Higgs decays to fermions in CMS (H $\rightarrow \tau\tau$, H \rightarrow bb, a \rightarrow µµ)

Rainer Mankel Deutsches Elektronen Synchrotron (DESY) for the CMS Collaboration

Standard Model @ LHC Conference 2012

Niels Bohr International Academy and Discovery Center, Copenhagen 12 April 2012

- Standard model (SM) has been extremely successful in describing wide range of phenomena in particle physics
 - only remaining undiscovered SM particle: Higgs boson
 - comprehensive approach covering many different production mechanisms & decay channels
- Di-fermion final states:
 - below the thresholds for di-boson (W, Z) production, τ lepton and b quark offer relatively large masses for the Higgs to couple to
 - play important rôle in low-mass region
- Beyond a discovery, an essential goal is to investigate the detailed structure of the Higgs sector
 - di-fermion decays are an important probe distinguishing different structural options

→ For a Standard Model Higgs, di-fermion decay modes dominate for m_H<130 GeV</p>

$H \rightarrow b\bar{b}$ Searches

- For a light standard model Higgs, H→bb would be the predominant decay channel
 - → observation of H→bb decay is essential to determine nature of Higgs
- For gg→H (σ~17pb for m_H=120 GeV), QCD background is overwhelming
 - relation improves in association with W or Z boson \rightarrow boosted analysis.
 - Five final states considered:
 - W(eν)H, W(μν)H
 - Z(ee)H, Z(μμ)H, Z(νν)H
- Main backgrounds:
 - Z/W + jets, t+X, tt, VV, QCD multi-jet
 - background contributions normalized in control regions

VH(bb) Analysis (cont'd)

- Mass-based cut & count analysis
- p_T(W)>160 GeV
 - p_T(Z_{ℓℓ})>100 GeV
- E_T^{miss} >160 GeV for Z(v v)H
 - E_T^{miss} >35 GeV for W(ev)H
- Combined Secondary Vertex (CSV) algorithm used for b tagging
 - combines impact parameter and secondary vertex information in a discriminant
- No signal observed

(arXiv:1202.4195, submitted to P.L. B)

9

BDT Output (Selected Channels)

- Boosted decision tree technique used to improve separation of signal & background
- Variables for selection & training:

Variable	W(I∨)H	Z(II)H	Z(vv)H
p _T (j ₁)	>30 GeV	>20 GeV	>80 GeV
p _T (j ₂)	>30 GeV	>20 GeV	>20 GeV
p _T (jj)	>150 GeV	>100 GeV	>160 GeV
p _T (V)	>150 GeV	>100 GeV	-
E_{T}^{miss}	>35 GeV [W(ev)H]	-	>160 GeV
$\Delta \phi(V, H)$	-	-	-
CSV _{max}	>0.40	>0.244	>0.50
CSV _{min}	>0.40	>0.244	>0.50
N _{al}	=0	-	=0
N _{aj}	-	-	-
$\Delta \phi(E_{T}^{miss},jet)$	-	-	>0.5 rad

- For various variables relaxed selection cuts
- → BDT increases sensitivity by ~10% in each channel

No significant signal observed in any of the channels

VH→V(bb): Results

- Total expected limit
 ~ 3x SM expectation (m_H=115 GeV)
- Observed limit from combination consistent with expectation
- BDT analysis (lower plot) performs 2-20% better than the mass-spectrumbased analysis (upper)

CMS Preliminary, M., analysis

vs = 7 TeV, L = 4.7 fb⁻ VH(bb), combined _ CL_Observed

CL_s Expected ± 1 or CL_s Expected ± 1 or CL_s Expected ± 2 or CL_s E

$H \rightarrow \tau \tau$ Searches

At lowest masses 2^{nd} strongest decay mode after H \rightarrow bb

Standard Model search: event categories by production mechanisms:

m(ττ) estimated by kinematic maximum likelihood fit

 $H \rightarrow \tau \tau$ (cont'd)

- effective resolution ~21%
- Irreducible background from Z →ττ
 - addressed with "embedding method"
 - in Z→μμ events from real data, the μ's are replaced by simulated τ's
- New: $H \rightarrow \tau_{\mu} \tau_{\mu}$
 - very challenging channel
 - irreducible background from Z →μμ
 - addressed by evaluating the distance of closest approach between μ's
 - signal enhancement with likelihood method

- No significant excess over the expected standard model background contributions is observed
- Combination $\tau_e \tau_\mu, \tau_e \tau_{had}, \tau_\mu \tau_{had}$:
 - → expected & observed 95% CL limit
 ~ 3x SM expectation (m_H=115 GeV)
 - observed limit consistent
- → Addition of H→ τ_{μ} τ_{μ} channel improves on combined limit from the other three decay
 - combination result in preparation

R. Mankel; Higgs decays to fermions in CMS

HΨ

,ί

۲,

 τ_{e}

 $\tau_{\mathsf{had}},$

ц г

τ_{had}.

