top** and **bottom** quarks in **fermion loops** *ggH* and $\gamma\gamma H$ couplings occur at one-loop level

Theory bounds and precision measurements

Higgs boson mass not predicted by the SM but constrained:

• Triviality and unitarity \Rightarrow upper bound on M_H

[Marciano et al (1989),...; Cabibbo et al (1979); Dashen, Neuberger (1983),...]

Stability of the vacuum \Rightarrow lower bound on M_H

[Lindner, Sher (1989); Casas, Espinosa, Quiros (1995); Hambye, Riesselmann (1996),...]

 $\Lambda_{\rm CUT} = 1$ TeV: 50 GeV $\lesssim M_H \lesssim$ 750 GeV $\Lambda_{\rm CUT} = 10^{16}$ GeV: 130 GeV $\lesssim M_H \lesssim 180$ GeV

• Precision data fit $(M_Z, \Gamma_Z, M_W, \Delta^{had}\alpha_s, etc)$:

 $M_H \leq 152 \text{ GeV } @ 95\% \text{ CL}$

Direct searches at LEP and Tevatron

[LEPHWG (2003)]

Current status at the LHC

Combined channels:

 $110 \text{ GeV} \le M_H \le 117.5 \text{ GeV}$
 $118.5 \text{ GeV} \le M_H \le 122.5 \text{ GeV}$
 $129 \text{ GeV} \le M_H \le 539 \text{ GeV}$

 excluded @ 95% CL (ATLAS)

127.5 GeV $\leq M_H \leq 600$ GeV excluded @ 95% CL (CMS)

Current status at the LHC

 $\mathbf{H} \rightarrow \gamma \gamma, \mathbf{H} \rightarrow \mathbf{Z}\mathbf{Z} \rightarrow \mathbf{4}\ell:$

local 2.5 σ excess @ $M_H \sim 126$ GeV local 2.8 σ in $H \rightarrow \gamma\gamma$, local 2.1 σ in $H \rightarrow ZZ \rightarrow 4\ell$ local 2.8 σ excess @ $M_H \sim 125 \text{ GeV}$ local 3.1 σ in $H \rightarrow \gamma \gamma$ @ $M_H = 124 \text{ GeV}$

SM Higgs boson decays

SM@LHC 2012, Copenhagen, 12/04/2012

Higgs decay channels

[LHC Higgs XS WG (2011)]

Higgs decay channels

LHC Higgs Cross Section Working Group (LHC Higgs XS WG) calculation based on

- ★ HDECAY [Djouadi, Kalinowski, Mühlleitner, Spira (1996,2006)]
- ★ PROPHECY4F [Bredenstein, Denner, Dittmaier, Mück, Weber (2010)]

$$\Gamma_{\rm tot} = \Gamma_{\rm tot}^{HDECAY} - \Gamma_{WW}^{HDECAY} - \Gamma_{ZZ}^{HDECAY} + \Gamma_{4\!f}^{PROPHECY4F}$$

• HDECAY

all relevant higher-order corrections, in particular with NNLO running of α_s and 4–loop QCD corrections to $H \rightarrow gg$ [Baikov,Chetyrkin (2012)]

• PROPHECY4F

 $H \rightarrow WW, ZZ \rightarrow 4f$ including complete NLO QCD+EW correction and interference effects

Parameters and uncertainties

Higgs decay branching ratios affected by uncertainties:

- * parametric: $\bar{m}_b(\bar{m}_b) = (4.16 \pm 0.06) \text{ GeV}, \ \bar{m}_c(\bar{m}_c) = (1.27 \pm 0.03) \text{ GeV}, \ \alpha_s(M_Z^2) = 0.1171 \pm 0.0014 \text{ [NNLO MSTW] or } \alpha_s(M_Z^2) = 0.118 \pm 0.002 \text{ [LHC Higgs XS WG]}$
- * theory: missing higher-order contributions estimated by scale variation

[J. B., Djouadi (2011)]

[LHC Higgs XS WG (2012); Denner et al (2011)]

In most relevant channels at $M_H = 120$ GeV: $\Delta_{BR}(H \rightarrow \gamma \gamma) = \pm 5.5\%, \ \Delta_{BR}(H \rightarrow WW, ZZ) = \pm 4.8\%$ $\Delta_{BR}(H \rightarrow b\bar{b}) = \pm 2.8\%$

