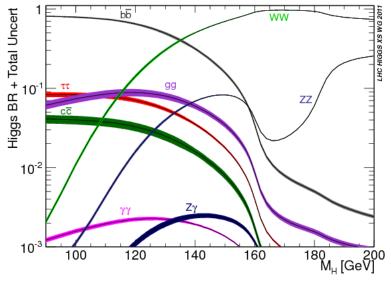
Searches for Higgs Bosons decaying into Fermions with the ATLAS Detector

$H {\rightarrow} \tau \tau, H {\rightarrow} bb, H {\rightarrow} \mu \mu$

Albert-Ludwigs-Universität Freiburg

Julian Glatzer on behalf of the ATLAS collaboration


April 12, 2012

BURG

Overview

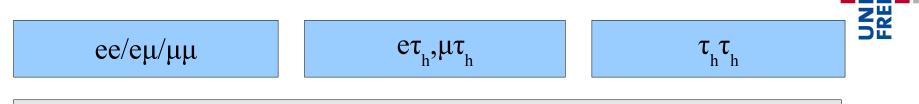
arXiv:1101.0593

Standard Model:

 $H \rightarrow \tau \tau$ VH, $H \rightarrow bb$

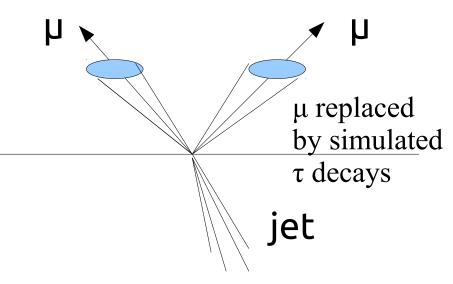
Beyond the Standard Model:

MSSM $h/A/H \rightarrow \tau\tau$ MSSM $H^+ \rightarrow \tau v$ NMSSM $a_1 \rightarrow \mu\mu$


$H_{\rm H}^{\rm I} = 10^{-1}$

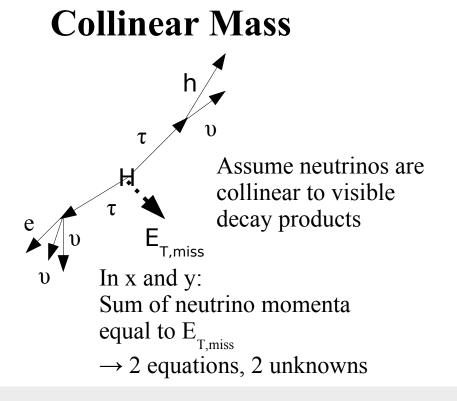
Standard Model $H \rightarrow \tau \tau$

ATL-CONF-2012-014


SM H→ττ: Analysis Channels

with several subchannels based on additional jets

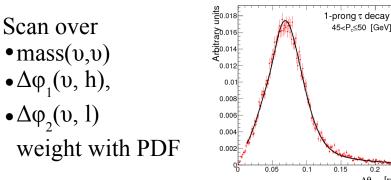
Subchannels


- 0 jets
- **1 jet**: p_{T}^{-} , $(m_{\tau\tau j}^{-})$
- VBF 2 jets: p_T , $\Delta\eta$, m_{ii} , (CJV)
- 11 channel: VH 2 jets: p_T , $\Delta \eta$, m_{ii}
- **Background estimation**
 - Z+jets: τ -embedded Z $\rightarrow \mu\mu$
 - Multijet background from data
 - Misidentified τ decays: correction from data

Schematic representation of the embedding procedure

Effective mass

$$m_{\tau\tau}^{\text{effective}} = \sqrt{(p_e + p_\mu + p_{E_T^{miss}})^2}$$
$$p_{E_T^{miss}} = (E_T^{miss}, E_x^{miss}, E_y^{miss}, 0)$$


MMC Mass

Elagin et al., NIM A654 (2011) 481

Collinearity requirement relaxed

 \rightarrow 7 unknowns, from neutrino 4 vector

 \rightarrow 4 equations: 2x τ mass, E_{x,miss} E v.miss

45<P,≤50 [GeV]

