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Introduction:
elementary concepts everyone knows

Challenge #1: LHC v. pQCD
inclusive-jet and dijet cross-sections
cross-section ratios

Challenge #2: pile-up (and UE in PbPb collisions)
Background effects on jet reconstruction
Latest prescription for pile-up subtraction
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What are the jets at the LHC?

All LHC experiments use the anti-kt algorithm
[M.Cacciari,G.Salam,GS, 0802.1189]

Works by successively recombining the particles
that minimise the distance

dij = min(k−2
ti , k−2

tj ) [∆y2ij +∆ϕ2
ij] diB = k−2

ti R2

Min is dij: cluster i, j → k; min is diB: call i a jet

Fully defined only when R is specified!

ATLAS and CMS do not use the same jets:
ATLAS R = 0.4, 0.6, CMS R = 0.5, 0.7

Main characteristic: resilient to soft radiation

Easier experimental calibration
Some easier pQCD computations (e.g. resum) – p. 3



Challenge #1: LHC v. pQCD

Things to focus on:
- stability of the NLO QCD prediction (scale, PDF, ...)

- importance of non-perturbative effects
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Who does what? (roughly)

Both experiments have similar y and pt coverage
They both measure inclusive and dijet cross-sections

Theory ATLAS CMS
Jets R=0.4, 0.6 R=0.5 or 0.7

PDFs CT10 CT10
MSTW2008 MSTW2008
NNPDF2.1 NNPDF2.0

HERAPDF1.5 (PDH4LHC)

MCs NLOJet++ NLOJet++
POWHEG(NLO) POWHEG(NLO)
POWHEG+PS

scale µ = pt,hardest µ = pt,jet

N-pert. Py6(AUET2B) Py6(D6T,Z2) – p. 5



Dijets at CMS
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Inclusive jets at CMS
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small PDF dependence
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Inclusive jets at ATLAS

same conclusion
as for CMS

CT10 slightly larger
at large pt
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Inclusive jets at ATLAS

NLOJet++ agrees
with POWHEG(NLO)

tune dependence
rather large
no pt dep?
AUET2B (default)
looks better
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Dijets at ATLAS
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3-jet to 2-jet ratio (CMS)

pt,jet,min = 50 GeV, HT =
∑

pt,jet

 (TeV)TH
0.5 1 1.5 2 2.5

M
C

/D
at

a

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

 (TeV)TH
0.5 1 1.5 2 2.5

M
C

/D
at

a

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
PYTHIA6 tune Z2
PYTHIA6 tune D6T
PYTHIA8 tune 2C
MADGRAPH + PYTHIA6 tune D6T
ALPGEN + PYTHIA6 tune D6T
HERWIG++ tune 2.3
Combined Statistical and Systematic Uncertainty

CMS
= 7 TeVs

-1=36 pbintL

 R=0.5Tanti-K

Alpgen
v.

qMadgraph?

Matching uncertainty?
Proper tune for ME+PS?

– p. 11



Cross-section ratio at different radii

Another potentially interesting ratio to look at is

R(pt;R1, R2) =
dσ/dpt(R = R1)

dσ/dpt(R = R2)
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Cross-section ratio at different radii

Another potentially interesting ratio to look at is

R(pt;R1, R2) =
dσ/dpt(R = R1)

dσ/dpt(R = R2)

Naive perturbative computation:

R =
α2
sσLO + α3

sσNLO(R1)

α2
sσLO + α3

sσNLO(R2)
= 1 +

∆σNLO(R1, R2)

σNLO(R2)
αs
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Cross-section ratio at different radii

Another potentially interesting ratio to look at is

R(pt;R1, R2) =
dσ/dpt(R = R1)

dσ/dpt(R = R2)

Better perturbative computation:

σ(pt;R) = α2
sσ

2→2
tree + α3

s[σ
2→3
tree (R) + σ2→2

1−loop]

