QCD radiation, properties and substructure of LHC jets

> Mrinal Dasgupta

QCD radiation, properties and substructure of LHC jets

Mrinal Dasgupta

University of Manchester

Copenhagen, April 10, 2012

・ロ・・ (日・・ (日・・ (日・)

르

properties and substructure of LHC jets

> Mrinal Dasgupta

Introduction

- pQCD radiation and jet properties.
- Non-perturbative effects (without Monte Carlo)
- Optimal R and other studies
- Jet substructure
 - Boosted object searches at LHC
 - Jet masses from theory and experiment.
 - Jet grooming techniques

・ロト ・回ト ・ヨト ・ヨト

properties and substructure of LHC jets

> Mrinal Dasgupta

Introduction

pQCD radiation and jet properties.

- Non-perturbative effects (without Monte Carlo)
- Optimal R and other studies
- Jet substructure
 - Boosted object searches at LHC
 - Jet masses from theory and experiment.
 - Jet grooming techniques

・ロト ・回ト ・ヨト ・ヨト

properties and substructure of LHC jets

> Mrinal Dasgupta

- Introduction
- pQCD radiation and jet properties.
- Non-perturbative effects (without Monte Carlo)
- Optimal R and other studies
- Jet substructure
 - Boosted object searches at LHC
 - Jet masses from theory and experiment.
 - Jet grooming techniques

・ロン ・回 ・ ・ ヨン・

properties and substructure of LHC jets

> Mrinal Dasgupta

- Introduction
- pQCD radiation and jet properties.
- Non-perturbative effects (without Monte Carlo)
- Optimal R and other studies
- Jet substructure
 - Boosted object searches at LHC
 - Jet masses from theory and experiment.
 - Jet grooming techniques

・ロン ・回 ・ ・ ヨン・

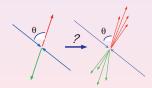
properties and substructure of LHC jets

> Mrinal Dasgupta

- Introduction
- pQCD radiation and jet properties.
- Non-perturbative effects (without Monte Carlo)
- Optimal R and other studies
- Jet substructure
 - Boosted object searches at LHC
 - Jet masses from theory and experiment.
 - Jet grooming techniques

(日) (同) (E) (E) (E) (E)

pQCD and jets


properties and substructure of LHC jets

> Mrinal Dasgupta

Central questions :

- Our calculations involve partons. Measurements made on hadron jets. Can we accurately connect properties of jets to those of partons?
- How well do we understand internal strutcure of QCD jets? Can we use this understanding for discoveries at the LHC?

< ロ > < 同 > < 臣 > < 臣 > -

IRC safe hadron collider jet definitions

properties and substructure of LHC iets

> Mrinal Dasgupta

- Cone type : SISCONE (Seedless Infrared Safe Cone) Salam and Soyez 2007
- Sequential Recombination based on a distance measure.
 - k_t or Durham algorithm

Catani et. al 1993, Ellis et. al 1993

Cambridge-Aachen

Dokshitzer et. al 1997, Wobisch and Wengler 1998 Anti-k_t

Cacciari, Salam, Soyez 2008.

< ロ > < 同 > < 臣 > < 臣 > -

Perturbative radiation and jet properties

properties and substructure of LHC jets

> Mrinal Dasgupta

How does jet's p_t relate back to parent parton ?

$$\langle \delta p_t \rangle_q = -\frac{C_F \alpha_s}{2\pi} p_t \int_{R^2}^1 \frac{d\theta^2}{\theta^2} \frac{1+z^2}{1-z} \min\left[(1-z), z\right]$$

$$rac{\langle \delta p_t
angle_q}{p_t} = -0.43 lpha_s \ln rac{1}{R} \ rac{\langle \delta p_t
angle_g}{p_t} = -1.02 lpha_s \ln rac{1}{R}$$

For R = 0.4 quark jet will have 5 percent less and gluon jet 11 percent less p_t than parent parton. Expect significant finite R and higher-order changes.

