SUSY Higgs and Composite Higgs

Milada Margarete Mühlleitner (Karlsruhe Institute of Technology)

Standard Model at LHC

Copenhagen 10-13 April 2012

LHC Higgs Search Results Moriond 2012

In $H \rightarrow \gamma \gamma$ more data than expected in the SM \rightarrow hint towards New Physics?

M.M. Mühlleitner, 12 April 2012, SM @ LHC 2012, Copenhagen

(i) MSSM Higgs boson production (very short)

- (ii) Interpretation of LHC Higgs search results within
 - * MSSM
 - * NMSSM
 - * Composite Higgs
 - \ast Model-independent

$\mathcal{T}he \ \mathcal{MSSM} \ \mathcal{H}iggs \ \mathcal{S}ector$

Decoupling limit:

 $M_A \sim M_H \sim M_{H^{\pm}} \gtrsim v$ $M_h \rightarrow$ max. value, $\tan \beta$ fixed; h becomes SM-like

Modified couplings with respect to the SM: (decoupling limit Gunion, Haber)

Φ	$g_{\Phi u ar u}$	$g_{\phi d ar d}$	$g_{\Phi VV}$
h	$c_{lpha}/s_{eta} ightarrow 1$	$-s_{\alpha}/c_{\beta} \rightarrow 1$	$s_{\beta-lpha} \rightarrow 1$
H	$s_{\alpha}/s_{\beta} \rightarrow 1/\mathrm{tg}\beta$	$c_{lpha}/c_{eta} ightarrow \mathrm{tg}eta$	$c_{eta-lpha} ightarrow 0$
A	$1/{ m tg}eta$	$\mathrm{tg}eta$	0

M.M. Mühlleitner, 12 April 2012, SM @ LHC 2012, Copenhagen

Higgs boson production in the MSSM

• Gluon Fusion

• W/Z Fusion

 $pp \rightarrow qq \rightarrow qq + WW/ZZ \rightarrow qq + h, H$

• Higgs-strahlung

Associated Production

 $pp \rightarrow t\bar{t}/b\bar{b} + h, H, A$

Higgs boson production in the MSSM

• Gluon Fusion

• LHC

 $pp \to gg \to h, H, A$ $p = \bigcirc_{g} g_{g} Q, \tilde{Q} Q, \tilde{Q}$

$$gg o \phi$$
 dominant for $\tan \beta \lesssim 10$
 $gg o \phi b\bar{b}$ dominant for $\tan \beta \gtrsim 10$

• Higgs-strahlung

 $gg \rightarrow \phi$ dominant, for large $\tan \beta : \phi b \bar{b}$ $q \bar{q}' \rightarrow \phi W$ most important

M.M. Mühlleitner, 12 April 2012, SM @ LHC 2012, Copenhagen

$\mathcal{H}iggs$ Boson Production in gluon fusion

(i) Dominant: Gluon Fusion $pp \rightarrow gg \rightarrow h, H, A$ (small & moderate $\tan \beta$)

Georgi et al; Gamberini et al

QCD corrections to top & bottom loops

▷ NLO (SM, MSSM): increase σ by $\sim 10...100\%$ [moderate for large $\tan \beta \leftarrow b$ -loop] Spira, Djouadi, Graudenz, Zerwas Dawson; Kauffman, Schaffer

 \triangleright SM; tg $\beta \lesssim 5$: limit $M_{\Phi} \ll m_t$ - approximation \sim 20-30%

Krämer, Laenen, Spira

\mathcal{H} iggs Boson Production in gluon fusion

(i) Dominant: Gluon Fusion pp
ightarrow gg
ightarrow h, H, A (small & moderate an eta)

NLO corrections to squark loops

- \triangleright in the heavy mass limit
- ▷ full SUSY-QCD corrections in heavy mass limit
- $\triangleright \quad \text{bottom/sbottom contributions} \\ \text{asymptotic expansion in large } \tilde{M}$
- top-stop-gluino contributions asymptotic expansion in heavy particle masses

 $m_{ ilde{Q}} \lesssim 400$ GeV:

- ho NLO squark mass effects $\sim 15\%$
- ▷ full NLO SUSY QCD calculation

Harlander,Steinhauser;Harlander,Hofmann; Degrassi,Slavich '11

Dawson, Djouadi, Spira

Degrassi,Slavich '11; Degrassi,Di Vita,Slavich '11; Harlander,Hofmann,Mantler '11