SM Higgs production at the LHC

SM@LHC 2012, Copenhagen, 12/04/2012

J. Baglio Higgs Theory at the LHC

11/28

The four main production channels

Gluon fusion production: the largest cross section

 $pp \rightarrow gg \rightarrow H$: the largest production channel at hadron colliders

[Georgi, Glashow, Machacek, Nanopoulos (1978)]

Main production channel for many Higgs searches:

- ► $H \to \gamma \gamma, H \to ZZ \to 4\ell$: main detection channels for $M_H \lesssim 140$ GeV (the latter also for $M_H \ge 180$ GeV) [Gunion *et al* (1986); Gunion, Kane, Wudka (1988)]
- ► $H \rightarrow WW \rightarrow \ell \nu \ell \nu$: main channel for $M_H \simeq 160 \text{ GeV}$ [Dittmar, Dreiner (1997)]

Gluon fusion production: the largest cross section Higher order corrections to inclusive rate:

- NLO QCD corrections: exact for top and bottom loops, ≃ +100% correction, large scale dependence [Djouadi, Spira, Zerwas; Dawson (1991); Djouadi, Graudenz, Spira, Zerwas (1995)]
- NNLO QCD corrections: only for the top loop where
 - $\simeq +25\%$ in the limit $M_H \ll m_t$

[Harlander, Kilgore; Anastasiou, Melnikov (2002); Ravindran, Smith, Neerven (2003)]

- ► top mass effects negligible for $M_H \leq 300 \text{ GeV}$ [Harlander,Ozeren (2009); Pak,Rogal,Steinhauser; Marzani et al. (2010)]
- other QCD corrections:
 - ▶ N³LO estimated in the limit $M_H \ll m_t$ [Moch, Vogt (2005); Ravindran (2006)]
 - ► NNLL resummation $\Rightarrow +10\%$ [Catani,de Florian,Grazzini,Nason (2003)]; accounted for at NNLO with central scale $\mu_0 = M_H/2$ [Anastasiou, Boughezal, Petriello (2009)]
 - ▶ soft gluon at N³LL and π^2 -enhanced terms [Ahrens, Neubert, Becher, Yang (2009)]
- NLO EW corrections: ≃ ±4% [Aglietti *et al*; Degrassi, Maltoni (2004); Actis *et al* (2008)]
- NNLO mixed QCD+EW corrections: in the limit $M_H \ll M_W$ [Anastasiou, Boughezal, Petriello (2009)]

(some) LHC 7 TeV predictions: [LHC Higgs XS WG (2011)]

(some) LHC 8 TeV predictions: [J. B., Djouadi (2011); Anastasiou et al (2012)]

Gluon fusion production: the largest cross section

$gg \rightarrow H$ affected by sizeable uncertainties:

- Scale uncertainty: calculated at NNLO with $\frac{1}{2}\mu_0 \leq \mu_R, \mu_F \leq 2\mu_0, \mu_0 = \frac{1}{2}M_H$; • $\Delta_{\text{scale}} \simeq \pm 4 - 8\%$ at $\sqrt{s} = 7, 8 \text{ TeV}$ [LHC Higgs XS WG (2011)]
- PDF uncertainty: gluon PDF at high -x less constrained, $\alpha_s(M_7^2)$ uncertainty \Rightarrow large discrepancy between NNLO PDFs predictions [J. B., Djouadi (2010,2011)] PDF4LHC recommandation $\Rightarrow \Delta_{PDF} \simeq \pm 10\%$ [LHC Higgs XS WG (2011)]
- EFT approximation: NNLO calculation without *b*-loop and with approximate mixed QCD+EW corrections \Rightarrow a few % additional uncertainties [J. B., Djouadi (2011)]

Gluon fusion production: the largest cross section Exclusive studies and differential distributions:

here some highlights, for more see e.g. [LHC Higgs XS WG (2012)] and references therein

- NLO QCD corrections: implemented in HIGLU [Djouadi, Graudenz, Spira, Zerwas (1995)] and Monte Carlo event generators in particular with the subtraction formalism [Catani, Seymour (1996)]
- Fully exclusive NNLO QCD corrections: reduce the scale dependance to ≃ ±20% [Anastasiou, Melnikov, Petriello (2004, 2005); Catani, Grazzini (2007); Grazzini (2008)]
- NNLL resummation in Higgs p_T spectrum: $\simeq +10\%$ enhancement in the distributions [Bozzi, Catani, de Florian, Grazzini (2006); Cao, Chen, Schmidt, Yuan (2009); de Florian, Gerrera, Grazzini, Tommasini (2011);]
- Finite top mass and bottom effects at NNLO: not correctly modeled with effective theory, studies show that at least $\mathcal{O}(10\%)$ distortion of $p_T(H)$ distribution [Bagnaschi, Degrassi,