0.15

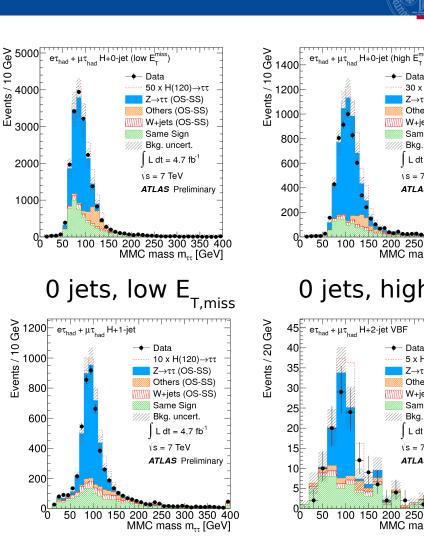
0.2 $\Delta \theta_{3D}$ [rad]

SM H→ττ: ll Channel

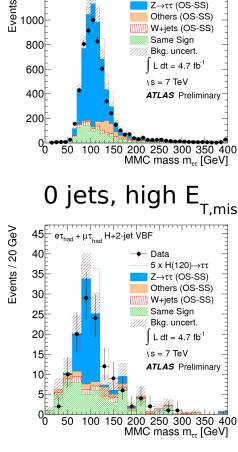
Subchannels

- **0 jets** $e\mu \rightarrow effective mass$
- 1 jet ee, $\mu\mu$, μ_{T} > 40 GeV, $m_{\tau\tau j}$ > 225 GeV
- VBF 2 jets ee, $\mu\mu$, $e\mu$, $p_T > 40,25 \text{ GeV } \Delta\eta > 3, m_{jj} > 350$ GeV, central jet veto
- VH 2 jets, ee, $\mu\mu$, $e\mu$, $\Delta\eta$ <2, 50 GeV < m_{jj}<120 GeV
- **Background estimation**
 - Z+jets: τ -embedded $Z \rightarrow \mu \mu$
 - Fake lepton: template fit based on inverted lepton isolation

BURG


SM H $\rightarrow \tau \tau$: $l\tau_{h}$ Channel

Subchannels


- **0 jets** with $E_{T,miss} > 20$ GeV and $E_{T,miss} < 20 \text{ GeV}$
- 1 jet, $p_{T} > 20 \text{ GeV}$
- VBF 2 jets in opposite hemispheres, m_{ii}>300 GeV

Background estimation

- Based on SS data
- For all backgrounds, but multijet, #events(OS)-#events(SS) is added
- For W background a correction for τ misidentification rates is derived in a high m_{T} region

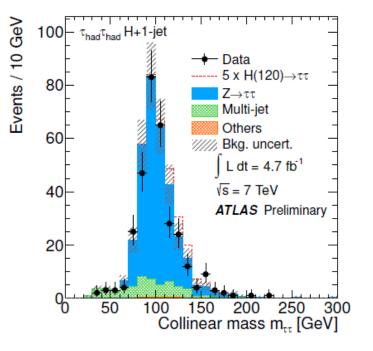
1 jet

ZW

Data

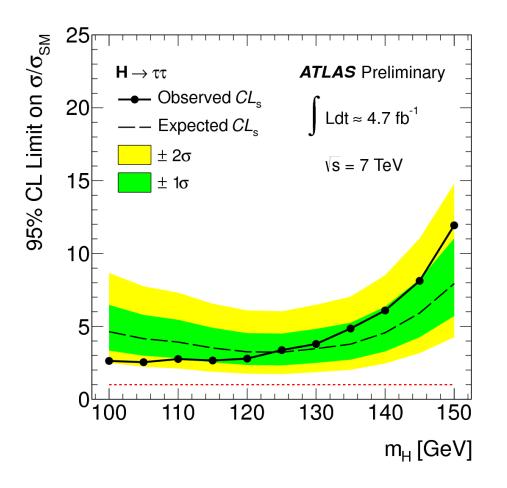
30 x H(120)→ττ

Julian Glatzer - Searches for Higgs Bosons decaying into Fermions with the ATLAS Detector

