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Problems in low-x and BFKL

» NLL BFKL is significant.
> Next to leading order calculations are very involved.

» Saturation important at high energy: MPI. BFKL linear
equation. Many different saturation models.

» BK best known approach, but only partially solves the problem.
» Infrared difficulties.

» Soft effects and running as important at low Q2.
» Exclusive observables very hard to get to.
» Some approaches can address some of the problems, but not

all at once.
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A dipole approach from Lund

» Colour dipoles in transverse space, evolved in rapidity.

» Solves the problems:
» Includes most of NLL, and collinear resumation. (about 10%
error)
» Saturation: naturally includes MPI, and saturates the cascade
through dipole swing.
» Use effective gluon mass for confinement at soft limit.

» Exclusive observables possible, even an event generator called
DIPSY.
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The model
Heavy ions

The general idea: Inclusive
» Model incoming particles with colour dipoles in transverse
space and rapidity (eg v* = single dipole, proton = <)

» BFKL evolution in rapidity until they meet.

» Collide at interaction rapidity yp. BFKL interaction
amplitudes. Gives inclusive cross sections.
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The general idea: Exclusive

» Select which dipoles interact.

» Separate real gluons from virtual ones by backtracing the
interactions.

» Add final state radiation: ARIADNE.
» Hadronise: PYTHIA.
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Leading Logarithm BFKL amplitudes
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Corrections <}

» NLL effects
» p. and p_ ordering: dynamic cutoff for small and large dipoles.
» running as from dipole size.
» Confinement from a gluon mass. Suppresses emissions at large
transverse distance. Fullfills Froissart bound.

» Saturation, dipole swing: J)
(NZ suppressed) N
» Each dipole has colour index, only dipoles of same colour can
swing: quadrupoles.
» Swings happen often between emission, but favours smaller
dipoles over larger dipoles.
» Dynamic. Depends on the cascade in this event.
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The Dipole Swing: motivation.

» Multiple interactions forms loops.
» But that can not create loop in the cascade!

» Add the Dipole Swing: . 1\

» Amplitude to mimic multiple interaction.
» Multiple interactions + frame independence
— Dipole Swing.
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Some inclusive cross sections.
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Comparing to thia
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Heavy ions Comparing to

ATLAS exclusive data
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Heavy ions Comparing to thia

ATLAS exclusive data
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Comparing to Pythia

» Pythia, and all other pp event generators use DGLAP + PDFs

» DGLAP does initial state radiation in large Q? approximation.
» Start with a hard interaction, then does backwards evolution.
» Uses Parton Distribution Functions.

Does not naturally include multiple interaction correlations.

v

Works well for new physics searches and hard jets, minimum
bias is pushing the limit of the approximations.

» DIPSY uses BFKL.

» BFKL builds gluon chains in low x limit, ie not too large Q2.

» Forward evolution in x; makes it easy to include saturation
and multiple interaction.

» DIPSY does not need PDFs.

» Hard physics is currently out of reach for this approach./(Need
matrix element corrections.) Minimum bias works well,
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Exclusive diffractive excitation _

(Heavy ions)

» 1 proton (1 triangle) -> A nucleons (A triangles).

» Distributed with Wood-Saxon + hard core.
» Then run Program as normal!

» Interactions between nucleons happen naturally from the
Swing.

» Big news for heavy ions, but not subject of this talk.
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Conclusions

Exclusive diffractive excitation: Hard!

— /dzb(l _ 2R
Odiff ex = /d2b (((1 - e_F>2> - (1- e_F>2)

» Amplitude does not factorise into probabilities of final states.
Harder to make a Monte Carlo implementation.

» Origin of diffractive excitation is fluctuations in interaction
amplitude between different cascades.

» Can not calculate the amplitude from a single final state,

» Strong interference at amplitude level: canceling contributions.
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Conclusions

Exclusive diffractive excitation: Toy model

» Incoming state (mass eigenstate) |0)
» Can emit gluon (3) or not (). Unitary: o? + 32 = 1.
» Absorbed into non-diffractive states when scattering.
Interaction eigenstates with eigenvalues 1 — e~ 2= 1,
» Can emit/absorb (inverse rotation) gluon also after scattering.
> Alastic = 62e—f0—f1 +a?eh.
B efo-fi B a e o«
e

—fo—fi —f
> Apiffex = af(e707t — 7).
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Conclusions Results

Exclusive diffractive excitation: Solved!