MD, Magnea and Salam 2008 c

Perturbative radiation and jet properties

properties and substructure of LHC jets

> Mrinal Dasgupta

How does jet's p_t relate back to parent parton ?

$$\langle \delta \boldsymbol{p}_t \rangle_q = -\frac{C_F \alpha_s}{2\pi} \boldsymbol{p}_t \int_{R^2}^1 \frac{d\theta^2}{\theta^2} \frac{1+z^2}{1-z} \min\left[(1-z), z\right]$$

$$\frac{\langle \delta p_t \rangle_q}{p_t} = -0.43 \alpha_s \ln \frac{1}{R}$$
$$\frac{\langle \delta p_t \rangle_g}{p_t} = -1.02 \alpha_s \ln \frac{1}{R}$$

For R = 0.4 quark jet will have 5 percent less and gluon jet 11 percent less p_t than parent parton. Expect significant finite R and higher-order changes.

MD, Magnea and Salam 2008

Jet Masses

properties and substructure of LHC jets

> Mrinal Dasgupta

Mean values

$$\langle M_j^2 \rangle_q \sim 0.16 \, \alpha_s \, R^2 P_t^2$$

$$\langle M_j^2
angle_g \sim 0.37 \, lpha_{s} \, R^2 P_t^2$$

SISCONE results similar with $R_{\text{SISCONE}} = 0.75R$.

 Jet mass distribution Potentially significant logarithmic enhancements:

$$rac{d\sigma}{dM^2}\sim rac{lpha_s}{M^2}\ln rac{R^2P_t^2}{M^2}.$$

Resummation? S.D. Ellis et.al 2010, Banfi, MD, Marzani, Khelifa Kerfa 2010, Dasgupta, Marzani, Spannowsky, Khelifa Kerfa (in preparation)

Jet Masses

properties and substructure of LHC jets

> Mrinal Dasgupta

Mean values

$$\langle M_j^2 \rangle_q \sim 0.16 \, \alpha_s \, R^2 P_t^2$$

$$\langle M_j^2
angle_g \sim 0.37 \, lpha_{s} \, R^2 P_t^2$$

SISCONE results similar with $R_{\text{SISCONE}} = 0.75R$.

 Jet mass distribution Potentially significant logarithmic enhancements:

$$rac{d\sigma}{dM^2}\sim rac{lpha_{s}}{M^2}\ln rac{R^2P_t^2}{M^2}.$$

Resummation? S.D. Ellis et.al 2010, Banfi, MD, Marzani, Khelifa Kerfa 2010, Dasgupta, Marzani, Spannowsky, Khelifa Kerfa (in preparation)

NP corrections - hadronisation

properties and substructure of LHC jets

Mrinal Dasgupta

Analytical calculations of hadronisation? Use Dokshitzer Webber model: Emit a soft gluer with $k_t \sim \Lambda$. We have

$$\langle \delta p_t \rangle_q = -\frac{2C_F}{\pi} \int_0^{\mu_l} \alpha_s(k_t) dk_t \times \frac{1}{R}$$

Take coupling integral from e^+e^- event shapes to get

$$\langle \delta p_t \rangle_q = \frac{-0.5 \text{GeV}}{R}$$

For gluon jets change $C_F \rightarrow C_A$.

$$\langle \delta \boldsymbol{p}_t \rangle_g = -\frac{1 \text{GeV}}{R}$$

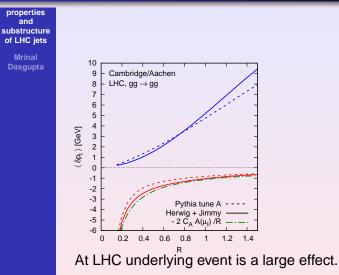
◆□ → ◆周 → ◆目 → ◆目 → ◆ ●

UE contribution

properties and substructure of LHC jets

> Mrinal Dasgupta

 Δ Contrast with underlying event contribution. Assume Λ_{UE} is energy per unit rapidity of soft UE particles.

