D physics theory overview

Standard Model @ LHC 2012, 10-13 April, 2012, HCØ Institute

Outline

- 1. Charm meson leptonic and semileptonic decays
- 2. $D^0 \overline{D^0}$ oscillations
- 3. CP asymmetry in D nonleptonic decays

|--|

- 1. SM improvements?
- 2. Search for new physics?

Correlation of NP in $\Delta C = 2$ and $\Delta C = 1$ transitions

NP signals in charm and relations with top NP

 Motivation to study charm meson leptonic and semileptonic decays

> Independent determination of CKM matrix elements V_{cs} and V_{cd} (CKM fitter);

Possibility to test theoretical tools - lattice QCD;

➤ HQE & OPE determination of power corrections.

Leptonic charm decays

"D_s puzzle" since 2005 resolved in 2009

Although, there is no any more D_s puzzle, still, we obtain bounds to variety of NP models!

$$\Gamma(D_q \to \ell \nu) = \frac{G_f^2}{8\pi} m_\ell^2 \left(1 - \frac{m_\ell^2}{M_{D_q}^2} \right)^2 M_{D_q} f_{D_q}^2 |V_{cq}|^2$$

 $f_{D_s}/f_D = 1.26(5)$

from C. Davies, Lattice 2011

Exclusive charm meson semileptonic decay modes

Becher & Hill, (2005), parametrization using dispersion relations;

Becirevic& Kaidalov parameterization of form-factors still agrees well with experimental results

$D \to \pi$

form factors and their statistical errors

Direct determination V_{cd}

second row unitarity from lattice QCD: $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 0.98(5)$ 0.234(13) 0.961(26) 39.7(1.0) × 10⁻³

$D^0 - ar{D}^0$ oscillations and indirect CP violation

The neutral D meson system is the only one created out of the up-type quarks.

- intermediate down-type quarks

- due to CKM contribution of b – quark negligible;

- in the SU(3) limit 0;

- long distance contributions important;

$$\langle D^{0} | \mathcal{H} | \bar{D}^{0} \rangle = M_{12} - \frac{i}{2} \Gamma_{12}$$

$$x_{12} \in [0.25, \ 0.99] \%$$

$$y_{12} \equiv \frac{|\Gamma_{12}|}{\Gamma}, \quad x_{12} \equiv 2 \frac{|M_{12}|}{\Gamma}, \quad \phi_{12} \equiv \arg\left(\frac{M_{12}}{\Gamma_{12}}\right) \qquad \begin{array}{l} x_{12} \in [0.25, \ 0.99] \% \\ y_{12} \in [0.59, \ 0.99] \% \\ \phi_{12} \in [-7.1^{\circ}, \ 15.8^{\circ}] \end{array}$$

 Φ_{12} q/p they give variable which inform us about CP violation

$$a_f(t) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D}^0(t) \to f)}$$

x, y \rightarrow CP conserving

sensitive to q/p

Standard model: recent developments

$$\left(M - \frac{i}{2}\Gamma\right)_{12} = \frac{1}{2M_{\rm D}} \langle \overline{D}^0 | \mathscr{H}_w^{\Delta C = -2} | D^0 \rangle + \frac{1}{2M_{\rm D}} \sum_n \frac{\langle \overline{D}^0 | \mathscr{H}_w^{\Delta C = -1} | n \rangle \langle n | \mathscr{H}_w^{\Delta C = -1} | D^0 \rangle}{M_{\rm D} - E_n + i\varepsilon}$$

Two approaches within SM

$$y = \frac{1}{\Gamma} \sum_{n} \rho_n \langle \overline{D}^0 | \mathcal{H}_W^{\Delta C=1} | n \rangle \langle n | \mathcal{H}_W^{\Delta C=1} | D^0 \rangle$$

• HQE does not work for D system;

• NP in D system

Recent development within SM: Bobrowski and Lenz, 0904.3971 Bobrowski, Lenz, Riedl, Rohrwild 1002.4794 Attempt to use QCD to its limits!