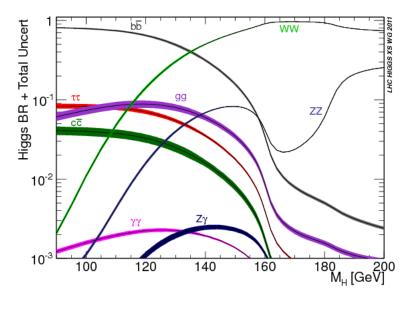

SM H $\rightarrow \tau \tau$: $\tau_{h} \tau_{h}$ Channel

- **Preselection:** $2 \tau_h \text{trigger}, \tau_h p_T > 35/25 \text{ GeV}$
- 1 jet selection
 - $jet p_{T} > 40 \text{ GeV}$
 - $E_{T,miss} > 20 \text{ GeV}$
 - $\Delta R(\tau, \tau) < 2.2$
 - $m_{\tau\tau j} > 225 \text{ GeV}$
 - Physical solution of collinear mass

Background estimation

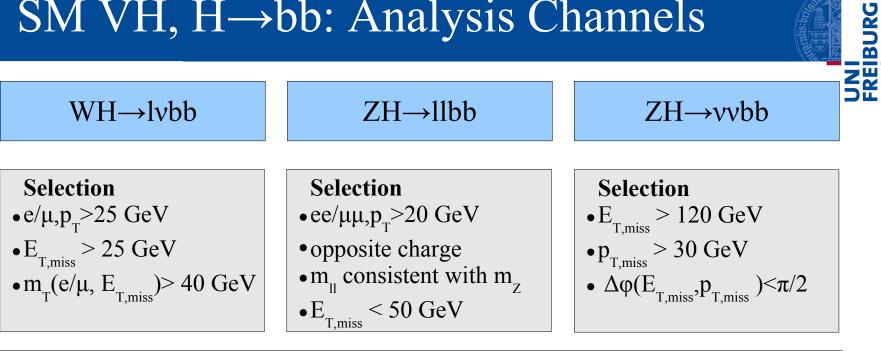

Z+jets τ -embedded Z $\rightarrow \mu\mu$ data normalized in fit before 1 jet selection

Multijet background 2D template fit of number of tracks for both τ candidates


H→ττ Exclusion Limit

- No significant excess
- 95% confidence level exclusion limit based on CL_s
- Observed (expected) exclusion between 2.5
 (3.2) and 11.9 (7.9) x
 Standard Model cross section

NE



4.6 - 4.7/fb

Standard Model VH, H → bb

ATL-CONF-2012-015

SM VH, $H \rightarrow bb$: Analysis Channels

2 b jets: $p_{T} > 45,25 \text{ GeV}$

Limit derived based on $m_{_{hh}}$ distribution in bins of

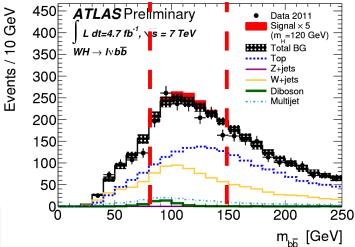
 $p_{T}^{V} < 50 \text{ GeV}$ $50 \text{ GeV} < p_{T}^{V} < 100 \text{ GeV}$ $100 \text{ GeV} < p_{_{\rm T}}^{~V} < 200 \text{ GeV}$ $p_{T}^{V} \ge 200 \text{ GeV}$

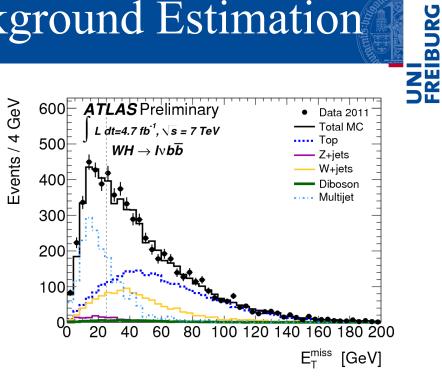
 $120 \text{ GeV} < \text{E}_{\text{T,miss}} < 160 \text{ GeV}$ $160 \text{ GeV} \le E_{T.miss} \le 200 \text{ GeV}$ $E_{T.miss} \ge 200 \text{ GeV}$