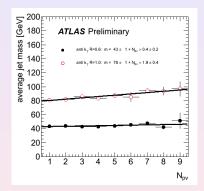

$$\langle \delta p_t \rangle_{\rm UE} = \Lambda_{\rm UE} \int_{\eta^2 + \phi^2 < R^2} d\eta \frac{d\phi}{2\pi} = \Lambda_{\rm UE} \frac{R^2}{2}$$

Has a regular dependence on R (comes from jet area). For jet mass UE contribution goes as R^4 . Similar effects from pile-up but order of magnitude larger at the LHC.

See talk by Gregory

イロト イヨト イヨト イヨト

Comparison with MC models



ъ

Applications - comparison to data

properties and substructure of LHC jets

> Mrinal Dasgupta

Ratio of slopes $R = 4.58 \sim (1.0/0.6)^3$

Applications-Comparison to data

properties and substructure of LHC jets

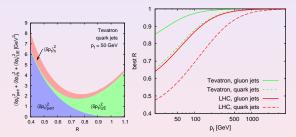
> Mrinal Dasgupta

> > The R^3 scaling is because

$$\delta m = \sqrt{m^2 + \delta m^2} - m \approx \frac{\delta m^2}{2m}.$$

Since δm^2 scales as R^4 and *m* as *R* (43/78 \approx 0.55) one gets an R^3 behaviour.

・ロ・・ (日・・ (日・・ (日・)


Applications-optimal R.

properties and substructure of LHC jets

> Mrinal Dasgupta

Knowing *R* dependence gives rise to concept of optimal *R* values. Based on minimising

 $\langle \delta \boldsymbol{p}_t^2 \rangle = \langle \delta \boldsymbol{p}_t \rangle_{\mathrm{h}}^2 + \langle \delta \boldsymbol{p}_t \rangle_{\mathrm{UE}}^2 + \langle \delta \boldsymbol{p}_t \rangle_{\mathrm{PT}}^2$

For a more accurate treatment: Soyez 2010 At high p_t one should use a larger R -minimises perturbative effect. Likewise for gluon jets a larger R is suggested. For LHC smaller R values than Tevatron.

・ロト ・回ト ・ヨト ・ヨト

Jet shapes and substructure

properties and substructure of LHC jets

> Mrinal Dasgupta

Classic variables to test understanding/modelling of QCD radiation.

At LHC these studies acquire an important context – boosted objects such as high p_T Higgs decay to products which have narrow opening angle. Can end up in single jet. Recall

$$M^2 = z(1-z)p_t^2\theta_{12}^2$$

For $R \ge \frac{M}{\sqrt{z(1-z)\rho_t}}$ we will get a single jet. For $p_t \sim 500$ GeV , $M \sim 100$ Gev $R \ge 0.6$ implies that 75 percent of such decays will be clustered to a jet.

(日) (同) (E) (E) (E) (E)

Jet shapes and substructure

properties and substructure of LHC jets

> Mrinal Dasgupta

Classic variables to test understanding/modelling of QCD radiation.

At LHC these studies acquire an important context – boosted objects such as high p_T Higgs decay to products which have narrow opening angle. Can end up in single jet. Recall

$$M^2 = z(1-z)p_t^2\theta_{12}^2$$

For $R \ge \frac{M}{\sqrt{z(1-z)\rho_t}}$ we will get a single jet. For $p_t \sim 500 \text{ GeV}$, $M \sim 100 \text{ Gev } R \ge 0.6$ implies that 75 percent of such decays will be clustered to a jet.

(ロ) (同) (E) (E) (E)

Jet shapes and substructure

properties and substructure of LHC jets

> Mrinal Dasgupta

Classic variables to test understanding/modelling of QCD radiation.

At LHC these studies acquire an important context – boosted objects such as high p_T Higgs decay to products which have narrow opening angle. Can end up in single jet. Recall

$$M^2 = z(1-z)p_t^2\theta_{12}^2$$

For $R \ge \frac{M}{\sqrt{z(1-z)\rho_t}}$ we will get a single jet. For $p_t \sim 500 \text{ GeV}$, $M \sim 100 \text{ Gev } R \ge 0.6$ implies that 75 percent of such decays will be clustered to a jet.