New Physics in $\Delta C = 2$ transition

Most general effective Hamiltonian at scale $\Lambda_{\rm NP} \gg m_W$

 $L \leftrightarrow R.$

$$Q_{1}^{cu} = \bar{u}_{L}^{\alpha} \gamma_{\mu} c_{L}^{\alpha} \bar{u}_{L}^{\beta} \gamma^{\mu} c_{L}^{\beta}$$
$$Q_{2}^{cu} = \bar{u}_{R}^{\alpha} c_{L}^{\alpha} \bar{u}_{R}^{\beta} c_{L}^{\beta},$$
$$Q_{3}^{cu} = \bar{u}_{R}^{\alpha} c_{L}^{\beta} \bar{u}_{R}^{\beta} c_{L}^{\alpha},$$
$$Q_{4}^{cu} = \bar{u}_{R}^{\alpha} c_{L}^{\alpha} \bar{u}_{L}^{\beta} c_{R}^{\beta},$$
$$Q_{5}^{cu} = \bar{u}_{R}^{\alpha} c_{L}^{\beta} \bar{u}_{L}^{\beta} c_{R}^{\alpha},$$

RG running of Wilson coefficients relates NP from higher scale up to the 1 GeV

$$\begin{aligned} |z_{1}| &\lesssim 5.7 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^{2} \\ |z_{2}| &\lesssim 1.6 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^{2} \\ |z_{3}| &\lesssim 5.8 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^{2} \\ |z_{4}| &\lesssim 5.6 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^{2} \\ |z_{5}| &\lesssim 1.6 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^{2} \\ x_{12}^{\rm NP} \sin \phi_{12}^{\rm NP} &\lesssim 0.0022 \end{aligned} \qquad \begin{aligned} \mathcal{I}m(z_{1}) &\lesssim 1.1 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^{2} \\ \mathcal{I}m(z_{2}) &\lesssim 2.9 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^{2} \\ \mathcal{I}m(z_{3}) &\lesssim 1.1 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^{2} \\ \mathcal{I}m(z_{4}) &\lesssim 1.1 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^{2} \\ \mathcal{I}m(z_{5}) &\lesssim 3.0 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^{2} \end{aligned}$$

Isidori, Nir, Perez, 1002.0900

Gedalia et al. 0906.1879, Golowich et al, 0705.3650; Bigi et al. 0904.1545, Altmannshofer et al. 0909.1333, 1001.3835 Direct CP violation in charm meson decays

2011/12 New Results

$$\Delta a_{CP} = \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to \bar{f})}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to \bar{f})} = a_{CP}^{dir}(f) + \frac{\langle t \rangle_f}{\tau_{D^0}} a_{CP}^{ind}$$
negligible

$$\Delta a_{CP} = a_{CP}(K^+K^-) - a_{CP}(\pi^+\pi^-) = \begin{bmatrix} -0.82 \pm 0.21 \pm 0.11]\% & \text{LHCb result} \\ [-0.62 \pm 0.21 \pm 0.10]\% & \text{CDF} \\ (\text{combined individual results}) \\ \Delta a_{CP}^W = [-0.645 \pm 0.180]\% & (\text{HFAG}) \end{bmatrix}$$

There are individual measurements of A_{CP} by BaBar, Belle and CLEO, (very large errors)!