Degrassi, Di Vita, Slavich '12

MMM,Spira;Anastasiou,Beerli,Bucherer, Daleo,Kunszt;Aglietti,Bonciani,Degrassi,Vicini Anastasiou,Beerli,Daleo;

MMM,Rzehak,Spira

NNLO SUSY-QCD corrections from t/\tilde{t} sector

Impl. of $gg \rightarrow \phi$ into POWHEG including mass effects at NLO

Pak,Steinhauser,Zerf

Bagnaschi,Degrassi,Slavich,Vicini

$\mathcal{H}igher \; \mathcal{O}rder \; \mathcal{C}orrections \; to \; \mathcal{SUSY} \; \mathcal{H}iggs \; \mathcal{P}roduction \; at \; the \; \mathcal{LHC}$

(ii) W/Z Fusion: qq ightarrow qq + WW/ZZ ightarrow qq + h, H

NLO QCD σ_{tot}	\sim 5 bis 10%	Han,Valencia, Willenbrock	SUSY QCD	small	Djouadi,Spira
(SM/MSSM) NLO QCD distributions (SM/MSSM)	\sim 20 %	Figy,Oleari, Zeppenfeld; Berger,Campbell	SUSY QCD&EW	small	Hollik,Plehn, Rauch,Rzehak;Figy Palmer,Weiglein'10
Impl. in POWHEG		Nason,Oleari	NNLO QCD Δ_{th}	$\sim 2\%$	Harlander eal; Bolzoni eal

(iii) Higgs-strahlung: $q \bar{q}
ightarrow Z^*/W^*
ightarrow Z/W + h, H$

NLO QCD (SM/MSSM)	$\sim +30$ % (Drell-Yan)	Han,Willenbrock	
NNLO QCD (SM/MSSM)	$\sim +5-10$ %	Harlander,Kilgore; Hamberg,Van Neerven,Matsuura; Brein,Djouadi,Harlander	Δ
SUSY QCD	$\lesssim~$ few per cent	Djouadi, Spira	

Atheor $\sim 5~\%$

(iv) Associated Production with $tar{t}$: $qar{q}/gg
ightarrow tar{t} + h~(H,A)$

 $\begin{array}{ll} t\bar{t}\Phi^0 & \mbox{NLO QCD}\sim +20\% & \mbox{Beenakker et al.;}\\ \mbox{Dawson et al.} & \Delta_{\mbox{theor}}\sim 15\% \\ \mbox{SUSY QCD} & \pm(10-30)\% & \mbox{Peng et al.;}\\ \mbox{Dittmaier et al} \end{array}$

Associated production with a $b\bar{b}$ pair

few % $M_H \lesssim 120$ GeV

several 10 % above

- (v) Higgs $b\bar{b}$ production: dominant MSSM Higgs production mechanism for $\tan\beta\gtrsim7$
- Four-flavour scheme 4FS: LO cxn $gg \rightarrow b\bar{b}\Phi^0$ up to NLO
- Five-flavour scheme 5FS: LO cxn $b\bar{b} \rightarrow \Phi^0$ up to NNLO
- Santander matching: interpolation between 4FS and 5FS

• Further corrections:

- EW and QCD corrections to $b\bar{b} o \Phi^0$: few % ($\sim \Delta_b$)
- dominant t contr. to "NNLO" $b\bar{b}h$:
- SUSY QCD to $gg \rightarrow b\bar{b}h$
- SUSY QCD to $b\bar{b} \to \Phi^0, bg \to b\Phi^0$: few % ($\sim \Delta_b$)
- $\circ \quad {\sf EW} \text{ to } bg \to bH^{\sf SM}$
- \circ Complete EW to $bg
 ightarrow b\Phi^0$

Dittmaier, Krämer, Spira; Dawson, Jackson, Reina, Wackeroth

Dicus,Willenbrock Stelzer et al.;Balazs et al. Campbell et al. Harlander,Kilgore Kidonakis

Harlander, Krämer, Schumacher'11

Dittmaier, Krämer, Mück, Schlüter

Boudjema, Ninh

```
Gao et al.;
Hollik,Rauch
Dawson,
Jackson
Dawson,
Jaiswal '10
Beccaria,
et al. '10
```

\mathcal{MSSM} $\mathcal{H}iggs$ $\mathcal{M}ass$ in $\mathcal{V}iew$ of the \mathcal{LHC} $\mathcal{R}esults$

• Vast literature on MSSM Higgs of $\sim 122...128~{ m GeV}$

Arbey eal; Li eal; Feng eal; Baer eal; Hall eal; Albornoz Vasquez eal; Heinemeyer eal; Desai et al.; Draper eal; Carena eal; Cao eal; Christensen eal; Kadastik eal; Buchmuller eal; Arvanitaki eal; Ellis eal; Curtin eal; ...