(日) (同) (E) (E) (E) (E)

Example – jet masses

properties and substructure of LHC jets

> Mrinal Dasgupta

Invariant mass distribution is first clue to identity of jet. Significant issue arises of QCD jet backgrounds.

$$rac{1}{\sigma}rac{d\sigma}{dM^2}\simrac{1}{M^2}lpha_s\lnrac{R^2p_t^2}{M^2}$$

For $p_t \gg M$ this can be significant contamination even at masses of a 100 GeV. Not described well by fixed order. Need to describe jet mass well but this is a challenge for theory. Monte Carlo models readily available.

・ロ・・ (日・・ ほ・・ (日・)

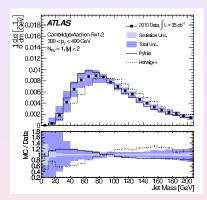
Example – jet masses

properties and substructure of LHC jets

> Mrinal Dasgupta

Invariant mass distribution is first clue to identity of jet. Significant issue arises of QCD jet backgrounds.

$$rac{1}{\sigma}rac{d\sigma}{dM^2}\simrac{1}{M^2}lpha_s\lnrac{R^2
ho_t^2}{M^2}$$


For $p_t \gg M$ this can be significant contamination even at masses of a 100 GeV. Not described well by fixed order. Need to describe jet mass well but this is a challenge for theory. Monte Carlo models readily available.

< ロ > < 同 > < 臣 > < 臣 > -

MC description of LHC jet masses

properties and substructure of LHC jets

> Mrinal Dasgupta

ATLAS collaboration 2012

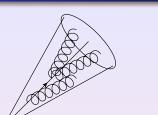
르

・ロト ・回ト ・ヨト ・ヨト

Some points to note

properties and substructure of LHC jets

> Mrinal Dasgupta


- Large logs in RP_T/M_j will be significant even at electroweak scale jet masses. Resummation required.
- Some differences visible between standard MC event generators.
- Non-perturbative effects: Hadronisation for M²_j will go as ΛRP_t. Can easily induce 10 – 20 GeV shifts in jet mass.
- UE goes as *R*⁴. Pile-up similar but shouldnt contribute for ATLAS study.

What about analytical predictions?

Resummation for LHC jet masses

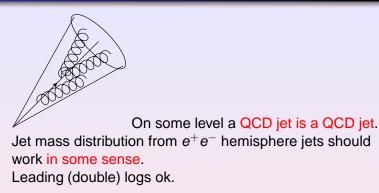
properties and substructure of LHC jets

> Mrinal Dasgupta

On some level a QCD jet is a QCD jet. Jet mass distribution from e^+e^- hemisphere jets should work in some sense. Leading (double) logs ok.

$$\alpha_{\rm s}^n \ln^{2n} 1/\rho, \ \rho = M_j^2/P_t^2$$

Next to leading (single) logs very complex.


 $\alpha_{s}^{n}\ln^{n}1/\rho$

・ロ・・ (日・・ (日・・ (日・)

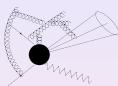
Resummation for LHC jet masses

properties and substructure of LHC jets

> Mrinal Dasgupta

$$\alpha_{\rm s}^n \ln^{2n} 1/\rho, \ \rho = M_j^2/P_t^2$$

Next to leading (single) logs very complex.


 $\alpha_s^n \ln^n 1/\rho$

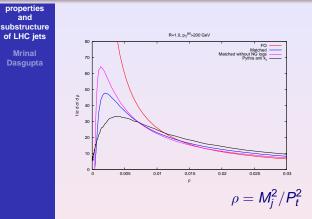
イロン イヨン イヨン ・

Beware of non-global logs and jet algorithms

properties and substructure of LHC jets

Mrinal Dasgupta

Wide-angle soft radiation is process dependent. Also very complex colour structure for non-global single logs.


Dasgupta and Salam 2001

A (10) × (10) × (10)

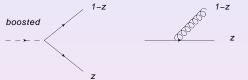
Role of jet algorithm highly non-trivial at single-log level. Resummation possible for anti k_t algorithm in leading N_c limit.

Banfi, Dasgupta, Khelifa-Kerfa, Marzani 2010.

Resummation for Z+ jet matched to leading order

Peak is around 15 GeV.