SM VH, H→bb: Background Estimation

WH→lvbb

Top/W shape from MC


Contribution of W+b,W+c,W+light reweighted by fit of b tag discrimination variable in W+2 jets sample


Normalization from fit in control regions

m_{bb}<80 GeV

$$50 \text{ GeV} < \text{m}_{bb} < 250 \text{ GeV}$$

3 jets (2 b jets) control region

Multijet background estimation

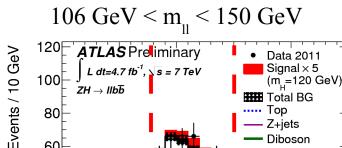
- Template from leptons which fail selection, but pass looser selection

- Normalization by fit to $E_{T,miss}$ distribution

SM VH, $H \rightarrow bb$: Background Estimation

UNI FREIBURG

ZH→llbb


60

40

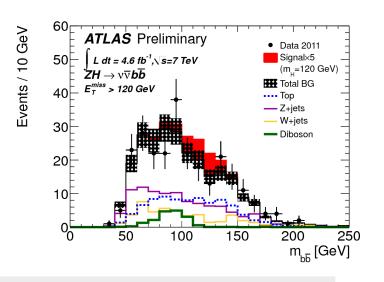
20

- Top/Z+jets shape from MC Contribution of Z+b,Z+c,Z+light reweighted by fit of b tag discrimination variable for Z+2 jets sample
- Normalization by fit in m. hh sidebands and

```
60 \text{ GeV} < m_{_{\rm H}} < 76 \text{ GeV}
```


100

50

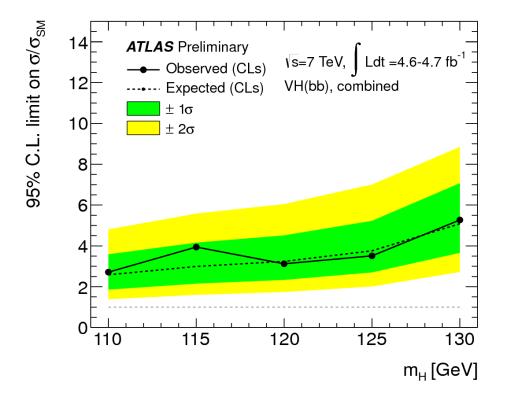

150

200

250

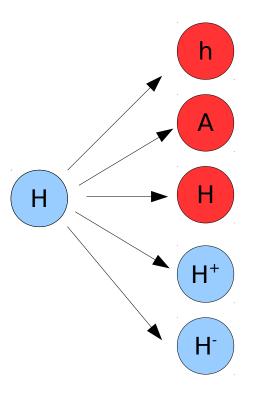
ZH →vvbb

- Scale factors for top, Z, W backgrounds from other channels
- Multijet background estimation based $\Delta \varphi(E_{T.miss}, p_{T.miss})$ and $min(\Delta \varphi(E_{T_{miss}}, jets) \text{ consistent with } 0$