• MSSM Higgs mass corrections

$$m_h^2 \approx M_Z^2 \cos^2 2\beta + \Delta m_h^2$$

 $\Rightarrow M_H \approx 125 \text{ GeV requires}$

 $\Delta m_h \approx 85 \text{ GeV} (\tan \beta \text{ large}) \Rightarrow \text{large corrections} \rightsquigarrow \text{finetuning}$

\mathcal{MSSM} $\mathcal{H}iggs$ $\mathcal{M}ass$ in $\mathcal{V}iew$ of the \mathcal{LHC} $\mathcal{R}esults$

Hall, Pinner, Ruderman 1112.2703

• Further remarks:

- next-lightest Higgs can be SM-like 122-128 GeV Higgs (low M_A , moderate $\tan \beta$) lightest Higgs below LEP limit see e.g. Heinemeyer eal '11
- $\bullet\,$ enhanced diphoton rate can be achieved within MSSM w/ light staus Carena eal '11
- $\gamma\gamma$ excess, but no WW excess requires New Physics beyond MSSM Christensen eal '12

Search for \mathcal{MSSM} \mathcal{H} iggs \mathcal{B} osons at the \mathcal{LHC}

 $gg \to b\bar{b}\phi^0, \ gg \to \phi^0, \qquad \phi^0 \to \tau^+ \tau^-$

ATLAS-CONF-2011-132

tanβ

50

40

30

20

10

0

CMS 1202.4083

Search for \mathcal{MSSM} $\mathcal{H}iggs$ Bosons at the \mathcal{LHC}

The \mathcal{NMSSM} Higgs Sector

Kim.Nilles

• Next-to-Minimal Supersymmetric Extension of the SM: NMSSM

Fayet; Kaul eal; Barbieri eal; Dine eal; Nilles eal; Frere eal; Derendinger eal; Ellis eal; Drees; Ellwanger eal; Savoy; Elliott eal; Gunion eal; Franke eal; Maniatis; Djouadi eal; Mahmoudi eal; ...

• The μ -problem of the MSSM:

Higgsino mass parameter μ must be of order of EWSB scale

• Solution in the NMSSM:

 μ generated dynamically through the VEV of scalar component of an additional chiral superfield field \hat{S} : $\mu = \lambda \langle S \rangle$

• Enlarged Higgs and neutralino sector:

• Significant changes of Higgs boson phenomenology

\mathcal{NMSSM} $\mathcal{H}iggs$ $\mathcal{B}oson$ $\mathcal{M}ass$

 Higgs mass prediction as precise as possible: distinguish between MSSM and NMSSM properly define scenarios with Higgs-to-Higgs decays correctly interpret experimental data

- Status of Higgs mass calculations:
 - 1-loop corrections in effective potential approach

Ellwanger eal; Elliott eal; Pandita; Degrassi,Slavich

- 1-loop corrections in Feynman-diagramatic approach
- 2-loop $\mathcal{O}(\alpha_t \alpha_s + \alpha_b \alpha_s)$
- 1-loop w/ CP violation in effective potential approach

Ender, Graf, MMM, Rzehak '11

Degrassi,Slavich

Ham eal; Cheung eal

NMSSM Higgs Boson Mass

\mathcal{NMSSM} $\mathcal{H}iggs$ $\mathcal{M}ass$ in $\mathcal{V}iew$ of the \mathcal{LHC} $\mathcal{R}esults$

• Vast literature on NMSSM Higgs of $\sim 122...128$ GeV

Hall eal; Ellwanger; Gunion eal; King, MMM, Nevzorov; Vasquez eal; Cao eal; Gabrielli eal; ...