» A single real final state cascade is collided with a large number
of virtual cascades.

» Takes time, but can do calculations at amplitude level.

» Collide several similar real final states, to calculate
fluctuations.

» Takes even more time, but necessary.
» No extra parameters! Exclusive diffractive excitation event
generator as prediction from inclusive and non-diffractive
minimum bias.
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Preliminary Results: HERA Single Diffraction

DIPHSY W = 120, Q2 - 24 GeV, PRELIMINARY —— DIPHSY W =120, Q2 = 24 GeV, PRELIMINARY
HERA <n> —— HERAD

Multiplicity and fluctuations in multiplicity as function of My~
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Preliminary Results: HERA Single Diffraction
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Conclusions

» BFKL-based dipole model in transverse space, evolved in
rapidity.
» Includes saturation, confinement and most of NLL.
» Does exclusive non-diffractive observables and now full event
generator.
» Monte Carlo implementation: DIPSY arXiv:1103:4321.
» Now also exclusive diffractive excitation.

» Calculates fluctuations at amplitude level.
» No extra parameters, all prediciton!
> Agrees very well with Hera data.
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Non-diffractive interaction probability '&"

v

Non-diffractive interaction probability is total - diffractive:

2l—efH—(1—eF2=1-¢2

v

The non-interaction probability factorise (F = f;)

1—e2Xfi —1_ He_2f"f

v

assuming independent interactions, the non-diffractive

dipole-dipole interaction probability between dipole i and j is
1— e 2fi,

v

This can be used to determine the interacting dipoles i our
Monte Carlo implementation: DIPSY.

DIPSY 32 Christoffer Flensburg Lund University



Exclusive diffractive excitation”
Conclusions

Backup Slides

Details on extracting Final State...

.

» There are plenty of subtleties where perturbative QCD gives
little guidance, but that still affects observables. See
arXiv:1103:4321 for further details.

» reweighting of some k,-max in evolution.
» deciding what parents to put on shell.
» formulation of ordering and coherence.
» and more.
» These are first decided by self consistency (frame
independence) and tuning to inclusive observables.

> Last freedom in model-space is left to be tuned to exclusive
obervables such as charged particle distributions.
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Final State radiation and Hadronisation

» FSR fills up the remaining phase space (emissions that are
unordered in py).

» FSR with the ARIADNE Monte Carlo, based on the Linked
Dipole Chain model.

» Hadronisation with the Lund String Model using PYTHIA 8.
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More possibilities

» DIS final states.

» Inclusive and semi-inclusive data is well described.
» Current version can generate *p final states, but have not yet
been compared to data.

» ~*Ainclusive and exclusive observables.
» By first tuning AA, pA and v*p to data, it should be reliable.
» Diffractive final states.

» Tricky (interactions are not independent), but underway.
» Hope to return soon with results.
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Swing motivated by frame independence
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Swing motivated by frame independence

» Same state created with different interaction frames yy,
marked by dashed vertical line.

» the cascades and interaction described in 4 steps going from
up to down.

» What is a multiple interaction ((23) interacting with (64), and
(02) with (57)) in the left scenario, is a swing ((34) with (25))
and a single interaction ((35) with (01)) in the right scenario.
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Swing giving 2 — 1 merging

Dipole evolving from left to right.

left: 1 — 2 chain splitting. right: swing induced 2 — 1 merging:
dipole (26) swings with (45).
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Swing giving 2 — 1 merging
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e, at RHIC and LHC
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¢, — Vg at RHIC and ¢, for CuAu
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DIPSY

" Partons from left Nucleus
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average E dens. at fix B = (0.8R,0fm), central n

PP B=1.28im, average. (GeVim’) Heble at B=2.03im, average. (GeV/fm?) LiLiat B=2.33fm, average. (GeV/in’)