VH, H→bb: Systematic Uncertainties

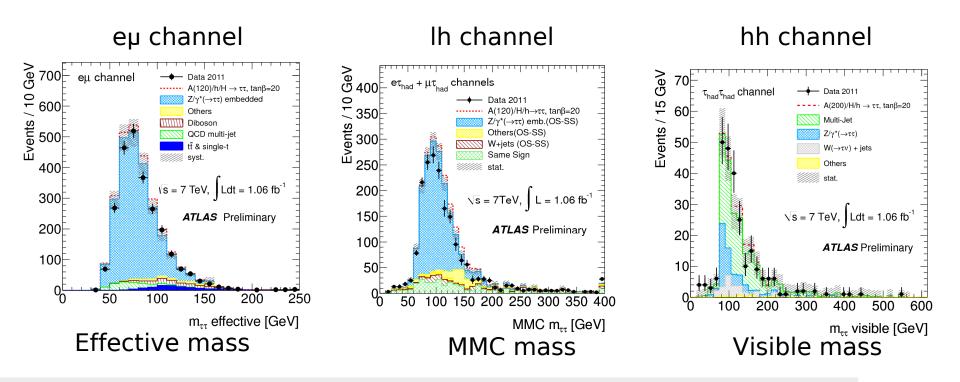
JOURNAL	
	G
	2
	7 <u></u>

Bin	$ZH \rightarrow \ell^+ \ell^- b\bar{b}$				$WH \rightarrow \ell \nu b \bar{b}$				$ZH \rightarrow v\bar{v}b\bar{b}$			
	$p_{\rm T}^{\rm Z}[{\rm GeV}]$				$p_{\rm T}^W[{\rm GeV}]$				$E_{\rm T}^{\rm miss}[{ m GeV}]$			
	0-50	50-100	100-200	>200	0-50	50-100	100-200	>200	120-160	160-200	>200	
Components of the Background Systematic Uncertainties [%]												
B-tag Eff	3.1	2.8	2.2	7.7	1.4	1.7	2.5	11.3	4.1	9.2	15.6	. /
Bkg Norm	5.2	5.0	5.2	5.6	4.0	2.8	2.7	5.5	3.1	3.9	4.2	
$\text{Jets}/E_{T}^{\text{miss}}$	1.0	2.8	3.5	3.1	2.1	1.6	1.6	6.4	8.2	10.7	16.9	
Leptons	0.4	0.5	1.1	3.6	1.0	0.4	0.7	6.1	-	-	-	
Luminosity	0.2	0.1	0.2	0.4	0.1	0.1	0.1	0.2	0.2	0.5	0.8	
Pile Up	0.7	1.8	1.5	6.9	0.6	0.7	1.1	2.5	0.7	2.6	1.9	
Theory	7.3	1.7	7.2	23.4	3.1	1.0	1.1	11.9	3.7	6.3	11.1	
Total Bkg	9.6	6.9	10.0	26.6	5.8	3.9	4.4	19.6	10.4	16.1	26.0	
	Components of the Signal Systematic Uncertainties [%]											
B-tag Eff	10	11	13	16	10	11	13	15	13	16	21	
JES/MET	6.5	4.6	4.0	3.7	6.7	6.8	7.8	4.7	11.0	5.4	9.9	
Leptons	1.1	1.5	1.5	3.6	3.2	4.2	5.0	5.5	-	-	-	
Luminosity	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	
Pile Up	0.7	1.2	2.4	3.4	1.4	3.9	3.2	3.4	0.5	0.8	2.1	
Theory	5	5	5	5	13	13	13	13	13	13	13	
Total Signal	13.6	13.3	14.9	18.3	18.5	19.4	21.4	21.5	21.8	21.7	26.8	


VH, $H \rightarrow bb$: Exclusion Limit

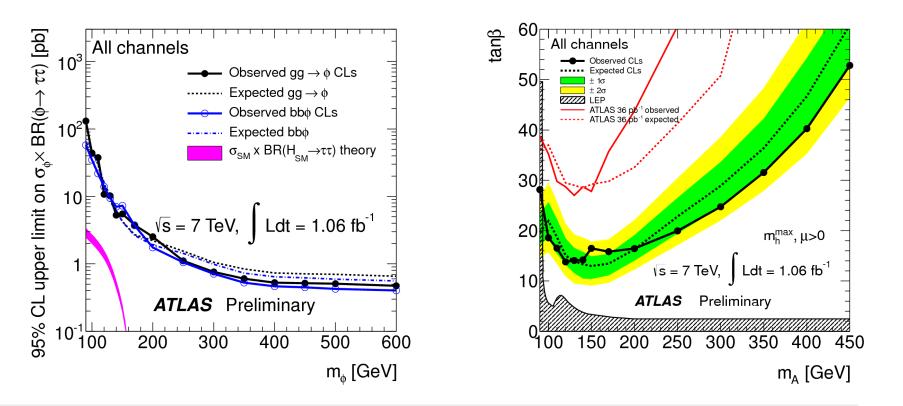
- No excess of events
 over the expected
 background was found
 in data
- 95% confidence limit exclusion limit based on CL_s