• Remarks

- \diamond SM-like Higgs with ~ 125 GeV can be either H_1 or H_2 (H_1 singlet-like, suppr. SM couplings)
- \diamond strong singlet-doublet mixing \rightsquigarrow reduced coupling to $b\bar{b} \rightsquigarrow BR(H \rightarrow \gamma\gamma)$ enhanced
- \diamondsuit mass value of $\sim 125~{\rm GeV}$ more easily obtained \leadsto less finetuning

• Corrections to the MSSM, NMSSM Higgs boson mass:

 $\begin{array}{lll} \text{MSSM:} & m_h^2 \approx M_Z^2 \cos^2 2\beta + \Delta m_h^2 \\ \\ \text{NMSSM:} & m_h^2 \approx M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \Delta m_h^2 \end{array}$

⇒ $M_H \approx 125$ requires: MSSM: $\Delta m_h \approx 85$ GeV (tan β large) ⇒ large corrections are needed \rightsquigarrow conflict with finetuning NMSSM: $\Delta m_h \approx 55$ GeV ($\lambda = 0.7, \tan \beta = 2$)

$\mathcal{F}inetuning \ - \ \mathcal{N}atural \ \mathcal{SUSY} \ \mathcal{M}odel$

- The finetuning issue: study finetuning: calculate 1-loop corrections to the Higgs potential
 - ♦ minimisation conditions of the Higgs potential \rightsquigarrow to avoid finetuning: correction $\Delta \lesssim \frac{1}{2}M_Z^2$ or $\Delta_{II} = 2\Delta/M_Z^2 \lesssim 1$

$\mathcal{F}inetuning \ - \ \mathcal{N}atural \ \mathcal{SUSY} \ \mathcal{M}odel$

- The finetuning issue: study finetuning: calculate 1-loop corrections to the Higgs potential
 - ♦ minimisation conditions of the Higgs potential \rightsquigarrow to avoid finetuning: correction $\Delta \lesssim \frac{1}{2}M_Z^2$ or $\Delta_{II} = 2\Delta/M_Z^2 \lesssim 1$

- Benchmark points: compatible w/ LHC, finetuning, enhanced $BR(h \rightarrow \gamma \gamma)$ King, MMM, Nevzorov
- NMSSM scans

Albornoz Vasquez eal '12; Cao eal '12

$$\mathcal{A} = rac{s}{v^2}$$

M.M. Mühlleitner, 12 April 2012, SM @ LHC 2012, Copenhagen

• Higgs boson: creation of particle masses

$$\mathcal{A} = \frac{s}{v^2}$$

• Electroweak symmetry breaking *L* Cornwall eal; Contino,Grojean,Moretti,Piccinini,Rattazzi custodial symmetry and minimal flavour violation (MFV) built-in

$$\mathcal{L}_{\mathsf{EWSB}} = \frac{v^2}{4} \operatorname{Tr}(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma) \left(1 + 2 \, \frac{a}{v} \frac{h}{v} + \frac{b}{v^2} \right) - \lambda \bar{\psi}_L \Sigma \, \psi_R \left(1 + \frac{c}{v} \frac{h}{v} \right)$$

 $\Sigma = e^{i\sigma^a\pi^a/v}$ Goldstone of $SU(2)_L \times SU(2)_R/SU(2)_V$

• Higgs boson: creation of particle masses

• Electroweak symmetry breaking *L* Cornwall eal; Contino,Grojean,Moretti,Piccinini,Rattazzi custodial symmetry and minimal flavour violation (MFV) built-in

$$\mathcal{L}_{\mathsf{EWSB}} = \frac{v^2}{4} \operatorname{Tr}(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma) \left(1 + 2 \, \boldsymbol{a} \, \frac{h}{v} + \boldsymbol{b} \, \frac{h^2}{v^2} \right) - \lambda \bar{\psi}_L \Sigma \, \psi_R \left(1 + \boldsymbol{c} \, \frac{h}{v} \right)$$

 $\Sigma = e^{i\sigma^a\pi^a/v}$ Goldstone of $SU(2)_L \times SU(2)_R/SU(2)_V$

• Higgs boson: creation of particle masses

• Electroweak symmetry breaking *L* Cornwall eal; Contino,Grojean,Moretti,Piccinini,Rattazzi custodial symmetry and minimal flavour violation (MFV) built-in

$$\mathcal{L}_{\mathsf{EWSB}} = \frac{v^2}{4} \operatorname{Tr}(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma) \left(1 + 2 \, \boldsymbol{a} \, \frac{h}{v} + \boldsymbol{b} \, \frac{h^2}{v^2} \right) - \lambda \bar{\psi}_L \Sigma \, \psi_R \left(1 + \boldsymbol{c} \, \frac{h}{v} \right)$$