Nonleptonic charm weak decays

- Cabibbo allowed q'=s, q=d;

$$A_T \sim V_{cs} V_{ud} \sim 1 \qquad D^0 \to K^- \pi^+$$

- Cabibbo single suppressed q'=s(d), q=s (d);

$$\begin{array}{ll} A_T \sim V_{cs}V_{us}, & V_{cd}V_{ud} \sim \lambda \end{array} D^0 \rightarrow \pi^-\pi^+, & D^0 \rightarrow K^-K^+ \\ & \text{- Cabibbo double suppressed q'=d, q=s'} \\ \hline A_T \sim V_{cd}V_{us} \sim \lambda^2 & D^0 \rightarrow \pi^-K^+ \end{array}$$

$$\begin{aligned} \mathcal{H}^{q}_{|\Delta c|=1} &= \frac{G_{F}}{\sqrt{2}} \sum_{i=1,2} C^{q}_{i} Q^{s}_{i} + \text{H.c.}, \qquad q = s, d, \\ Q^{q}_{1} &= (\bar{u}q)_{V-A} \, (\bar{q}c)_{V-A} \,, \\ Q^{q}_{2} &= (\bar{u}_{\alpha}q_{\beta})_{V-A} \, (\bar{q}_{\beta}c_{\alpha})_{V-A} \,, \end{aligned}$$

It looks simple, however no reliable framework! (e.g. Buccella et al., PRD 51, (1995) 3478 - FSI)

SCS decays charm meson decays

$$A_f(D \to f) = A_f^T [1 + r_f e^{i(\delta_f - \gamma)}]$$

$$\bar{A}_{\bar{f}}(\bar{D} \to \bar{f}) = A_f^T [1 + r_f e^{i(\delta_f + \gamma)}]$$

strong phase

tree level amplitude

penguin/tree contribution

Direct CP asymmetry

$$a_f^{dir} = \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2} = 2r_f \sin\gamma \sin\delta_f$$

$$sin\gamma=0.9$$
 for $\delta_f\sim O(1)$

$$a_f^{dir} \sim 2r_f$$

> CPV in D - \bar{D} mixing suppressed due to $\mathcal{O}(V_{cb}V_{ub}^*/V_{cs}V_{us}^*) \sim 10^{-3}$

> direct CPV suppressed due to $\mathcal{O}([V_{cb}V_{ub}^*/V_{cs}V_{us}^*]\alpha_s/\pi) \sim 10^{-4}$

Are there any possibility that direct CPV is increased within SM?

Exp.
$$\begin{cases} a_{K^+K^-} = (-0.23 \pm 0.17)\% \\ a_{\pi^+\pi^-} = (0.20 \pm 0.22)\% \end{cases}$$

Brod, Kagan, Zupan, 1111.600 Franco, Mishima, Silvestrini 1203.3131 Bhattacharaya, Gronau, Rosner 1201.2351 Bigi and Paul, 1110.2862 Goldenand Grinstein, PLB 222 (1989) 501.

SU(3) fits (Chiang, Cheng, 1001.0987, 1201.0785; Bhattacharaya, Gronau, Rosner 1201.2351; Pirtskhalava, Uttayarat 1112.5451)

for max. strong phase: $\Delta a_{CP} = 4r_f \longrightarrow r_f \sim 0.15\%$ naive estimation $r_f \sim \mathcal{O}([V_{cb}V_{ub}^*/V_{cs}V_{us}^*]\alpha_s/\pi) \sim 0.01\%$ • Wilson coefficients - perturbative;

- (Brod, Kagan, Zupan)
- matrix elements leading term + power corrections 1/m_c
- tree amplitudes from experiment;
- relate penguin amplitudes to tree amplitudes

This model leads to explanation of long-standing puzzle

 $\mathsf{Br}(D^0 \to K^+ K^-) \approx 2.8 \times \mathsf{Br}(D^0 \to \pi^+ \pi^-)$

Brod, Kagan, Zupan (arxive:1203.6659)