+ α4
s[σ

2→4
tree (R) + σ2→3

1−loop(R) + σ2→2
2−loop] +O

(

α5
s

)

The unknown 2-loop contribution cancels in the ratio:

R = 1 + αs
∆σ2→3

tree

σ2→2
tree

+ α2
s

∆σ2→4
tree +∆σ2→3

1−loop

σ2→2
tree

− α2
s

σNLO(R2)∆σ2→3
tree

[σ2→2
tree ]

2
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Cross-section ratio at different radii

Another potentially interesting ratio to look at is

R(pt;R1, R2) =
dσ/dpt(R = R1)

dσ/dpt(R = R2)

Hadronisation effects can be estimated analytically
[see Mrinal’s talk]

Note: We use 〈δpt〉hadr = −µ/R.

Note: This neglects the (unconstrained) smearing i.e. slightly overestimates the effect.
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Predictions...
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Reduced experimental uncertainty?

Constraints on non-pert. corrections? on PDFs?
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Pileup and noisy backgrounds

- The LHC will operate routinely with ∼ 30 PU events
what are the implications?

- valid also for UE in PbPb collisions
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Basic considerations

Pileup mostly(∗) characterised by 3 numbers:

ρ: the average activity (per unit area)

σ: the intra-event fluctuations (per unit area)

σρ: the event-to-event fluctuations of ρ
(∗) for qualitative discussions (e.g. full fluctuation spectrum needed for proper unfolding)

For a jet (of area A) that means:

pt → pt + ρA± σρA± σ
√
A
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ρ and σ illustration
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Illustration of the consequences
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Back reaction

No background With background

gainloss

Negligible for anti-kt
(a nice consequence of its soft resilience)
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Jet-area-based subtraction

[M.Cacciari, G.P. Salam, GS]

p
(sub)
t,jet = pt,jet − ρestAjet

jet area: throw ghosts particles (area quanta) in the event

ρbkg, the background pt density per unit area

Cluster with kt of C/A with “radius” Rρ

OR split into grid cells (Rcell ∼ 0.55)

Estimate ρbkg using

ρbkg = median
j∈patches

{

pt,j
Aj

}
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Jet-area-based subtraction

[M.Cacciari, G.P. Salam, GS]

p
(sub)
t,jet = pt,jet − ρestAjet

Jet area Ajet: per jet
Bkg density ρ: (typically) per event

Consequences:
corrects for the ρA shift
gets rid of the σρA smearing

left with the fluctuations σ
√
A
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Rapidity dependence

local range R rapidity rescaling

ρ(j) = median
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Subtraction benchmarks

LHC, anti-kt(R = 0.5) jets embedded into 〈20〉 PU events

average shift dispersion
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Conclusions

Jet data v. QCD predictions: good agreement but
theory systematically above the data
rather large tune dependence (small pt)
NLOJet++ v. POWHEG(NLO) for dijets
Alpgen+PS v. Madgraph+PS: matching? tune?

Better understanding these would certainly help!
Other observables (e.g. ratios) for more constraints

Pile-up subtraction: our recommended strategy

Jet-area based subtraction
ρ from y-rescaled median over grid cells
using a local range is a nice alternative

Advantages: no shift, no event-to-event smearing
– p. 22



Ad: FastJet v3

[M.Cacciari,G.Salam,GS, 1111.6097, www.tastjet.fr]

FastJet v3 (Oct 2011) meets modern requirements:

Addition of FastJet tools:

Jet substructure/post-processing common framework
Transformer transformer;

PseudoJet transformed jet=transformer(jet);

Ex: Filter, Pruner, MassDropTagger, JHTopTagger

New background estimation and subtraction interface:
JetMedianBackgroundEstimator

GridMedianBackgroundEstimator

New functionalities:

PseudoJet aware of its structure e.g. jet.constituents()

associate arbitrary user information with a PseudoJet

Selectors for applying cuts: e.g.

SelectorNHardest(2) * SelectorAbsRapMax(5)
– p. 23
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