- a = 1 perturbative unitarity in $WW \rightarrow WW$
- $b = a^2$ perturbative unitarity in $WW \rightarrow hh$
- ac = 1 perturbative unitarity in $WW \rightarrow \psi \psi$

What is the \mathcal{SM} and what the Composite $\mathcal{H}iggs \mathcal{B}oson?$

• Higgs boson: creation of particle masses and UV regulator

• Electroweak symmetry breaking *L* Cornwall eal; Contino,Grojean,Moretti,Piccinini,Rattazzi custodial symmetry and minimal flavour violation (MFV) built-in

$$\left| \mathcal{L}_{\mathsf{EWSB}} = \frac{v^2}{4} \operatorname{Tr}(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma) \left(1 + 2 \, \frac{a}{v} \frac{h}{v} + \frac{b}{v^2} \right) - \lambda \bar{\psi}_L \Sigma \, \psi_R \left(1 + \frac{c}{v} \frac{h}{v} \right) \right|$$

$$a = 1$$
perturbative unitarity in $WW \rightarrow WW$ $b = a^2$ perturbative unitarity in $WW \rightarrow hh$ $ac = 1$ perturbative unitarity in $WW \rightarrow \psi\psi$

SM Higgs boson: a = b = c = 1Composite Higgs boson: $a, b, c \neq 1$

$\mathcal{C}omposite \ \mathcal{H}iggs \ \mathcal{B}oson$

• Composite Higgs boson

- ♦ pseudo-Goldstone boson of strongly interacting sector Kaplan, Georgi; Dimopoulos, Preskill; Dugan eal
 - SO(5)/SO(4) : 4 PGBs = $W_L^{\pm}, Z_L, h \rightarrow$ Minimal Comp. Higgs Model Agashe, Contino, Pomar
 - SO(6)/SO(5) : 5 PGBs = $W_L^{\pm}, Z_L, h, a \rightarrow \text{Next MCHM}$

Agashe,Contino,Pomarol Gripaios,Pomarol,Riva,Serra

- ♦ Higgs composite object ~→ no hierarchy problem
- ◊ couplings deviate from SM couplings → unitary breakdown postponed to higher energies
- SILH effective Lagrangian (strongly interacting light Higgs) Giudice, Grojean, Pomarol, Rattazzi Genuine strong operators (sensitive to the scale $f \leftarrow$ compositeness scale) $\frac{c_H}{2f^2} (\partial_{\mu} (|H|^2))^2 + \frac{c_T}{2f^2} (H^{\dagger} \overrightarrow{D^{\mu}})^2 + (\frac{c_y y_f}{f^2} |H|^2 \overline{f}_L H f_R + h.c.) + \frac{c_6 \lambda}{f^2} |H|^6$ Form factor operators (sensitive to the scale m_{ρ}) $\frac{ic_w g}{2m_z^2} (H^{\dagger} \sigma^i \overrightarrow{D^{\mu}} H) (D^{\nu} W_{\mu\nu})^i + \frac{ic_B g'}{2m_z^2} (H^{\dagger} \overrightarrow{D^{\mu}} H) (\partial^{\nu} B_{\mu\nu}) + ...$
 - SILH: expansion for low $\xi \equiv v^2/f^2$

$\mathcal{M}inimal \ \mathcal{C}omposite \ \mathcal{H}iggs \ \mathcal{E}xamples$

• Completion for large
$$v/f$$
: 5D MCHM - $\frac{v}{f}$ ($SO(5)/SO(4)$) Contino eal; Agashe eal

$$g_{HVV} = g_{HVV}^{SM} \sqrt{1-\xi} \iff a = \sqrt{1-\xi}, b = 1-2\xi$$
• Fermion couplings depend on embedding into representations of the bulk symmetry
spinorial representations of $SO(5)$
MCHM4

$$g_{Hff} = g_{Hff}^{SM} \sqrt{1-\xi} \equiv g_{Hff}^{SM} c$$
universal shift of couplings
no modifications of BRs
• Higgs self-couplings also model-dependent Contino eal; Gröber,MMM; Bock eal; Barger eal

Constraints from EWPT, LEP, Tevatron, LHC - $\mathcal{P}re\text{-}\mathcal{M}oriond$ '12