Gluon fusion production: the largest cross section

Exclusive studies and differential distributions, some issues:

 Scale uncertainties: gg → H → WW divided into jet bins to improve background reduction ⇒ what is the scale uncertainty in 0, 1, 2 jet bins, what about correlations?
 [Anastasiou, Dissertori, Stöckli, Webber (2007); Grazzini (2008); Stewart, Tackmann (2011); Gerwick, Plehn, Schumann (2012)]

• Jet veto efficiency: ambiguities in the definition of jet-veto efficiency [Berger et al (2011)]:

a)
$$f_{0} = \frac{\sigma_{0 \text{ jet}}^{(0)}(p_{T}^{\text{cut}}) + \sigma_{0 \text{ jet}}^{(1)}(p_{T}^{\text{cut}}) + \sigma_{0 \text{ jet}}^{(2)}(p_{T}^{\text{cut}})}{\sigma_{\text{tot}}(\text{NNLO})}$$

b)
$$f_{0} = 1 - \frac{\sigma_{1 \text{ jet}}^{NLO}(p_{T}^{\text{cut}})}{\sigma_{\text{tot}}(\text{NLO})} (\text{using } f_{0}(\text{LO}) = 1)$$

c)
$$f_{0} = 1 - \frac{\sigma_{1 \text{ jet}}^{NLO}(p_{T}^{\text{cut}})}{\sigma_{\text{tot}}(\text{LO})} + \frac{\sigma_{\text{tot}}(\text{NLO})}{(\sigma_{\text{tot}}(\text{LO}))^{2}} \sigma_{1 \text{ jet}}^{\text{LO}}(p_{T}^{\text{cut}}) \text{ (fixed order expansion to order } \mathcal{O}(\alpha_{s}^{2}) \text{ of method a)}$$

Poor convergence of total rate \Rightarrow large discrepency between the 3 schemes

• Shape of $p_T(H)$ spectrum and PDF uncertainties [LHC Higgs XS WG (2012)]

Gluon fusion production: the largest cross section Exclusive studies and differential distributions, some issues:

• Scale uncertainties:

[Stewart, Tackmann (2011); LHC Higgs XS WG (2012)]

[Stewart, Tackmann (2011); LHC Higgs XS WG (2012)]

[LHC Higgs XS WG (2012)]

SM@LHC 2012, Copenhagen, 12/04/2012

J. Baglio

16/28

Gluon fusion production: the largest cross section

Exclusive studies and differential distributions, some issues:

• Shape of $p_T(H)$ spectrum and PDF uncertainties

[LHC Higgs XS WG (2012)]

Grazzini et al (2012)

Gluon fusion production: the largest cross section **Tools**:

- Inclusive cross section:
 - * HIGLU: version 3.01 including NNLO QCD and mixed EW+QCD corrections, NNLO evolution of α_s [spira, (2011)]
 - * iHixs: gluon fusion and bottom quarks fusion with NNLO QCD and mixed QCD+EW corrections, finite Γ_H effects [Anastasiou, Bühler, Herzog, Lazopoulos (2011)]

• Differential distributions and cuts:

- * POWHEG: interface NLO Monte Carlo generator with parton shower tools, $gg \rightarrow H$ implemented [Bagnaschi, Degrassi, Slavich, Vicini (2011)]
- ★ MC@NLO: NLO Monte Carlo event generator [Frixione, Webber (2002)]
- * FEHIP: full NNLO QCD $gg \rightarrow H \rightarrow \gamma\gamma$ [Anastasiou, Melnikov, Petriello (2004, 2005)]
- ★ HNNLO: full NNLO QCD $gg \rightarrow H \rightarrow \gamma\gamma$, $H \rightarrow WW \rightarrow \ell\nu\ell\nu$ and $gg \rightarrow H \rightarrow ZZ \rightarrow 4\ell$ [Grazzini (2008)]
- * HqT: NLO+NNLL $p_T(H)$ distribution in the large p_T region [de Florian, Ferrera, Grazzini, Tommasini (2011)]
- ★ HRes: NNLO+NNLL accuracy in several decay channels [update of HqT (2012)]

