b hadron properties and decays (ATLAS)

Milind V. Purohit Univ. of South Carolina, USA *for* the ATLAS collaboration

<u>Outline</u>

- Detector, Di-muon trigger, Performance: Mass, vertex resolutions
- Quarkonium, Upsilon (1S) production
- Observation of a new $\chi_b(3P)$ state
- B lifetime measurements
- Search for Rare Decays
- Conclusion

Detector and Data

ATLAS

<u>Di-µ Trigger for low p_T b hadron Events</u>

Trigger name example: EF_mu4mu6_ denotes dimuon triggers at level 1, confirmed at the high level trigger, with one object passing a threshold of 4 GeV and the other 6 GeV. Jpsimumu, Bmumu, Upsimumu and DiMu denote coarse invariant mass windows in the regions of the J/ ψ (2.5-4.3 GeV), Bs (4-8.5 GeV) and Upsilon (8-12 GeV) and the combined range of all three (1.5-14GeV) respectively, as calculated using the trigger objects.

- Higher luminosity required a dimuon trigger
- Constant trigger thresholds for B physics all across 2011
- Trigger efficiency: As an example, for the Y(1S) production measurement the average trigger efficiency for the selected dimuon events lies between 80% and 95%.

Mass Resolution

- Excellent mass resolution required for good S/B performance
- Limited particle ID for hadrons (K/ π separation for $p_T < 1$ GeV/c)

Impact Parameter Resolution

2008 JINST 3 S08003

ATLAS-CONF-2012-042

 Good impact parameter resolution required for lifetime based measurement

 Impact parameter distributions not seriously impacted by pileup

B-HADRON PRODUCTION

M. V. Purohit SM@LHC 2012

Quarkonium Production

- Production of heavy quarkonium at LHC offers possibility to test QCD: are color octet contributions significant?
- Non-Relativistic QCD (NRQCD), color-singlet (CSM) models

Example of color-octet fragmentation

Y(1S) Production

PLB 705 (2011) 9

PLB 705 (2011) 9

- Only prompt contribution for Y(1S) production
- Overall scale not well predicted by theory

<u>χ_b state: The Spectrum</u>

- Quarkonium bb-state with with parallel spins
 - bb S-wave state: Y
 - bb P-wave state: χ_b
 with J=0,1,2 triplet spin state
 - $-\chi_b(1P)$ and $\chi_b(2P)$ experimentally studied

<u>Observation of a new χ_b state:</u> Technique for unconverted photons

- Reconstruction of χ_b through radiative decays $-\chi_b(nP) \rightarrow \Psi(1S) \gamma$ and $\chi_b(nP) \rightarrow Y(2S) \gamma$
 - γ well reconstructed with calorimeter
 measurement
 (or via conversion
 to e⁺e⁻ pairs)

Observation of a new χ_b state: Result

Unconverted photons m₃ =

 10.541 ± 0.011 (stat.) ± 0.030 (syst.) GeV/c².

Theory (spin averaged): 10.525 GeV

Converted photons $m_3 = 10.530 \pm 0.005$ (stat.) ± 0.009 (syst.) GeV/c².

This value is used instead of the unconverted case for the final result due to the smaller systematic. The systematic error is due to a variety of sources: relative normalizations of the 3 peaks, background modeling variations, constraints on the masses of the n = 1, 2 peaks, etc.

M. V. Purohit SM@LHC 2012

LIFETIME MEASUREMENTS

M. V. Purohit SM@LHC 2012

<u>B Lifetime Measurements:</u> Inclusive Technique

B Lifetime Measurement:

Inclusive Result

- Main systematic uncertainty for preliminary measurement:
 - time background model
 - residual misalignment
- Ongoing study with 2011 data will reduce very significantly the systematic uncertainties on the lifetime
- no lifetime bias in trigger selection

 $\langle \tau_{B} \rangle = 1.489 \pm 0.016 \text{ (stat.)} \pm 0.043 \text{ (syst.) ps}$ [PDG: 1.568 ± 0.009 ps, dominated by LEP.

CDF B⁺: 1.639 ± 0.009 (stat) ± 0.009 (syst) ps, CDF B⁰: 1.507 ± 0.010 (stat) ± 0.008 (syst) ps.]

M. V. Purohit

Pulls / [0.04 ps]

B Lifetime Measurement:

Exclusive Result

sd

 Measure lifetime of exclusive reconstructed events:

 $B_d \rightarrow J/\psi K^{*0} \text{ and } B_S \rightarrow J/\psi \phi$

- Detector performance well understood
- Important milestone for measurement of CPV parameter β_{s}

RARE DECAYS

Why Search for Rare B-Decays?

 Flavor changing neutral currents (FCNC) are highly suppressed in the Standard Model

 $BF(B_s \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$

 $BF(B_d \to \mu^+ \mu^-) = (1.0 \pm 0.1) \times 10^{-10}$

- Branching fractions might be substantially enhanced by coupling to non-SM particles
- Orthogonal search for physics beyond the standard model

The ATLAS Search for Rare Decays

arXiv:1204.0735

- ATLAS search features
 - Integrated luminosity of 2.4 fb⁻¹
 - Mass resolution:
 - ATLAS: $\sigma_{B \rightarrow \mu\mu} \approx 60$ (barrel) 110 (forward) MeV
- Main background sources:
 - continuum with smooth di-muon invariant mass
 - estimated from sidebands
 - dominant background contribution
 - contribution from hadrons misidentified as muons
 - irreducible background, estimated using MC

Search for Rare Decays: Selection and Technique

- Event selection based on decay topology
 - use boosted decision tree (BDT) classifier calculated with 14 input variables: α_{2D} , ΔR , L_{xy} , ct significance, χ^2_{xy} , χ^2_z , isolation,
 - selection independent of number of primary vertices
- Calculate branching ratio with respect to the high statistics decay mode $B^{\pm} \rightarrow J/\psi K^{\pm}$

<u>Search for Rare Decays:</u> <u>Backgrounds</u>

- Optimization and estimation of background events performed on different sideband event samples
 - avoid bias on expected limit
- Use different categories in mass resolution (in η)

ŋ _{max}	0-1.0	1.0-1.5	1.5-2.5
side band count N _{bg} (even numbered events)	5	0	2
bkg. scaling factor	1.29	1.14	0.88
expected resonant bg	0.1	0.06	0.08
search region count N _{sig}	2	1	0

M. V. Purohit SM@LHC 2012

Search for Rare Decays: Results

arXiv:1204.0735

- No excess of signal events over expected background observed
 - limit on branching ratio
 - Median expected limit that contains 68% of background-only pseudo-experiments: BF_{exp}:(2.3^{+1.0}-0.5)x10⁻⁸
 - Measurement consistent with expectation from SM (BF_{SM}: (3.5±0.3)x10⁻⁹)

Conclusions

- Large available statistics and excellent detector performance have led to competitive heavy flavor measurements at ATLAS
- Measurements of heavy quark production cross sections allow precise studies of QCD: differential p_T distribution measured.
- Observation of new quarkonium state $\chi_b(3P)$: m = 10.530 ± 0.005 (stat.) ± 0.009 (syst.) GeV/c².
- Lifetime measurements show excellent detector performance and open the possibility for time dependent CPV-measurements: $\tau_{Bs} = 1.41 \pm 0.08$ (stat.) ± 0.05 (syst.) ps.
- No sign yet of the rare decays $B_s \rightarrow \mu^+ \mu^-$: BF($B_s \rightarrow \mu^+ \mu^-$) < 2.2 x 10⁻⁸ (2.4 fb⁻¹), 95% CL.