

New B Physics Results from CMS

Stefan Spanier University of Tennessee for the CMS Collaboration

- Observation of a new b-Baryon
- Upper Limit Measurement for $B \rightarrow \mu^+ \mu^-$

Muon Trigger

- L1 hardware trigger (~1μs)
- High-level trigger: tracking/vertexing

```
invariant \mu^+\mu^- mass combinations
J/\psi \rightarrow \mu^+\mu^- displaced (\Delta m=200 \text{ MeV})/prompt (250 MeV)
```


Muon Efficiency

- Muon tracking
- excellent $\sigma_{pT}/p_T \sim 1\%$
- efficiency > 99% for central μ
- excellent vertex reconstruction impact parameter σ ~15um

- Muon Efficiency
 - "tag and probe" in data

- Monte Carlo (compatible with data)

B Baryon Searches

Ξ_{b}^{-} Reconstruction (+ c.c.)

Ξ_b⁻ Reconstruction

Cut&count optimizing FOM S/ $\sqrt{S+B}$ Estimate background from sidebands Vary 30 variables iteratively, e.g.

• $p_{T}(p), p_{T}(\pi)$ •Impact parameter 3D I/ σ_{I} •Probability vertex fit J/ψ •Probability of vertex fit •Displacement significance $J/\psi\Xi$ •Flight significance Λ in xy •Flight significance J/ψ in xy •Proper decay time • $p_T(\Xi_b)$ in barrel/endcap Mass window •Flight significance $3D(\Xi_h PV)$ J/ψ • $p_{T}(\mu)$ for barrel/endcap •p_T(J/ψ), η(J/ψ) Mass window

E⁻ Reconstruction

Ξ_b^{*0} Selection

Combine Ξ_{b}^{-} candidate ($\Delta m < 2.5\sigma$) with

<u>Track</u>: opposite sign wrt Ξ_{b}^{-} (right sign) – wrong sign for background model at least 2 pixel (5 tracker) hits; 3D distance to PV < 3σ

<mark>Ξ_b*0 Result</mark>

→ m = 5945.0 ± 2.7 _{PDG} ± 0.7 _{stat} ± 0.3 _{syst} MeV

.. the first particle discovered by CMS, and the first b-baryon @ LHC

Standard Model Physics

- $B_s^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^$ strongly suppressed in the SM
- forbidden at tree level
- Cabibbo suppressed
- helicity suppressed
- require an internal quark annihilation

New Physics sensitivity comparable to $\mu \rightarrow e\gamma$, $B \rightarrow vv$

- \rightarrow Non-Observation binds parameter space
- → Complementary to direct searches at LHC

Decay	BFSM
$B_s^{\ 0} \rightarrow \mu^+\mu^-$	$(3.2 \pm 0.2) \times 10^{-9}$
$B^0 \to \mu^+ \mu^-$	$(1.1 \pm 0.1) \times 10^{-10}$

Buras arXiv:1009.1303.

Analysis Strategy

- Search in $\mu^+\mu^-$ invariant mass region simultaneously for B_s and B^0 signals
- Blind Analysis optimized cut-&-count

Region	Mass (GeV)
$B^{0} ightarrow \mu^{+} \mu^{-}$	5.20 - 5.30
$B_s^{\ 0} ightarrow \mu^+ \mu^-$	5.30 - 5.45
$M_{B_{s}^{0}}-M_{B^{0}}$	$=90\pm3\mathrm{MeV}$

- <u>Barrel</u>: $(|\eta_{\mu}| < 1.4) \rightarrow$ higher sensitivity, resolution $\sigma(m_{\mu\mu}) \sim 40 \text{MeV}$
- Endcap ($|\eta_{\mu}|$ >1.4) \rightarrow add statistics, $\sigma(m_{\mu\mu}) \approx 60 \text{ MeV}$
- Measure with respect to $B^+ \rightarrow J/\psi(\mu^+\mu^-) K^+$ (similar selection)

$$Br_{95\%}\left(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}\right) = \frac{N(n, n_{s}, n_{B})}{N_{obs}^{B^{+}}} \frac{\varepsilon_{tot}^{B^{+}}}{\varepsilon_{tot}} \frac{f_{u}}{f_{s}} Br\left(B^{+}\right)$$