Vector boson fusion: the clean production channel

 $pp \rightarrow qq \rightarrow qq WW/ZZ \rightarrow qqH$: clean production channel and second to largest at the LHC

[Cahn, Dawson (1984); Hikasa (1985); Altarelli, Mele, Pitolli (1987)]

Very useful for light Higgs searches in $H \rightarrow \tau \tau$, WW^* , $\gamma \gamma$ channel due to small backgrounds thanks to e.g. jet veto [Barger, Phillips, Zeppenfeld (1995); Rainwater, Zeppenfeld (1997); Eboli *et al* (2000); Plehn, Rainwater, Zeppenfeld (2000); Kauer *et* (2001)]

- NLO QCD corrections: ≃ +10% on total rate, ±5 10% scale dependence [Han, Valencia, Willenbrock (1992)]
- NNLO QCD corrections: we have
 - $\mathcal{O}(\alpha^3 \alpha_s^2)$ gluon induced VBF, negligible [Harlander, Vollinga, Weber (2008)]
 - ► QCD corrections in the structure function approach which barely affect total rate but scale dependence reduced down to ~ ±2% [Bolzoni, Maltoni, Moch, Zaro (2010)]
- NLO EW corrections: ≃ +5% shift [Ciccolini, Denner, Dittmaier (2008); Figy, Palmer, Weiglein (2010)]

Vector boson fusion: the clean production channel

Inclusive cross section: central scale chosen as $\mu_R = \mu_F = \mu_0 = Q$ (virtuality of the fusing bosons)

Total uncertainty dominated by PDF $(\Delta^{
m tot}\sigma)/\sigma\simeq\pm 6\%$

SM@LHC 2012, Copenhagen, 12/04/2012

Vector boson fusion: the clean production channel Exclusive studies and differential distributions:

- NLO QCD corrections: $\simeq 20\%$ effect [Figy, Oleari, Zeppenfeld (2003); Campbell, Ellis, Berger (2004)]
- dominant NLO *H* + 3*j*: reduce scale uncertainty < 5% [Figy, Hankele, Zeppenfeld (2008)]
- 1-loop inteference between gg fusion and WBF: very small effect [Andersen, Binoth, Heinrich, Smillie (2008); Bredenstein, Hagiwara, Jäger (2008)]
- 1-loop QCD+EW corrections: 5% effect [Figy, Palmer, Weiglein (2010)]

Strong effect on the shapes by QCD corrections EW corrections mostly affect the normalization of distributions

Vector boson fusion: the clean production channel Exclusive studies and differential distributions:

 Major VBF cuts

 $p_T(j) > 20 \text{ GeV}, |y_j| < 4.5$
 $|y_{j1} - y_{j2}| > 4, y_{j1} \cdot y_{j2} < 0$
 $m_{jj} > 600 \text{ GeV}$

Jet veto very efficient to kill most of QCD background:

Vector boson fusion: the clean production channel

Tools:

- Inclusive cross section:
 - * HAWK, VBFNLO: NLO QCD+EW Monte Carlo event generators (see below)
 - ★ VV2H: NLO QCD total cross section [Spira (2000)]
 - VBF@NNLO: NNLO QCD total cross section online calculator
 [Bolzoni, Maltoni, Moch and Zaro (2011)]
- Differential distributions and cuts:
 - * HAWK: NLO Monte Carlo event generator, full 1–loop EW+QCD corrections and interference effects [Denner, Dittmaier, Kallweit, Mück (2010, 2011)]
 - * POWHEG: interface NLO calculations with parton shower tools, VBF implemented in the POWHEG BOX [Alioli *et al* (2010)]
 - ★ VBFNLO: Monte Carlo event generator, full 1–loop EW+QCD corrections, interference effects, Higgs+2*j* with *gg* fusion [Arnold *et al* (2008, 2011)]

Vector boson fusion: the clean production channel Recent studies at the LHC with $\sqrt{s} = 7$ TeV:

Associated W/Z + Higgs production $pp \rightarrow Z^*/W^* \rightarrow Z/W + H$: LHC detection channel

- in $HW \rightarrow \ell \nu \gamma \gamma$ with high luminosity (100 fb⁻¹) [Kleiss, Kunszt, Stirling (1991)]
- with $H \rightarrow b\bar{b}$ decay in boosted jets regime $(p_T(H) > 200 \text{ GeV})$ [Butterworth *et al* (2008)]

