Basic jet clustering at the LHC

Grégory Soyez IPhT, CEA Saclay

SMLHC — Copenhagen — April 10-13 2012

Introduction:

elementary concepts everyone knows

- Challenge #1: LHC v. pQCD
 - inclusive-jet and dijet cross-sections
 - cross-section ratios
- Challenge #2: pile-up (and UE in PbPb collisions)
 - Background effects on jet reconstruction
 - Latest prescription for pile-up subtraction

What are the jets at the LHC?

All LHC experiments use the anti- k_t algorithm [M.Cacciari,G.Salam,GS, 0802.1189]

 Works by successively recombining the particles that minimise the distance

 $d_{ij} = \min(k_{ti}^{-2}, k_{tj}^{-2}) \left[\Delta y_{ij}^2 + \Delta \varphi_{ij}^2\right] \qquad d_{iB} = k_{ti}^{-2} R^2$

Min is d_{ij} : cluster $i, j \rightarrow k$; min is d_{iB} : call i a jet

- Fully defined only when *R* is specified!
- ATLAS and CMS do not use the same jets: ATLAS R = 0.4, 0.6, CMS R = 0.5, 0.7
- Main characteristic: resilient to soft radiation
 - Easier experimental calibration
 - Some easier pQCD computations (e.g. resum)

– p. 3

Challenge #1: LHC v. pQCD

Things to focus on: - stability of the NLO QCD prediction (scale, PDF, ...) - importance of non-perturbative effects Both experiments have similar y and p_t coverage They both measure inclusive and dijet cross-sections

Theory	ATLAS	CMS
Jets	R=0.4, 0.6	R=0.5 or 0.7
PDFs	CT10	CT10
	MSTW2008	MSTW2008
	NNPDF2.1	NNPDF2.0
	HERAPDF1.5	(PDH4LHC)
MCs	NLOJet++	NLOJet++
	POWHEG(NLO)	
	POWHEG+PS	
scale	$\mu = p_{t,\text{hardest}}$	$\mu = p_{t, \text{jet}}$
N-pert.	Py6(AUET2B)	Py6(D6T,Z2)

Dijets at CMS

- forward: important scale uncertainty
- small scale (M_{JJ}) : non-pert. corrections dominate Room for tune improvement
- large scale: PDF uncertainty dominate Room for PDF improvement
- Agreement but theory systematically above data

Inclusive jets at CMS

$$\sqrt{s}$$
=7 TeV, anti- k_t (R=0.5)

- again theory on the high side
- \square NP dominates at low p_t
- small PDF dependence

Inclusive jets at ATLAS

Inclusive jets at ATLAS

- NLOJet++ agrees with POWHEG(NLO)
- tune dependence
 - rather large
 - \square no p_t dep?
 - AUET2B (default) looks better

Dijets at ATLAS

3-jet to 2-jet ratio (CMS)

Matching uncertainty? Proper tune for ME+PS?

Another potentially interesting ratio to look at is

$$\mathcal{R}(p_t; R_1, R_2) = \frac{d\sigma/dp_t(R = R_1)}{d\sigma/dp_t(R = R_2)}$$

Another potentially interesting ratio to look at is

$$\mathcal{R}(p_t; R_1, R_2) = \frac{d\sigma/dp_t(R = R_1)}{d\sigma/dp_t(R = R_2)}$$

Naive perturbative computation:

$$\mathcal{R} = \frac{\alpha_s^2 \sigma_{\rm LO} + \alpha_s^3 \sigma_{\rm NLO}(R_1)}{\alpha_s^2 \sigma_{\rm LO} + \alpha_s^3 \sigma_{\rm NLO}(R_2)} = 1 + \frac{\Delta \sigma_{\rm NLO}(R_1, R_2)}{\sigma_{\rm NLO}(R_2)} \alpha_s$$

Another potentially interesting ratio to look at is

$$\mathcal{R}(p_t; R_1, R_2) = \frac{d\sigma/dp_t(R = R_1)}{d\sigma/dp_t(R = R_2)}$$

Better perturbative computation:

$$\sigma(p_t; R) = \alpha_s^2 \sigma_{\text{tree}}^{2 \to 2} + \alpha_s^3 [\sigma_{\text{tree}}^{2 \to 3}(R) + \sigma_{1-\text{loop}}^{2 \to 2}] + \alpha_s^4 [\sigma_{\text{tree}}^{2 \to 4}(R) + \sigma_{1-\text{loop}}^{2 \to 3}(R) + \sigma_{2-\text{loop}}^{2 \to 2}] + \mathcal{O}\left(\alpha_s^5\right)$$

The unknown 2-loop contribution cancels in the ratio:

$$\mathcal{R} = 1 + \alpha_s \frac{\Delta \sigma_{\text{tree}}^{2 \to 3}}{\sigma_{\text{tree}}^{2 \to 2}} + \alpha_s \frac{\Delta \sigma_{\text{tree}}^{2 \to 2}}{\sigma_{\text{tree}}^{2 \to 4} + \Delta \sigma_{1-\text{loop}}^{2 \to 3}} - \alpha_s^2 \frac{\sigma_{\text{NLO}}(R_2) \Delta \sigma_{\text{tree}}^{2 \to 3}}{[\sigma_{\text{tree}}^{2 \to 2}]^2}$$

Another potentially interesting ratio to look at is

$$\mathcal{R}(p_t; R_1, R_2) = \frac{d\sigma/dp_t(R = R_1)}{d\sigma/dp_t(R = R_2)}$$

Hadronisation effects can be estimated analytically [see Mrinal's talk]

Note: We use $\langle \delta p_t \rangle_{hadr} = -\mu/R$.