500

- Excludes previously unexplored territory
- 95% CL exclusion range for tan β extends down to 7.1 at m_A~160 GeV

CMS, $\sqrt{s} = 7$ TeV, L = 4.6 fb⁻¹

- narrowed parameter space at low m_a \rightarrow
- $\tau_{\mu} \tau_{\mu}$ channel alone fairly competitive with other measurements

m₄ [GeV]

400

a $\rightarrow \mu\mu$ Search

- In the NMSSM, one of the two CP-odd scalars could be very light
 - superposition of CP-odd doublet scalar and the additional singlet scalar → mixing angle θ_A
 - → even m(a)<2 m_B thinkable
 - → sensitive to C_{abb} coupling
- Consider here: 5.5 <m_a< 8.8 GeV, 11.5 <m_a< 14 GeV
 - up to now, strongest constraints come from BaBar through Υ(3S)→γa
- Cross section could be large

[dd]

σ(gg→a)

• Di-muon mass spectrum in Υ mass region

- Main backgrounds:
 - Upsilon resonances \rightarrow exclude mass region of 9-11 GeV
 - QCD continuum

- Mass scan with Gaussian signal PDF
- Accounting for radiative tail of Υ(1S) in range 1

a →μμ (cont'd)

- Improvements on BaBar limits for NMSSM parameter |cos θ_A| in lower mass range
- CDF published limits relative to Υ(1S) cross section (not shown)
- No BaBar or CDF limits in upper mass region

Di-Fermion Channels in SM Combination

SM Higgs Searches: Comparison Di-Fermion with Other Channels

(arXiv:1202.1488, submitted to P.L. B)

- Di-fermion channels show very good consistency with the di-boson channels
- → At m_H=125 GeV, consistently see mild excess at level expected by standard model

CMS SM Higgs Searches Combined

- Showing low-mass region, where di-fermion decays contribute most
 - H→WW dominates in 125-200 GeV (H→ZZ beyond)
 - H→γγ dominates below 120 GeV
- Excluded mass ranges @ 95% CL:
 - expected 114.5-600 GeV
 - observed 127.5-600 GeV
- More data are required to assess nature of observed excess

- Di-fermion channels particularly important at low Higgs masses
 - also sensitive to detailed structure of Higgs sector
- Standard Model Higgs search:
 - \rightarrow in bb and $\tau\tau$ channels, 95% CL limits at low mass range near 3x SM
 - → recent improvement due to $\tau_{\mu}\tau_{\mu}$ channel
- MSSM search:
 - \rightarrow $\tau\tau$ channel excludes wide area in (m_A, tan β) parameter space
- NMSSM search:
 - → upper limits for very light pseudoscalar Higgs boson ($\mu\mu$ channel)
- → Excellent prospects for 2012 LHC run (just started...)
- More CMS results in fermion channels (not shown in this talk):
 - Search for doubly charged Higgs boson

CMS PAS HIG-12-005 CMS PAS HIG-12-006

• Search for WH \rightarrow e($\mu\tau$), $\mu(\mu\tau)$ CMS PAS HI

Further information

• Observed and expected 95% CL confidence limits on the signal strength parameter μ = σ / σ _{SM} for the SM Higgs boson hypothesis

R. Mankel; Higgs decays to fermions in CMS

• Observed and expected 95% CL confidence limits on the signal strength parameter $\mu=\sigma/\sigma_{SM}$ for the SM Higgs boson hypothesis by decay channel

• Observed local p-value (p₀) and best-fit $\hat{\mu}=\sigma/\sigma_{SM}$

CN

Events / 10 Ge/

800

600

400

200

CMS Preliminary

 $\sqrt{s} = 7 \text{ TeV}, L = 4.7 \text{ fb}$ W($\mu\nu$)H(bb)

250 M.[GeV]

• Wbb enhanced for WH (top)

VH→V(bb): Example Control Regions

Events / 10 GeV

CMS Preliminary

50

100

Vs = 7 TeV, L = 4.7 ft

100 W(ev)H(bb)

80

60

40

20

- V+udscg enhanced for Z(vv)H (bottom, left)
- tt enhanced for Z(μμ)H (bottom, right)

unpoosted

p_(jj) [GeV]