[Glashow, Nanopoulos, Yildiz (1978)]

- NLO QCD corrections: Drell-Yan $\sigma(pp \rightarrow V^*)$ corrections $\simeq +20\%$ [Han, Willenbrock (1991)]
- NNLO QCD corrections: Drell-Yan $\simeq +10\%$ [Hamberg *et al* (1991); Harlander, Kilgore (2002)]; $gg \rightarrow ZH \Rightarrow \simeq +5\%$ [Brein, Djouadi, Harlander (2004)]; non Drell-Yan < 3% [Brein *et al* (2011)]
- Full NLO EW corrections: $\sigma_{WH} = \sigma_{WH}^{\text{QCD NNLO}} (1 + \delta_W^{\text{EW}}) + \sigma(gg \rightarrow ZH)$ with $\delta_W^{\text{EW}} \simeq -8\%$ [Ciccolini, Dittmaier, Krämer (2003)]

central scale $\mu_0 = M_{HV}$ $(\Delta^{\text{th}}\sigma)/\sigma \simeq \pm 5\%$

[LHC Higgs XS WG (2011)]

SM@LHC 2012, Copenhagen, 12/04/2012

J. Baglio Higgs Theory at the LHC

300

M. [GeV]

Associated W/Z + Higgs production $pp \rightarrow Z^*/W^* \rightarrow Z/W + H$: LHC detection channel

- in $HW \rightarrow \ell \nu \gamma \gamma$ with high luminosity (100 fb⁻¹) [Kleiss, Kunszt, Stirling (1991)]
- with $H \rightarrow b\bar{b}$ decay in boosted jets regime $(p_T(H) > 200 \text{ GeV})$ [Butterworth *et al* (2008)]

[Glashow, Nanopoulos, Yildiz (1978)]

- NLO QCD corrections: Drell-Yan $\sigma(pp \rightarrow V^*)$ corrections $\simeq +20\%$ [Han, Willenbrock (1991)]
- NNLO QCD corrections: Drell-Yan $\simeq +10\%$ [Hamberg *et al* (1991); Harlander, Kilgore (2002)]; $gg \rightarrow ZH \Rightarrow \simeq +5\%$ [Brein, Djouadi, Harlander (2004)]; non Drell-Yan < 3% [Brein *et al* (2011)]
- Full NLO EW corrections: $\sigma_{ZH} = \sigma_{ZH}^{\text{QCD NNLO}} (1 + \delta_Z^{\text{EW}}) + \sigma(gg \rightarrow ZH)$ with $\delta_Z^{\text{EW}} \simeq -5\%$ [Ciccolini, Dittmaier, Krämer (2003)]

central scale $\mu_0 = M_{HV}$ $(\Delta^{\text{th}}\sigma)/\sigma \simeq \pm 5\%$

[LHC Higgs XS WG (2011)]

SM@LHC 2012, Copenhagen, 12/04/2012

300

M. [GeV]

Associated W/Z + Higgs production

Fully exclusive calculation of pp \rightarrow **HV** with $\mu_0 = M_H + M_V$ as central scale

- NLO QCD corrections: $\simeq -40\%$, scale dependence $\simeq \pm 13\%$ [Ciccolini, Denner, Dittmaier (2007)]
- NNLO QCD corrections: pp → HW exclusive calculation fully at NNLO based on the subtraction formalism, including
 - finite-width effects
 - $W
 ightarrow \ell
 u$ decay with full spin correlations
 - $H \rightarrow b\bar{b}$ decay
 - -15% effect; scale dependence reduced to $\simeq \pm 2$ 6% [Ferrera, Grazzini, Tramontano (2011)]
- Full NLO EW corrections: large effect (e.g. -14% at $M_H = 120$ GeV) [Denner *et al* (2011)]
 - * Great effort with a fully exclusive NNLO *HW* production: $(\Delta^{tot}\sigma)/\sigma \simeq \pm 7 11\%$ striking different behaviour compared to Tevatron (+20% NLO, +1% NNLO)
 - \star Perturbative stability worse compared to inclusive production
 - \Rightarrow ongoing studies to understand why