General isospin parametrization

Franco, Mishima, Silvestrini, (1203.3131)

$$A(D^{+} \to \pi^{+}\pi^{0}) = \frac{\sqrt{3}}{2} \mathcal{A}_{2}^{\pi},$$

$$A(D^{0} \to \pi^{+}\pi^{-}) = \frac{\mathcal{A}_{2}^{\pi} - \sqrt{2}(\mathcal{A}_{0}^{\pi} + ir_{\text{CKM}}\mathcal{B}_{0}^{\pi})}{\sqrt{6}}, \qquad \mathcal{A}(\mathcal{B}) \text{ CP even(odd)}$$

$$A(D^{0} \to \pi^{0}\pi^{0}) = \frac{\sqrt{2}\mathcal{A}_{2}^{\pi} + \mathcal{A}_{0}^{\pi} + ir_{\text{CKM}}\mathcal{B}_{0}^{\pi}}{\sqrt{3}},$$

$$A(D^{+} \to K^{+}\bar{K}^{0}) = \frac{\mathcal{A}_{13}^{K}}{2} + \mathcal{A}_{11}^{K} + ir_{\text{CKM}}\mathcal{B}_{11}^{K},$$

$$A(D^{0} \to K^{+}K^{-}) = \frac{-\mathcal{A}_{13}^{K} + \mathcal{A}_{11}^{K} - \mathcal{A}_{0}^{K} + ir_{\text{CKM}}\mathcal{B}_{11}^{K} - ir_{\text{CKM}}\mathcal{B}_{0}^{K}}{2},$$

$$A(D^{0} \to K^{0}\bar{K}^{0}) = \frac{-\mathcal{A}_{13}^{K} + \mathcal{A}_{11}^{K} + \mathcal{A}_{0}^{K} + ir_{\text{CKM}}\mathcal{B}_{11}^{K} + ir_{\text{CKM}}\mathcal{B}_{0}^{K}}{2},$$

$$A(D^{0} \to K^{0}\bar{K}^{0}) = \frac{-\mathcal{A}_{13}^{K} + \mathcal{A}_{11}^{K} + \mathcal{A}_{0}^{K} + ir_{\text{CKM}}\mathcal{B}_{11}^{K} + ir_{\text{CKM}}\mathcal{B}_{0}^{K}}{2},$$

$$|\mathcal{A}_{2}^{\pi}| = (3.08 \pm 0.08) \times 10^{-7} \text{ GeV},$$

$$|\mathcal{A}_{0}^{\pi}| = (7.6 \pm 0.1) \times 10^{-7} \text{ GeV},$$

$$\arg(\mathcal{A}_{2}^{\pi}/\mathcal{A}_{0}^{\pi}) = (\pm 93 \pm 3)^{\circ}.$$
rescattering constrains the l=0 amplitudes in the ππ and KK channels

With the present accuracy, observed asymmetries are marginally compatible with SM.

New physics possibilities in CPV charm decays

(Kamenik's figure) Isidori, Kamenik, Ligeti and Perez, 1111.600

In order to explain experimental result

 $\Delta R^{SM} \sim {\cal O}(2-5)$

Isidori, Kamenik, Ligeti, Perez, 1111.4987

$$\begin{split} \mathcal{H}^{q}_{|\Delta c|=1} &= \frac{G_{F}}{\sqrt{2}} \sum_{i=1,2} C^{q}_{i} Q^{s}_{i} + \text{H.c.}, \qquad q = s, d, \\ Q^{q}_{1} &= (\bar{u}q)_{V-A} (\bar{q}c)_{V-A}, \\ Q^{q}_{2} &= (\bar{u}_{\alpha}q_{\beta})_{V-A} (\bar{q}_{\beta}c_{\alpha})_{V-A}, \\ \mathcal{H}^{\text{eff}-\text{NP}}_{|\Delta c|=1} &= \frac{G_{F}}{\sqrt{2}} \sum_{i=1,2,5,6} \sum_{q} (C^{q}_{i} Q^{q}_{i} + C^{q'}_{i} Q^{q'}_{i}) & Q^{q}_{6} = (\bar{u}_{\alpha}c_{\beta})_{V-A} (\bar{q}_{\beta}q_{\alpha})_{V+A}, \\ &+ \frac{G_{F}}{\sqrt{2}} \sum_{i=7,8} (C_{i}Q_{i} + C'_{i}Q'_{i}) + \text{H.c.}, & Q_{8} = -\frac{g_{s}}{8\pi^{2}} m_{c} \bar{u}\sigma_{\mu\nu} (1 + \gamma_{5}) T^{a} G^{\mu\nu}_{a} c, \end{split}$$