This neglects the (unconstrained) smearing *i.e.* slightly overestimates the effect.

Predictions...

- Reduced experimental uncertainty?
- Constraints on non-pert. corrections? on PDFs?

Pileup and noisy backgrounds

 The LHC will operate routinely with ~ 30 PU events what are the implications?
 valid also for UE in PbPb collisions

Basic considerations

Pileup mostly^(*) characterised by 3 numbers:

- ρ : the average activity (per unit area)
- σ : the intra-event fluctuations (per unit area)
- σ_{ρ} : the event-to-event fluctuations of ρ
- (*) for qualitative discussions (e.g. full fluctuation spectrum needed for proper unfolding)

For a jet (of area *A*) that means:

$$p_t \to p_t + \rho A \pm \sigma_\rho A \pm \sigma \sqrt{A}$$

ρ and σ illustration

 $\rho = 12 \text{ GeV}, \sigma = 0.48 \text{ GeV}$

$$ho = 12 \text{ GeV}, \sigma = 3 \text{ GeV}$$

Illustration of the consequences

- Shift due to the " ρA " term
- Smearing due to the " $\sigma_{\rho}A$ " and " $\sigma\sqrt{A}$ " terms

Back reaction

Negligible for anti- k_t (a nice consequence of its soft resilience)

Jet-area-based subtraction

[M.Cacciari, G.P. Salam, GS]

$$p_{t,\text{jet}}^{(\text{sub})} = p_{t,\text{jet}} - \rho_{\text{est}}A_{\text{jet}}$$

- jet area: throw ghosts particles (area quanta) in the event
- ${}_{m
 ho}$ $\rho_{
 m bkg}$, the background p_t density per unit area
 - Cluster with k_t of C/A with "radius" $R_{
 ho}$ OR split into grid cells ($R_{
 m cell} \sim 0.55$)
 - Estimate $ho_{
 m bkg}$ using

$$\rho_{\rm bkg} = \mathop{\rm median}_{j\in {\rm patches}} \left\{ \frac{p_{t,j}}{A_j} \right\}$$

Jet-area-based subtraction

[M.Cacciari, G.P. Salam, GS]

$$p_{t,\text{jet}}^{(\text{sub})} = p_{t,\text{jet}} - \rho_{\text{est}}A_{\text{jet}}$$

- Jet area A_{jet} : per jet
- Bkg density ρ : (typically) per event

Consequences:

- corrects for the ρA shift
- gets rid of the $\sigma_{\rho}A$ smearing
- left with the fluctuations $\sigma\sqrt{A}$

Rapidity dependence

local range ${\cal R}$

$$\rho(j) = \operatorname{median}_{j' \in \mathcal{R}(j)} \left\{ \frac{p_{t,j'}}{A_{j'}} \right\}$$

rapidity rescaling

$$\rho(j) = f(y_j) \operatorname{median}_{\operatorname{all} j'} \left\{ \frac{p_{t,j'}}{A_{j'} f(y_{j'})} \right\}$$

could use grid cells instead of jets

LHC, anti- $k_t(R = 0.5)$ jets embedded into $\langle 20 \rangle$ PU events

- Iocal range & y-rescaling OK
- 100-200 MeV average precision
- y-resc. slightly better than
 local range for busy events

- resolution improved
- ${\scriptstyle \bullet}$ better than using $\rho \propto n_{\rm PU}$
 - + handles out-of-time PU
- I residual $\sqrt{p_t}$ from back-reaction

Conclusions

- Jet data v. QCD predictions: good agreement but
 - theory systematically above the data
 - rather large tune dependence (small p_t)
 - NLOJet++ v. POWHEG(NLO) for dijets
 - Alpgen+PS v. Madgraph+PS: matching? tune?
 Better understanding these would certainly help!
 Other observables (*e.g.* ratios) for more constraints
- Pile-up subtraction: our recommended strategy
 - Jet-area based subtraction
 - ${\scriptstyle {\rm I}} \ \rho$ from $y{\rm -rescaled}$ median over grid cells
 - using a local range is a nice alternative

Advantages: no shift, no event-to-event smearing

Ad: FastJet v3

[M.Cacciari, G.Salam, GS, 1111.6097, www.tastjet.fr]

FastJet v3 (Oct 2011) meets modern requirements:

- Addition of FastJet tools:
 - Jet substructure/post-processing common framework

Transformer transformer;

PseudoJet transformed_jet=transformer(jet);

Ex: Filter, Pruner, MassDropTagger, JHTopTagger

New background estimation and subtraction interface:

JetMedianBackgroundEstimator

GridMedianBackgroundEstimator

- New functionalities:
 - **PseudoJet aware of its structure** e.g. jet.constituents()
 - associate arbitrary user information with a PseudoJet
 - Selectors for applying cuts: e.g.

SelectorNHardest(2) * SelectorAbsRapMax(5)