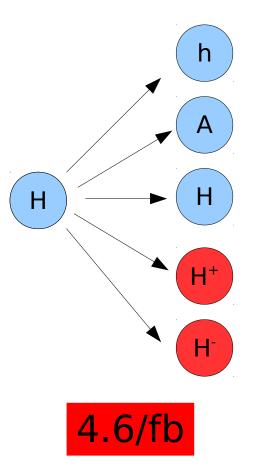
$\begin{array}{c} MSSM \\ h/A/H \rightarrow \tau\tau \end{array}$


ATL-CONF-2011-132

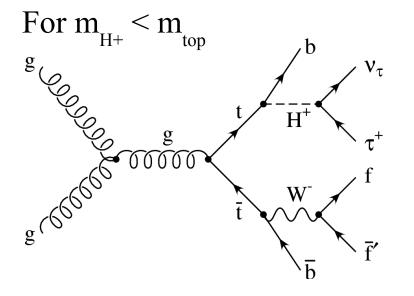
MSSM $h/A/H \rightarrow \tau \tau$

FREIBURG


- For high $\tan\beta$ decay into $\tau\tau$ enhanced
- Analysis selection and background estimation very similar to Standard Model analysis in the 0 jet channel


MSSM $h/A/H \rightarrow \tau \tau$

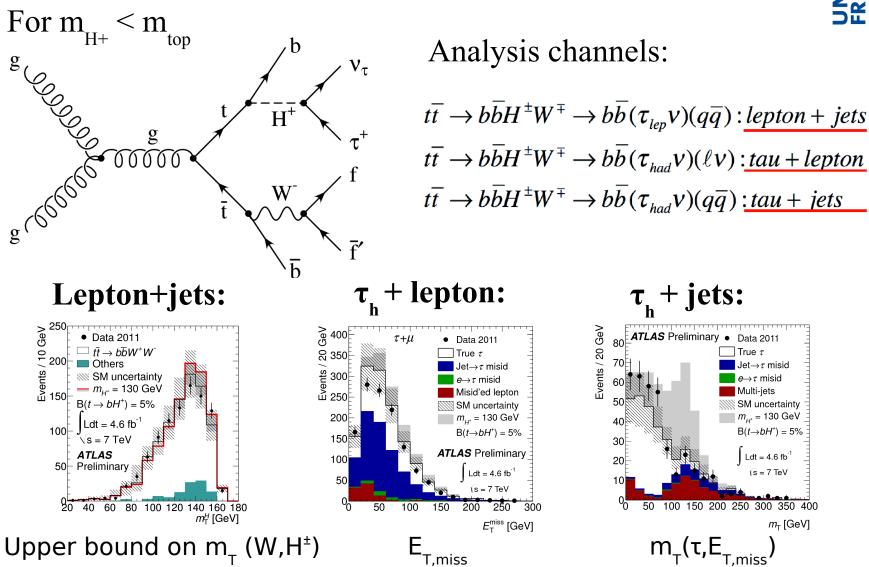
- For high $\tan\beta$ decay into $\tau\tau$ enhanced
- Analysis selection and background estimation very similar to Standard Model analysis in the 0 jet channel