$$\Delta a_{CP} \approx (0.13\%) \mathrm{Im}(\Delta R^{\mathrm{SM}}) + 8.9 \sum_{i} \mathrm{Im}(C_{i}^{\mathrm{NP}}) \mathrm{Im}(\Delta R_{i}^{\mathrm{NP}})$$

$$\Delta R^{\rm SM,NP} = R_K^{\rm SM,NP} + R_\pi^{\rm SM,NP}$$

- LL 4q operators excluded;
- LR 4q operators still allowed possible effect in D \overline{D} and ε'/ε ;
- RR 4q operators unconstrained in EFT.

highly UV sensitive, model dependent

 $D^0 - \overline{D}^0$ oscillation and ϵ'/ϵ (CPV in K $\rightarrow \pi\pi$ give important constraints on the size of direct CPV in charm decays)

Interesting result (Gedalia, Kamenik, Perez 1202.5038) on universality of $|\Delta F=1|$ left-left operators, charm and kaon physics dominated by 2 generations

SUSY Models

Grossman, Kagan, Nir hep-ph/0609178, Giudice, Isidori, Paradisi 1201.6204,

general parametrization of NP $\Delta C = 1$ chromomagnetic (imaginary) operator is not constraint

$$\left|\Delta a_{CP}^{\rm SUSY}\right| \approx 0.6\% \left(\frac{\left|{\rm Im} \left(\delta_{12}^{u}\right)_{LR}\right|}{10^{-3}}\right) \left(\frac{{\rm TeV}}{\tilde{m}}\right)$$

SUSY models: "primary source of flavor violation comes from large

LR squark mixing (Giudice, Isidori, Paradisi 1201.6204)

1) "disoriented A-terms" (universality in squark masses and trilinear terms are proportional to corresponding Yukawa matrix;

2) split families.

Both scenarios passed all other constraints EDM, FCNC top decays, rare B decays...

4th generation

3 gen CKM non-unitarity + b' penguin: (Feldman, Nandi, Soni, 1202.3795)

 $\Delta a_{CP} \propto 4 \,\mathrm{Im} \left[rac{\lambda_{b'}}{\lambda_d - \lambda_s}
ight]$ size of this contribution can as large as SM onre

Branching ratios for $D^0 \rightarrow \pi^+\pi^-, \pi^+K^-, K^+K^-$ require U-spin violation O(1) from LD dynamics

Mode	BR	$A_{\rm CP}$ in %	5σ Reach
$D^+ \to K_S \pi^+$	1.47×10^{-2}	-0.52 ± 0.14 [25]	1×10^{-3}
$D_s \to \eta' \pi^+$	$3.94 imes 10^{-2}$	-6.1 ± 3.0 [49]	$0.7 imes 10^{-3}$
		$-5.5 \pm 3.7 \pm 1.2$ [25]	
$D_s \to K_S \pi^+$	1.21×10^{-3}	6.6 ± 3.3 [49]	4×10^{-3}
		6.53 ± 2.46 [25]	

 5σ possible if LHCb will produce 10^9 charm mesons

 \bar{P}

η

ATLAS: no deviations from SM!