- luminosity cancels
- reduce efficiency uncertainties

 $f_s / f_u = 0.267 \pm 0.021$ [LHCb]

[PDG]

- no uncertainties from bb production cross section
- Reconstruct $B_s \rightarrow J/\psi(\mu^+\mu^-) \phi(K^+K^-)$ as control channel to validate B_s mesons in data and MC simulations (similar selection)

Signal Selection Variables

- Pointing angle $\alpha_{\textit{3D}}$
- Vertex fit χ^2/dof
- Flight length significance $l_{3D}/\sigma(l_{3D})$
- Impact parameter 3D significance

Data Sideband % Signal MC

Signal Selection Variables

- Isolation cone around primary vertex for $\Delta R < 0.7$ along B, $p_{\perp} > 0.9$ GeV $I = \frac{p_{\perp}(B)}{p_{\perp}(B) + \sum_{rrl} |p_{\perp}|}$
- Distance of closest track to B vertex $d^0_{\ ca}$
- Number of close tracks (d_{ca} <300um, p_{\perp} >0.5 GeV)

Data % Simulation Validation

- Differences data MC taken as systematic uncertainties:
 > On B[±] → J/ψK[±], max diff = 2.5% (isolation) tot = 4%
 > On B_s⁰ → J/ψφ, max diff = 1.6% (SV χ^{2/}ndof) tot = 3%
- Excellent MC data comparison

Sideband subtracted data % control Monte Carlo

Backgrounds

Combinatorial

- Two semi-leptonic B decays
- One semi-leptonic B decay and one mis-identified hadron

→ Flat / estimated from sidebands

Single B Decays

- peaking $(B_s^0 \rightarrow K^+K^-)$ shifted to lower mass
- non-peaking $(B_s^0 \rightarrow K^- \mu + v_{\mu})$ one fake μ , lower mass
- →Shape from MC
- \rightarrow Rate from normalization to B⁺
- ~ 4% systematic uncertainty from shape

Systematic Uncertainties

- Acceptance with mixture of hadronic production gluon fusion/flavor excitation/gluon splitting
- Selection criteria (data % Monte Carlo) efficiency signal, normalization, kaon tracking
- Muon trigger and identification efficiency
- Yield in control channel #82700 + #23800 observed

Cross Checks

- Estimate background for anti-isolation cut
- Evaluate $BF(B_s \rightarrow J/\psi \phi)/BF(B^+ \rightarrow J/\psi K^+)$
- Signal in samples for different periods

Barrel | Endcap ~ 4% | 5% ~ 7% | 7% ~ 5% | 10% ~ 5% | 5%

Result

Variable	B⁰→µµ Barrel	B _s ⁰→µµ Barrel	B⁰→µµ Endcap	B _s ⁰→µµ Endcap
ε _{tot}	0.0029 ± 0.0002	0.0029 ± 0.0002	0.0016 ± 0.0002	0.0016 ± 0.0002
N _{signal} exp	0.24 ± 0.02	2.70 ± 0.41	0.10 ± 0.01	1.23 ± 0.18
N _{total} exp	0.97 ± 0.35	3.47 ± 0.65	1.01 ± 0.35	2.45 ± 0.56
N _{obs}	2	2	0	4

18

Result

Population in B_s sample:

$$N = N \left(N_B^{flat} + N_B^{rare} + N_S^s \Gamma_{ss} \frac{BF_s}{BF_s} + N_S^d \Gamma_{sd} \frac{BF_d}{BF_d} \right)$$

With CLs at 95%CL (including systematic uncertainties):

	observed	median expected	toy
BR(B _s ⁰→µµ)	7.7 x 10 ⁻⁹	8.4 x 10 ⁻⁹	
BR(B⁰→μμ)	1.8 x 10 ⁻⁹	1.6 x 10 ⁻⁹	

The observed number of events is consistent with background plus Standard Model signals.

Conclusion

Significantly improved < 1.9 x 10⁻⁸ @ EPS2011

- Higher purity
- Improved sensitivity
- Pile-up robustness

- → Accepted by JHEP <u>arXiv:1203.3976</u>
- → Expect competitive new result from 2012 dataset