Espinosa, Grojean, MMM

$\mathcal{P}re$ - $\mathcal{M}oriond\ 2012$

Channel [Exp]	$m_h[\text{GeV}]$ (Local Significance)	μ (μ_L)	Scaling to SM
$pp \rightarrow \gamma \gamma \text{ [ATLAS]}$	$126.5 \pm 0.7 \ (2.8 \sigma) \ [22]$	$2^{+0.9}_{-0.7}$ [23] (2.6)	$\sim c^2 \operatorname{Br}_{\gamma \gamma}[a,c]$
$pp \to Z Z^{\star} \to \ell^+ \ell^- \ell^+ \ell^-$ [ATLAS]	$126 \pm \sim 2\% \ (2.1 \sigma) \ [22]$	$1.2^{+1.2}_{-0.8}$ [23] (4.9)	$\sim c^2 \operatorname{Br}_{ZZ}[a,c]$
$pp \to W W^{\star} \to \ell^+ \nu \ell^- \bar{\nu} [\text{ATLAS}]$	$126 \pm \sim 20\% \ (1.4 \sigma) \ [22]$	$1.2^{+0.8}_{-0.8}$ [23] (3.4)	$\sim c^2 \operatorname{Br}_{WW}[a,c]$
$pp \to \gamma \gamma jj \ [\text{CMS}]$	$124 \pm 3\%$ [10,11]	$3.7^{+2.5}_{-1.8}$ [11]	$\sim a^2 \operatorname{Br}_{\gamma\gamma}[a,c]$
$pp \rightarrow \gamma \gamma [\text{CMS, b}, R_9^{\min} > 0.94]$	$124 \pm 3\%$ [10,11]	$1.5^{+1.1}_{-1.0}$ [11]	$\sim c^2 \operatorname{Br}_{\gamma \gamma}[a,c]$
$pp \rightarrow \gamma \gamma [\text{CMS, b}, R_9^{\min} < 0.94]$	$124 \pm 3\%$ [10,11]	$2.1^{+1.5}_{-1.4}$ [11]	$\sim c^2 \operatorname{Br}_{\gamma \gamma}[a,c]$
$pp \rightarrow \gamma \gamma [\text{CMS, e}, R_9^{\min} > 0.94]$	$124 \pm 3\%$ [10,11]	$0.0^{+2.9}$ [11]	$\sim c^2 \operatorname{Br}_{\gamma \gamma}[a,c]$
$pp \rightarrow \gamma \gamma [\text{CMS, e}, R_9^{\min} < 0.94]$	$124 \pm 3\%$ [10,11]	$4.1^{+4.6}_{-4.1}$ [11]	$\sim c^2 \operatorname{Br}_{\gamma \gamma}[a,c]$
$pp \to Z Z^{\star} \to \ell^+ \ell^- \ell^+ \ell^- $ [CMS]	$126 \pm 2\% ~(1.5 \sigma)$ [11,24]	$0.5^{+1.0}_{-0.7}$ [10] (2.7)	$\sim c^2 \operatorname{Br}_{ZZ}[a,c]$
$pp \to W W^{\star} \to \ell^+ \nu \ell^- \bar{\nu} [\text{CMS}]$	$126 \pm 20\%$ [10,25]	$0.7^{+0.4}_{-0.6}$ [10] (1.8)	$\sim c^2 \operatorname{Br}_{WW}[a,c]$
$pp ightarrow b ar{b} [ext{CMS}]$	$124 \pm 10\%$ [10]	$1.2^{+1.4}_{-1.7}$ [10] (4.1)	$\sim a^2 \operatorname{Br}_{b\bar{b}}[a,c]$
$pp \to \tau \bar{\tau} [\text{CMS}]$	$124 \pm 20\%$ [10]	$0.8^{+1.2}_{-1.7}$ [10] (3.3)	$\sim c^2 \operatorname{Br}_{\tau \bar{\tau}}[a,c]$

in the presence of excess, the combined limit is stronger than the quadrature

$$\sum_{i} \frac{(\mu_L - \hat{\mu})^2}{(\mu_L^i - \hat{\mu})^2} - \sum_{i} \frac{\hat{\mu}}{(\mu_L^i - \hat{\mu})^2} = 1$$

Espinos, Grojean, MMM, Trott '12

$\mathcal{M} odel\text{-}\mathcal{I} ndependent \ \mathcal{F} it \ to \ \mathcal{LHC} \ \mathcal{D} ata$

for similar analyses, see also

Azatov,Contino,Galloway '12 Carmi,Falkowski,Kuflik,Volansky '12 Ellis,You '12; Giardino eal '12