$\begin{array}{c} MSSM \\ H^{\pm} \rightarrow \tau^{\pm} \upsilon \end{array}$

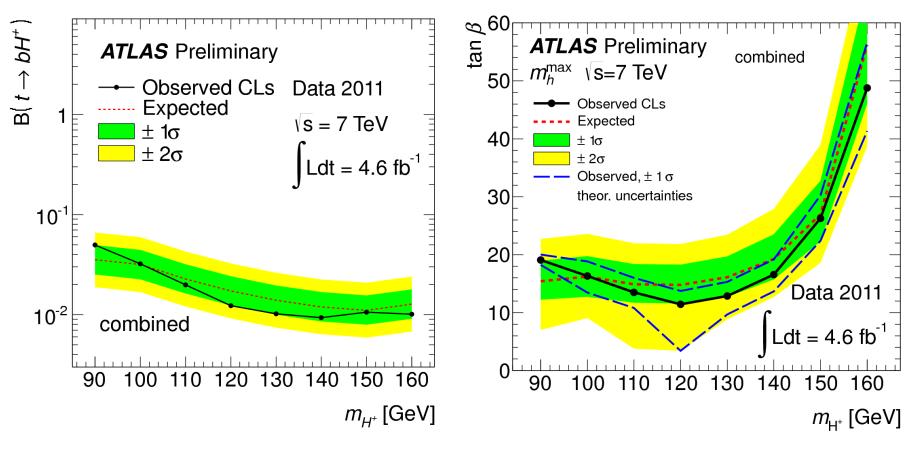
ATL-CONF-2012-011

Charged Higgs

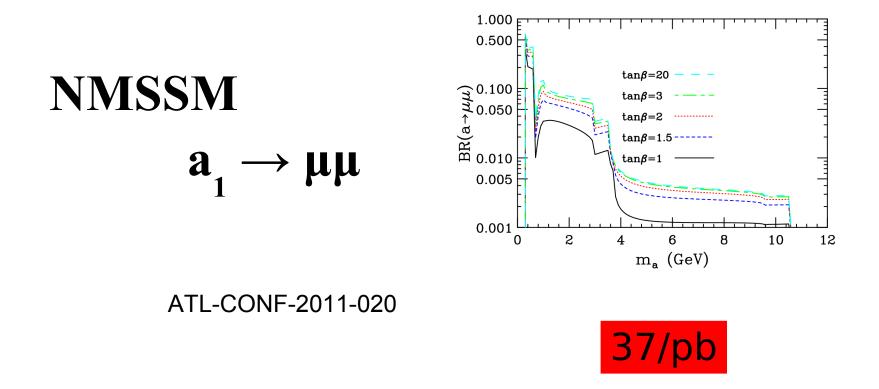


Analysis channels:

$$\begin{split} t\overline{t} &\to b\overline{b}H^{\pm}W^{\mp} \to b\overline{b}(\tau_{lep}v)(q\overline{q}) : \underline{lepton + jets} \\ t\overline{t} &\to b\overline{b}H^{\pm}W^{\mp} \to b\overline{b}(\tau_{had}v)(\ell v) : \underline{tau + lepton} \\ t\overline{t} &\to b\overline{b}H^{\pm}W^{\mp} \to b\overline{b}(\tau_{had}v)(q\overline{q}) : \underline{tau + jets} \end{split}$$

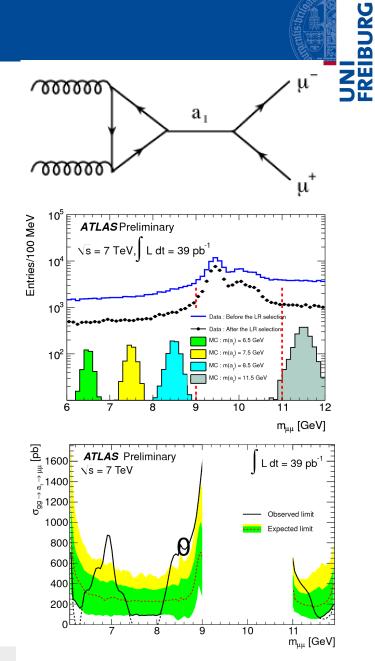

Charged Higgs

Julian Glatzer - Searches for Higgs Bosons decaying into Fermions with the ATLAS Detector

