

CP violation in $B \rightarrow h h$

Luigi Li Gioi - for the LHCb collaboration CNRS/IN2P3 - Laboratoire de Physique Corpusculaire de Clermont Ferrand

Standard Model @ LHC - Copenhagen, 13 April 2012

Introduction

Direct CP asymmetry in Bd,s \rightarrow K π : LHCb-PAPER-2011-029

- Interference of tree and loop diagrams.
- Potentially sensitive to new physics.

Time dependent CP violation in $B \rightarrow hh$: LHCb-CONF-2012-007

- Sensitive to β , β_s and γ
- First measurement for $B \rightarrow KK$

Bs → K K effective lifetime: LHCb [PLB 707 (2012)] , LHCb-CONF-2012-001

- Sensitive to $\Delta\Gamma$ s and ϕ s
- Two measurements: 2010 and 2011 datasets

SM@LHC 2012

Direct CP asymmetry in Bd,s \rightarrow K π

Vub Vcs ~ $A\lambda^3(\rho - i\eta)$ Vtb Vtd ~ $A\lambda^3(1 - \rho - i\eta)$

Interference of tree and loop diagrams.

- Potentially sensitive to new physics.
- CP asymmetry in Bd $\rightarrow K\pi$ is established.
- Consider Bs system
- 14 times lower decay rate, 4 times lower production rate

The direct CP asymmetry is defined:

$$A_{CP} = \frac{\Gamma(\overline{B_{(s)}^{0}} \to \overline{f_{(s)}}) - \Gamma(B_{(s)}^{0} \to \overline{f_{(s)}})}{\Gamma(\overline{B_{(s)}^{0}} \to \overline{f_{(s)}}) + \Gamma(B_{(s)}^{0} \to \overline{f_{(s)}})}$$

The raw A_{CP} measured in data need correction factors: $A_{CP} = A_{CP}^{RAW} - A_D(K\pi) - \kappa A_P$

- $A_{D}(K\pi)$ = instrumental charge asymmetry
- $A_{p} = Production$ asymmetry

SM@LHC 2012

• κ is a selection dependent factor

$$\kappa = \frac{\int \left(e^{-\Gamma t'} \cos \Delta m t'\right) \varepsilon(t) dt}{\int \left(e^{-\Gamma t'} \cosh \frac{\Delta \Gamma}{2} t'\right) \varepsilon(t) dt}$$

- Instrumental asymmetry studied with $D^* \rightarrow D^0(K\pi) \pi$, $D^* \rightarrow D^0(KK) \pi$ and untagged $D^0 \rightarrow K\pi$.
- B^o production asymmetry has been studied using ~25400 B^o $\rightarrow J/\psi(\mu\mu)K^*(K\pi)$.

• $\epsilon(t) = \text{acceptance as a function of the proper decay time}$

B mass distributions

LHCb-PAPER-2011-029

SM@LHC 2012

Results

The results in 0.35 fb⁻¹

LHCb-PAPER-2011-029

 $A_{_{CP}}(B_{_{d}} \rightarrow K \pi)$ = -0.088 ± 0.011 (stat) ± 0.008 (syst) $A_{_{CP}}(B_{_{s}} \rightarrow K \pi)$ = 0.27 ± 0.08 (stat) ± 0.02 (syst)

- The result of $A_{CP}(B_d \rightarrow K \pi)$ constitutes the most precise measurement available to date
- It is in good agreement with the current world average from HFAG: -0.098 $^{+0.012}_{-0.011}$
- Deviation from 0 exceeds 6 σ (sum in quadrature stat + syst)
- Systematic uncertainty most important contribution from instrumental and production asymmetry
- The significance of $A_{CP}(B_{S} \rightarrow K \pi)$ is 3.3 σ
- It is the first evidence of CP violation in the decays of B mesons
- It is in agreement with CDF result: 0.39 ± 0.15 (stat) ± 0.08 (syst) PRL 106, 181802 (2011)
- Systematic uncertainty most important contribution from modelling of the signal and background components in the maximum likelihood fit