$\mathcal{M}odel\text{-}\mathcal{I}ndependent\ \mathcal{F}it\ to\ \mathcal{LHC}\ \mathcal{D}ata\ \text{-}\ \mathcal{U}pdate\ with\ \mathcal{M}oriond\ \mathcal{D}ata$

$\mathcal{C}\text{hannels}\ \mathcal{D}\text{riving the}\ \mathcal{F}\text{it}$

Espinosa, Grojean, MMM, Trott '12

M.M. Mühlleitner, 12 April 2012, SM @ LHC 2012, Copenhagen

(i) MSSM Higgs boson production including HO corrections available

(ii) Interpretation of LHC Higgs search results within

- * MSSM: requires 'finetuning'
- * NMSSM: less finetuned
- * Composite Higgs: compatible with LHC results
- \ast Model-independent
 - effective theory: global fits to best signal strengths and exclusion regions
 - SM Higgs hypothesis consistent w/ data at 94% CL

Thank you for your attention!

\mathcal{U} pper \mathcal{L} imit on \mathcal{NMSSM} a_1 \mathcal{P} roduction

M.M. Mühlleitner, 12 April 2012, SM @ LHC 2012, Copenhagen

Espinosa, Grojean, MMM, Trott '12

$\boldsymbol{\mathcal{M}oriond} \ 2012 \ \boldsymbol{\mathcal{U}pdate}$

Channel [Exp]	$m_h[{ m GeV}]$	μ (μ_L)
$pp \to WW^* \to \ell^+ \nu \ell^- \bar{\nu} [\text{ATLAS}]$	126	$0.2^{+0.6}_{-0.7}$ (1.3)
$pp \rightarrow b \bar{b} [\text{ATLAS}]$	124	$-0.8^{+1.7}_{-1.7}$ (3.5)
$pp \to \tau \bar{\tau} [\text{ATLAS}]$	124	$-0.1^{+1.7}_{-1.7}$ (3.4)
$pp \rightarrow b \bar{b} \left[\text{CDF\&D0} \right]$	125	$2.0^{+0.8}_{-0.7}$ (3.2)
$pp \to W^+ W^- $ [CDF&D0]	125	$0.03^{+1.22}_{-0.03}$ (2.4)

$\mathcal H ow$ to distinguish the two $\mathcal M inima$

the $(a,c) \leftrightarrow (a,-c)$ symmetry is broken in the $\gamma\gamma$ channel

Espinosa, Grojean, MMM, Trott '12

130

140

m_h (GeV)

CMS

black: official curve
red: simple approximation
green: more precise determination

Kant, Harlander, Mihaila, Steinhauser '10

3-loop: $\Delta^{th}(M_h) \approx 200 \text{ MeV} (1 \text{ GeV}) \text{ for } m_{1/2} = 100 \text{ GeV} (1 \text{ TeV})$

Associated production with a $b\bar{b}$ pair

• Five-flavour scheme 5FS: LO cxn $b\bar{b} \rightarrow \Phi^0$

Dicus,Willenbrock Stelzer et al.;Balazs et al. Campbell et al. Harlander,Kilgore Kidonakis

massless/on-shell b's, no p_{Tb} , resummation of $\log M_H^2/m_b^2$ terms

blue bands: combined scale and 68% CL PDF+ α_s uncertainties of the 5FS red bands: scale uncertainties of the 4FS

\mathcal{T} he \mathcal{S} antander \mathcal{M} atching

* **Difference 4FS** ↔ **5FS**: logarithmic

Harlander, Krämer, Schumacher

* Weight: 5FS 100% weight for $\frac{M_H}{m_b} \to \infty$ 4FS 100% weight for 'small' logarithms: $\ln(M_H/m_b) = 2$ (arbitrariness)

$$\sigma^{\text{matched}} = \frac{\sigma^{\text{4FS}} + w \sigma^{\text{5FS}}}{1 + w}$$

$$w = \ln \frac{M_H}{m_b} - 2$$

 \Rightarrow 4FS and 5FS have same weight at $M_H = 100$ GeV.