1
X (1) X (1m)

CuCu at B=5im, average. (GeViin) PbPb B=7im, average. (GeViim?)
10

43




Exclusive diffractive excitation”
Conclusions

Backup Slides

Interpretating ¢,

Glauber: central 7 density ~ Npare a(x1) + Noare 8(X1)-

KLN: central 1) density ~ min(Npare a(x 1), Npare 8(x1)).
DIPSY: central 7 density ~ Nyare a(x1 ) Npare (X1 )Ssat (X1, --.).
Glauber MC underestimates e5.

dAde‘—\

vV VvyVyYyy

d, > dy

DIPSY 44 Christoffer Flensburg Lund University



Exclusive diffractive excitation”
Conclusions

Backup Slides

Virtual vs Real gluons

» The interacting gluons (and their parents) are saved, the
others are reabsorbed.

) o 3
M@%@O(ﬁ&%@o gﬁ@
I §

Christoffer Flensburg Lund University



Exclusive diffractive excitation”
Conclusions

Backup Slides

Virtual vs Real gluons

» The interacting gluons (and their parents) are saved, the
others are reabsorbed.
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Virtual vs Real gluons

» The interacting gluons (and their parents) are saved, the
others are reabsorbed.
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The Dipole Swing: Saturation.

» Turns large dipoles into small dipoles.
» Dynamically generates a saturation scale Qs from local gluon

density.
» Small dipoles have smaller interaction probability —
saturation.
300 T — T
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ATLAS exclusive data

Charged (p, ) vs. Ng, at 900 GeV, track p; > 500 MeV, for Ny, > 1

Charged (p, ) vs. Ng, at 7TeV, track p; > 500MeV, for N, > 1

RPN Aaadanass Maks iadasnaand Mbats st hatad taats e B~ N 0 IS
¢ ER .

12 x =~ =
4 C | 4 |
= = PR S/ p— :5 E
E gaant E E

08 [ »‘%‘Q’W = =
06 —e— ATLAS data E —e— ATLAS data E

F —— DIPSY 3 —— DIPSY 3
s Pythia8 e Pythia8 3

E - =~ Pythia8(ND) - =~ Pythia8(ND) 3

02— x  DIPSY(asym) x  DIPSY(asym) =
oMttt [t e e e R I T L B e

P S A R AN R AR RAARR AR AR 1 1 I 1 E

s 12f B ] L E
2 Ee wox X 3 x | perewpeyes|
g _F b PN = Ciat—r— E|
S o8| 2 ol E
ool e e s e o PRI RN NN NN RO B

5 10 15 20 25 30 35 40 45 20 40 60 80 100 120

Nen Nen

Average transverse momentum as function of charged multiplicity
at 0.9 and 7 TeV.
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ATLAS exclusive data

Transverse Neyg density vs. p'kt, /s = goo GeV Transverse Neyg density vs. piiki, /s = 7 TeV
— T T T T T L o LA B
SN A R AR RS AR AAARR AR g LTI g
5 C —e— ATLAS data 13 L ]
> iF —— DIPSY J % 1F |
z Lo e Pythia8 1 = C ]
T os[ === Pythia8(ND) 4% osf E
C x  DIPSY(asym) ] C ]
0.6 [ - 0.6 [ -
£ ] £ —e— ATLAS data ]
04 0.4 - —— DIPSY -
E PP Pythia8 ]
02 | 02 [® - = = Pythia8(ND) 3
g £ x DIPSY(asym) il
il oy o A AT A AN NI A I O |
- R A R RAR A AAR RAR RN
= E
e 5 1aEx E
ﬁ § 1 Bat —— = =
g osE ER-RN &WX.X x x 3
°-5:‘H\"‘m‘H\""\‘mmmuummuu— Sl Sl P I I O P I O N e
1 2 3 4 5 6 7 10 2 4 6 8 10 12 14 16 18 20
pL (le\dmg track) [Gev] p. (leading track) [GeV]

The multiplicity of charged particles in the transverse region as
function of the transverse momentum of the leading charged
particle at 0.9 and 7 TeV. More plots at
http://home.thep.lu.se/~1leif/DIPSY.html.
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