SM@LHC 2012

Time dependent CPV in $B \rightarrow hh$

R. Fleischer PLB459 (1999) 306

Time dependent CP asymmetry

$$\mathcal{A_{CP}}(t) = \frac{\Gamma_{\bar{B}\to f}(t) - \Gamma_{B\to f}(t)}{\Gamma_{\bar{B}\to f}(t) + \Gamma_{B\to f}(t)} = \frac{\mathcal{A}^{dir}\cos\left(\Delta Mt\right) + \mathcal{A}^{mix}\sin\left(\Delta Mt\right)}{\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \mathcal{A}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma}{2}t\right)}$$

With the constraint

$$\left(A_f^{\rm dir}\right)^2 + \left(A_f^{\rm mix}\right)^2 + \left(A_f^{\Delta\Gamma}\right)^2 = 1$$

For $\pi\pi$ and KK the amplitudes:

 $A_{\pi\pi}^{dir}(\gamma, d, \theta) \qquad A_{\pi\pi}^{mix}(\gamma, 2\beta, d, \theta)$ $A_{KK}^{dir}(\gamma, d', \theta') \qquad A_{KK}^{mix}(\gamma, 2\beta_{s}, d', \theta')$

• Assuming U-symmetry:
$$d=d', \theta=\theta'$$

• Input β_s from Bs $\rightarrow j/\psi \phi$: extract β and γ

$$d e^{i\theta} \equiv \frac{1}{(1 - \lambda^2/2)R_b} \left(\frac{A_{\rm pen}^{ct}}{A_{\rm cc}^u + A_{\rm pen}^{ut}}\right)$$

SM@LHC 2012

Results form the B-factories

Experiment	$A_{\pi\pi}^{\mathrm{dir}}$	$A_{\pi\pi}^{\mathrm{mix}}$	$ \rho(A_{\pi\pi}^{\mathrm{dir}}, A_{\pi\pi}^{\mathrm{mix}}) $
BABAR	$0.25 \pm 0.08 \pm 0.02$	$-0.68 \pm 0.10 \pm 0.03$	0.06
Belle	$0.55 \pm 0.08 \pm 0.05$	$-0.61 \pm 0.10 \pm 0.04$	0.15
HFAG average	0.38 ± 0.06	-0.65 ± 0.07	0.08

SM@LHC 2012

Analysis strategy

- Integrated luminosity : 0.69 fb⁻¹
- Events selection:
- → Common kinematic cuts for $B \rightarrow K\pi$, $B \rightarrow \pi\pi$, $Bs \rightarrow KK$
- PID cuts to distinguish the different final states
- Decay time resolution:
- → Form $B \rightarrow j/\psi$ X: 50 fs
- Decay time acceptance from MC
- Flavour tagging:
- Use Opposite side (OS) tagging
- → Use B → K π to calibrate efficiency and mistag rate

SM@LHC 2012

Time dependent $B \rightarrow K \pi$ fit (I)

LHCb-CONF-2012-007

٩	Very small	contribution	from Λ_{L}	negected
-		oontinoation	n on r h	negeetea

Input form other LHCb measurements

	Input parameters	LHCb results
parameter	value	reference
Δm_s	17.63 ± 0.11 ± 0.02 ps ⁻¹	arXiv:1112.4311
$\Gamma_{\sf s}$	$0.657 \pm 0.009 \pm 0.008 \text{ ps}^{-1}$	arXiv:1112.3183
$\Delta\Gamma_{\rm s}$	$0.123 \pm 0.029 \pm 0.011 \text{ ps}^{-1}$	arXiv:1112.3183

SM@LHC 2012

Time dependent $B \rightarrow K \pi$ fit (II)

LHCb-CONF-2012-007

- 5 tagging categories
- ~4.5% efficiency
- No large difference between B and \overline{B} observed

Production asymmetry

- AP(Bd) = -0.015 ± 0.013
- AP (Bs) = -0.03 ± 0.06

Propagated Gaussian term in $\pi\pi$ and KK

Bd parameters:

- $\Delta m_d = (0.484 \pm 0.019) \text{ ps}^{-1}$
- τ(B_d)=(1.509 ± 0.011) ps

SM@LHC 2012

Time dependent Bd $\rightarrow \pi \pi$ fit

$$A_{\pi\pi}^{\text{dir}} = 0.11 \pm 0.21 \pm 0.03$$
$$A_{\pi\pi}^{\text{mix}} = -0.56 \pm 0.17 \pm 0.03$$
$$\rho(A_{\pi\pi}^{\text{dir}}, A_{\pi\pi}^{\text{mix}}) = -0.34$$

 τ (Bd)=(1.497 ± 0.025) ps In agreement with World Awarage

Time dependent Bs \rightarrow K K fit

Results

Largest systematic contribution is due to the errors on the input parameters in all results

SM@LHC 2012

$Bs \rightarrow K K effective lifetime$

The untagged decay time distribution:

$$\begin{split} \Gamma(t) &\propto (1 - \mathcal{A}_{\Delta \Gamma_s}) e^{-\Gamma_L t} + (1 + \mathcal{A}_{\Delta \Gamma_s}) e^{-\Gamma_H t} \\ \mathcal{A}_{\Delta \Gamma_s} &= -2 \operatorname{Re}(\lambda) / (1 + |\lambda|^2) \qquad \lambda = (q/p)(\overline{A}/A) \qquad \text{No PCV} \rightarrow \lambda = 1 \end{split}$$

 $Bs \rightarrow K K$ effective lifetime:

Expand in: $y_s = \Delta \Gamma_s / 2\Gamma_s$

$$\tau_{KK} = \tau_{B_s^0} \frac{1}{1 - y_s^2} \left[\frac{1 + 2\mathcal{A}_{\Delta\Gamma_s} y_s + y_s^2}{1 + \mathcal{A}_{\Delta\Gamma_s} y_s} \right] \qquad \tau_{B_s^0} = 2/(\Gamma_H + \Gamma_L) = \Gamma_s^{-1}$$

Alternative way to extract $\Delta \Gamma s$ and φs

Two measurements:

- 2010 data (37 pb⁻¹): $\tau_{K^+K^-} = [1.44 \pm 0.096(\text{stat}) \pm 0.010(\text{syst})] \, \text{ps}$ LHCb [PLB 707 (2012)]
- 2011 data (1.0 fb⁻¹): LHCb-CONF-2012-001

SM@LHC 2012

Constrain of $\Delta\Gamma s$ and ϕs

Fleischer, Knegjens, [arXiv:1109.5115]

Using effective lifetimes to constrain of $\Delta\Gamma s$ and φs

Including direct measurements

SM@LHC 2012

2011 dataset analysis

LHCb-CONF-2012-001

New trigger and event selection used in the new analysis to reduce systematic uncertainty

Luigi Li Gioi

SM@LHC 2012

Summary

Direct CP asymmetry in Bd,s \rightarrow K π : LHCb-PAPER-2011-029

- The result of $A_{CP}(B_d \rightarrow K \pi)$ constitutes the most precise measurement available to date
- The deviation from 0 exceeds 6 σ (sum in quadrature stat + syst)
- The significance of $A_{CP}(B_s \rightarrow K \pi)$ is 3.3 σ
- It is the first evidence of CP violation in the decays of B_s mesons

Time dependent CP violation in $B \rightarrow hh$: LHCb-CONF-2012-007

- First measurement of $B \rightarrow KK$
- For $B \rightarrow \pi \pi A^{dir}$ favours BaBar results

Bs → K K effective lifetime: LHCb [PLB 707 (2012)] , LHCb-CONF-2012-001

- Two measurements: 2010 and 2011 datasets
- The new measurement use a new trigger and a new selection to reduce systematic errors
- The two measurements are very compatible

New results expected for CPV analysis using all available data

SM@LHC 2012