\mathcal{T} he \mathcal{S} antander \mathcal{M} atching

0.5 ь $\sigma \pm \Delta \sigma_{\pm}^{-}$ (fb) relative differences on $(\sigma_{4FS} \pm \Delta \sigma_{\pm}^{4FS} - \sigma_{matched}) / \sigma_{matched}$ 4FS gg→bbH (NLO) 0.4 √s =7 TeV $(\sigma_{5FS} \pm \Delta \sigma_{+}^{5FS} - \sigma_{matched}) / \sigma_{matched}$ $\mu = (2m_{\rm b} + m_{\rm H})/4$ 10^{2} 5FS bb→H (NNLO) 0.3 **MSTW2008** matched uncertainty uncertainty band for σ matched 0.2 0.1 10 -0.1 $\sqrt{s} = 7 \text{ TeV}$ -0.2 1 $\mu = (2m_{\rm b} + m_{\rm H})/4$ -0.3 **MSTW2008** -0.4 -0.5 ∟ 100 10 100 150 200 250 300 350 400 450 500 150 200 250 300 350 400 450 500 m_H (GeV) m_H (GeV) (a) **(**b)

Figure 2: (a) Theory uncertainty bands for the total inclusive cross section in the 4FS (red, dashed), the 5FS (green, dotted), and for the m atched cross section (blue, solid). (b) Uncertainty bands and central values, relative to the central value of the m atched result (sam e line coding as panel (a)).

Harlander, Krämer, Schumacher

NMSSM Higgs Boson Mass

Ender, Graf, MMM, Rzehak

Dependence on different renormalisation schemes

$\mathcal{F}inetuning \ - \ \mathcal{N}atural \ \mathcal{SUSY} \ \mathcal{M}odel$

• Benchmark points 2 examples			$X_t = A$		King,MMM,Nevzoro			
SM-like Higgs [GeV]	aneta	λ	$m_{{ ilde t}_1}$ [GeV]	$m_{ ilde{t}_2}$ [GeV]	$X_t/m_{\tilde{t}}$	$R_{\gamma\gamma}$	$R_{incl}R_{\gamma\gamma}$]
$M_{H_1} = 124.6$	2	0.56	358	686	2.26	1.42	1.11	
$M_{H_2} = 125.8$	3	0.68	391	634	1.77	1.78	1.39	

Hall, Pinner, Ruderman

• For scans see Albornoz Vasquez eal; Cao eal

Constraints

- EW precision observables:
- * $\hat{T} = c_T \frac{v^2}{f^2} \Rightarrow |c_T \frac{v^2}{f^2}| < 2 \times 10^{-3}$
- * $\hat{S} = (c_W + c_B) \frac{m_W^2}{m_{\perp}^2}$
- \star 1-loop IR effects

 $\Delta \epsilon_{1,3} = -c_{1,3}(1-a^2)\log(m_o^2/m_h^2)$ constrains a

Flavor constraints

- * no tree-level FCNC c is flavor universal \rightarrow MFV built in
- Direct searches LEP, Tevatron, LHC: constrain a and c

[rescale σ_{prod} and Γ_{decay} , add channels in quadrature]

constrain only a

removed by custodial symmetry

 $m_{
ho} \ge (c_W + c_B)^{1/2} 2.5 \,\, {\rm TeV}$

Barbieri eal

 $\rightarrow T$

• Enlarged Higgs and neutralino sector:

7 Higgs bosons: $H_1, H_2, H_3, A_1, A_2, H^+, H^-$ 5 neutralinos: $\tilde{\chi}_i^0$ (i = 1, ..., 5)

- Significant changes of Higgs boson phenomenology:
 - * Existence of light $H_1, A_1, \tilde{\chi}_1^0$: invisible decays into these finals states \rightsquigarrow suppressed Higgs decay into $\gamma\gamma \rightsquigarrow$ MSSM/SM search channels could miss it
 - * $H_2 \rightarrow H_1H_1$ or $H_2 \rightarrow A_1A_1$ with H_1 , A_1 further decaying into SM particles: discovery mode w/ distinctive signature
 - * If $M_{A_1} < 2m_b \rightsquigarrow H_1 \rightarrow A_1A_1$ dominates $\rightsquigarrow BR(H_1 \rightarrow b\bar{b})$ suppressed $\rightsquigarrow H_1$ avoids 114.4 LEP limit $H_1 \rightarrow A_1A_1 \rightarrow l^+l^-b\bar{b}$ could explain observed LEP excess near $m_{bb} = 100$ GeV Dermisek ,Gunion
 - * Addtitional neutralino: singlino-like lightest $\tilde{\chi}^0_1$, can be very light: possible DM candidate * ...