Associated W/Z + Higgs production

- 7 TeV cuts: $p_T(H) > 200 \text{ GeV}, p_T(V) > 190 \text{ GeV}, p_T(\ell) > 20 \text{ GeV}, |\eta_\ell| < 2.5,$ $p_T > 25 \text{ GeV}$
- 14 TeV cuts: $p_T(H) > 200 \text{ GeV}, p_T(W) > 200 \text{ GeV}, p_T(\ell) > 30 \text{ GeV}, |\eta_\ell| < 2.5,$ $p_T > 30 \text{ GeV}$
- Tools: V2VH [Spira, NLO; public]; MCFM [Campbell, Ellis, Williams, NLO; public]; VH@NNLO [Brein, Djouadi, Harlander, NNLO; public]; HAWK [Denner, Dittmaier, Mück, NLO; public]

Associated production with a $t\bar{t}$ pair

 $pp \rightarrow q\bar{q} + gg \rightarrow t\bar{t}H$: smallest of the four main production channels

Useful for $M_H \lesssim 150$ GeV: e.g. top Yukawa coupling in $pp \to t\bar{t}(H \to b\bar{b})$ [Drollinger *et al* (2001)]

• LO calculation: central scale $\mu_0 = m_t + \frac{1}{2}M_H$, $\mathcal{O}(50\%)$ scale dependence

[Raito, Wada (1979); Ng, Zakarauskas; Kunszt (1984); Gunion; Marciano, Paige (1991)]

- NLO corrections: reduce scale dependence to $\mathcal{O}(10\%)$ with $\frac{1}{2}\mu_0 \le \mu_R, \mu_F \le 2\mu_0$ [Reina, Dawson (2001); Beenakker *et al*; Dawson *et al* (2003)]
- PDF+ α_s uncertainty: $\simeq \pm 4$ 6% depending on the PDF set chosen

Associated production with a $t\bar{t}$ pair

• Exclusive studies at NLO: ± 20 - 50% total uncertainty [LHC Higgs XS WG (2012)]

• Main background: $pp \rightarrow t\bar{t}b\bar{b}$ known at NLO; central scale choice $\mu^2 = m_t \sqrt{p_{T,b}p_{T,\bar{b}}}$ improves the scale uncertainty to $\ll 30\%$ [Bredenstein *et al* (2008,2009); Bevilacqua *et al* (2009)]

• Tools: HQQ [Spira, LO]; aMC@NLO [Frederix et al, NLO]; POWHEL [Garzelli et al, NLO]

Beyond the SM Higgs?

P. Tanedo, Quantum Diaries blog

But which Higgs boson may we have?

SM@LHC 2012, Copenhagen, 12/04/2012

Summary

Higgs physics in the realm of the LHC:

- Higgs discovery: major LHC goal to unravel the electroweak symmetry breaking mechanism
- A SM Higgs boson discovery may await us:
 - ATLAS/CMS hints of 3σ excess @ $M_H \sim 125$ GeV
 - LHC run at 8 TeV for a final answer before end 2012
- Theory meets high precision accuracy: up to NNLO in the three main inclusive production channels, huge efforts in exclusive production predictions ⇒ uncertainties from ~ 100% reduced below ≤ 15 20%
- LHC Higgs Cross Section Working Group: a collective effort from theorists and experimentalists to give the most up-to-date predictions and assessments on uncertainties
- Standard Model is not the end of the story! If Higgs boson discovered, what is its nature? See M. Mühlleitner's talk for SUSY and compositeness examples

SM@LHC 2012, Copenhagen, 12/04/2012

Unitarity bound on the Higgs boson mass

Unitarity: a severe upper constraint on the Higgs boson mass

unitarity \equiv quantum probability $P \leq 1$

Consider scattering of longitudinal Z bosons $Z_L Z_L \rightarrow Z_L Z_L$:

$$\mathcal{A} = -\left[3\frac{M_{H}^{2}}{v^{2}} + \left(\frac{M_{H}^{2}}{v}\right)^{2}\frac{1}{s - M_{H}^{2}} + \left(\frac{M_{H}^{2}}{v}\right)^{2}\frac{1}{t - M_{H}^{2}}\right]$$

with $s \gg M_Z^2$ (direct Goldstone scattering), s, t the usual Mandelstam variables

perturbativity unitarity of
$$J = 0$$
 partial wave $\Rightarrow \left| \int_{-s}^{0} dt \mathcal{A}(t) dt \right| < 8\pi s$

$$M_H^2 < \frac{8\pi v^2}{3} \Rightarrow M_H \lesssim 710 \text{ GeV}$$