Are there any consequences of Tevatron anomaly in double top production on charm physics?

existing scenarios explaining anomaly in t \overline{t} production:

Our recent fit of SM + NP:(S.F., JF. Kamenik and B. Melic in preparation) Forward-backward asymmetry, charge asymmetry at Atlas, cross-section at Tevatron

A:
$$\sigma_{\text{TEV}}^h = (80 \pm 0.37) \,\text{fb}$$
 next-to-last bin $m_{t\bar{t}} \in [700, 800] \,\text{GeV}$

B:
$$m_{t\bar{t}}$$
 bin spectrum at CDF, no cross - section

Z' and W' cannot satisfy both results Tevatrpn A_{FB} and A_{c}

Viable NP scenarios explaining observed anomaly top – anti-top production: axigluon, in the both cases A and B, scalar doublet, colored triplet and sextet are good candidate for NP in the case B (the CDF result on invariant mass spectrum is not taken into account)! Comparison of NP in $t\bar{t}$ production an charm physics

Color sextet in CPV in D – \overline{D} mixing

Constraints from direct CPV in charm, kaon mixing and ϵ'/ϵ cannot be simultaneously satisfied!

2HDM

Altmanshofer et al, 1202. 2866

Direct CP asymmetry possible to obtain for low charged Higgs mass and the large $\tan \beta \sim \mathcal{O}(100)$

New scalar doublet

$$\Phi \sim (1,2)_{-1/2} = \begin{pmatrix} \phi^0 \\ \phi^- \end{pmatrix}$$

Hochberg and Nir, 1112.5268

Direct CP in D decays and A_{FB} in $t\bar{t}$

scalar doublet contributes to CPV ΔA_{CP} at tree level!

Possible to explain Tevatron anomaly and direct CPV in charm!

Perspective for CPV in charm decays

- to improve precision in measurements of ΔA_{CP} for D -> KK and D -> $\pi\pi$

- In decays
$$\begin{cases} D^0 \to K^{*\pm} K^{\mp}, \ D^0 \to \rho^{\pm} \pi^{\mp} \\ D^+ \to \Phi \pi^+, \ D_s^+ \to \Phi K^+ \end{cases}$$

the same operators appear

- to determine asymmetries in D three body decays

Summary

- lattice and experiment good agreement in leptonic charm decays.

- 2.8 σ deviation of observed CPV in charm decays: - dilemma: SM effect or NP?

- correlations of NP in D oscillations and CPV D decays;

- interplay of NP in B, K and charm.

-experimental results in double top production – new possibilities for NP in the up - quark sector!

- are the any consequence on the charm?

Experimental results

Channel	BR
$D^+ ightarrow \pi^+ \pi^0$	$(1.19 \pm 0.06) \times 10^{-3}$
$D^0 \to \pi^+ \pi^-$	$(1.400 \pm 0.026) \times 10^{-3}$
$D^0 \to \pi^0 \pi^0$	$(0.80 \pm 0.05) \times 10^{-3}$
$D^+ \to K^+ K_S$	$(2.83 \pm 0.16) \times 10^{-3}$
$D^0 ightarrow K^+ K^-$	$(3.96 \pm 0.08) \times 10^{-3}$
$D^0 \to K_S K_S$	$(0.173 \pm 0.029) \times 10^{-3}$

Channel	$A_{\rm CP}(\%)$	
$D^0 \to K^+ K^-$	$0.00 \pm 0.34 \pm 0.13$]
$D^0 \to \pi^+\pi^-$	$-0.24 \pm 0.52 \pm 0.22$	BaBar,0709.2571
$D^0 \to K^+ K^-$	$-0.43 \pm 0.30 \pm 0.11$	1
$D^0 \to \pi^+\pi^-$	$0.43 \pm 0.52 \pm 0.12$	Belle,0807.0148
$D^0 \to K_S K_S$	-23 ± 19] cle	EO,hep-ex/ 0012054
$D^0 ightarrow \pi^0 \pi^0$	0 ± 5	
$D^+ \to K^+ K_S$	-0.1 ± 0.6 Belle	, 1001.3202, PDG 2010

Bhattacharaya, Gronau, Rosner 1201.2351