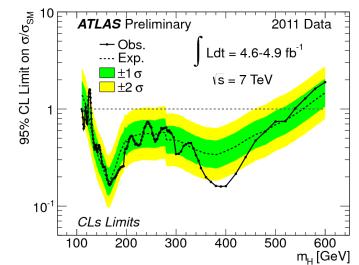

Charged Higgs: Exclusion Limit

MSSM

BURG



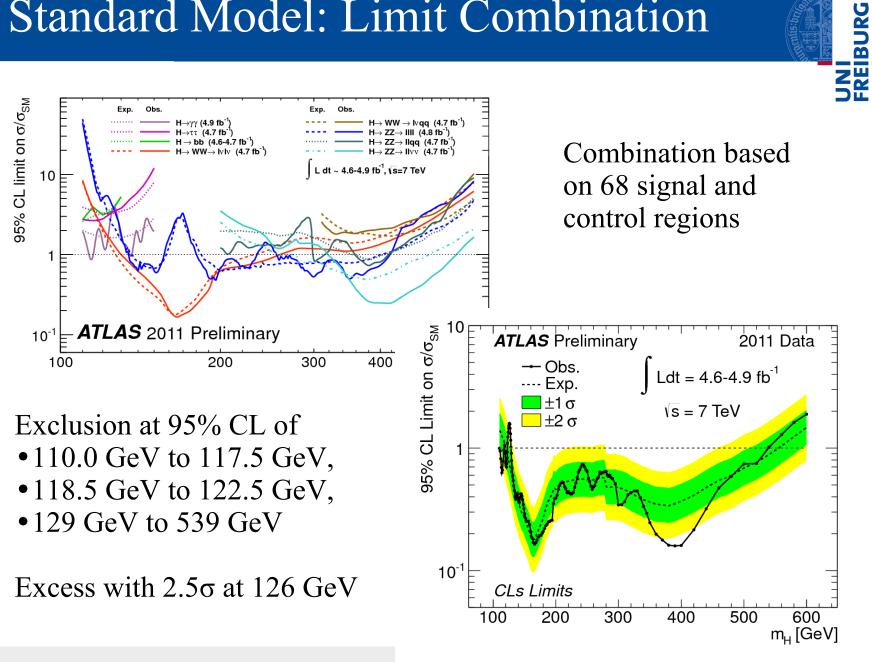
Julian Glatzer - Searches for Higgs Bosons decaying into Fermions with the ATLAS Detector

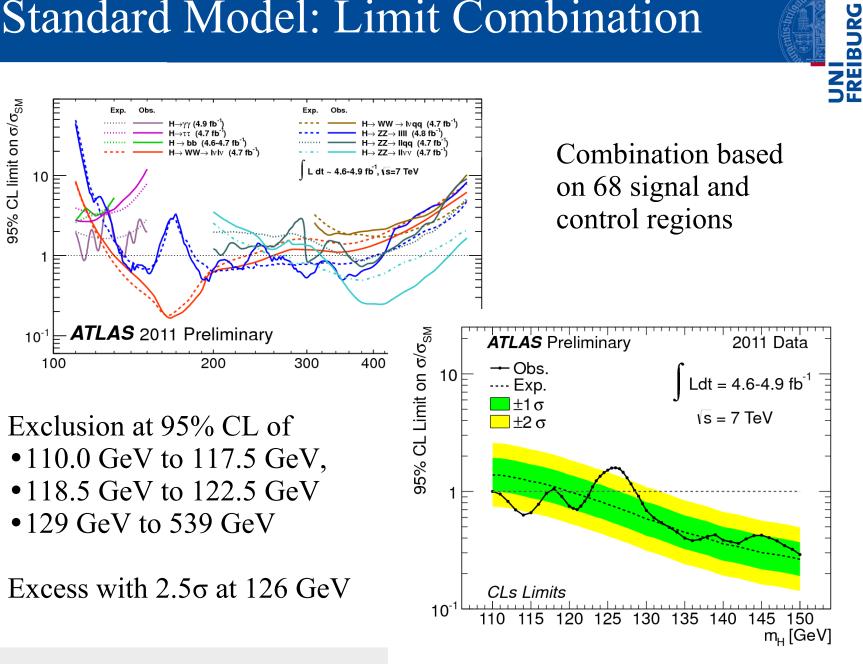

NMSSM $a_1 \rightarrow \mu \mu$

- NMSSM: additional scalar singlet S
 - 2 CP odd Higgs fields: a_1, a_2
 - a_1 can be very light (10 GeV)
- Analysis selection:
 - 2 μ with $p_T > 4$ GeV
 - $4.5 \text{ GeV} < m_{\mu\mu} < 14 \text{ GeV}$
 - Construct likelihood ratio from isolation and vertex fit quality
 - Background from $m_{\mu\mu}$ sidebands

- The sensitivity in the H→fermions channels was increased significantly
- First LHC collisions with 8 TeV center of mass energy are currently being recorded
- The goal is to collect data corresponding to an integrated luminosity of 15/fb in 2012
 - → There will certainly be interesting results from ATLAS in the search for the Higgs boson

Backup




Standard Model Combination

ATL-CONF-2012-019

Standard Model: Limit Combination

Standard Model: Limit Combination