Non-global logs play a sizable role in peak region. Easy to do the same for dijets. NLO matching in progress.


Dasgupta, Khelifa-Kerfa, Marzani, Spannowsky

Groomed jets

properties and substructure of LHC jets

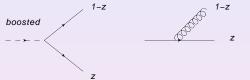
> Mrinal Dasgupta

An alternative approach is to reduce background and contamination by grooming jets.

QCD splitting functions different from those for EW bosons like Higgs.

 $P(z) \propto \frac{1+z^2}{1-z}$ favours soft emission while for Higgs there is a uniform distribution $\phi(z) \propto 1$. Looking at energy sharing within the jet gives a clue to its origin. Since QCD jets dramatically favour large *z* cutting on *z* will reduce background.

Seymour 1993, Butterworth et.al 1994, Butterworth et. al 2008, Ellis et al 2009


・ロン ・回 ・ ・ ヨン・

Groomed jets

properties and substructure of LHC jets

> Mrinal Dasgupta

An alternative approach is to reduce background and contamination by grooming jets.

QCD splitting functions different from those for EW bosons like Higgs.

 $P(z) \propto \frac{1+z^2}{1-z}$ favours soft emission while for Higgs there is a uniform distribution $\phi(z) \propto 1$. Looking at energy sharing within the jet gives a clue to its origin. Since QCD jets dramatically favour large *z* cutting on *z* will reduce background.

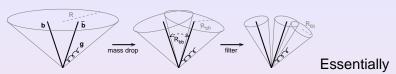
Seymour 1993, Butterworth et.al 1994, Butterworth et. al 2008, Ellis et al 2009

・ロン ・回 ・ ・ ヨン ・ ヨン

Example: Filtering and Pruning of jets

properties and substructure of LHC jets

> Mrinal Dasgupta


similar ideas but important differences of detail.

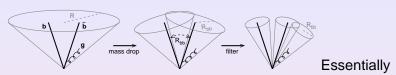
- mass-drop + filtering: undo jet algorithm and look for a significant mass drop of jet $M_{j1} < \mu M_j$. Also demand asymmetric splittings 1 z > y where 1 z can be energy fraction of softer offspring or relative k_t . Filter out UE by using smaller *R* at next stage.
- Pruning: In the reconstruction of a jet ignore all recombinations with angular separation $> D^2$ and energy fraction min $(p_{ti}, p_{tj}) / p_t < z$. Cut out background and contamination in one step.

Example: Filtering and Pruning of jets

properties and substructure of LHC jets

Mrinal Dasgupta

similar ideas but important differences of detail.


• mass-drop + filtering: undo jet algorithm and look for a significant mass drop of jet $M_{j1} < \mu M_j$. Also demand asymmetric splittings 1 - z > y where 1 - z can be energy fraction of softer offspring or relative k_t . Filter out UE by using smaller R at next stage.

• Pruning: In the reconstruction of a jet ignore all recombinations with angular separation $> D^2$ and energy fraction min $(p_{ti}, p_{tj}) / p_t < z$. Cut out background and contamination in one step.

Example: Filtering and Pruning of jets

properties and substructure of LHC jets

> Mrinal Dasgupta

similar ideas but important differences of detail.

- mass-drop + filtering: undo jet algorithm and look for a significant mass drop of jet $M_{j1} < \mu M_j$. Also demand asymmetric splittings 1 z > y where 1 z can be energy fraction of softer offspring or relative k_t . Filter out UE by using smaller R at next stage.
- Pruning: In the reconstruction of a jet ignore all recombinations with angular separation $> D^2$ and energy fraction min $(p_{ti}, p_{tj}) / p_t < z$. Cut out background and contamination in one step.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Groomed masses and logarithms

properties and substructure of LHC jets

> Mrinal Dasgupta

Mass drop (Filtering)

$$\frac{d\Sigma}{d\rho} = C_F \frac{\alpha_s(p_T)}{\pi} \frac{1}{\rho} \ln\left(\frac{1}{y}e^{-\frac{3}{4}}\right) \Theta\left(R^2 y - \rho\right)$$
$$+ C_F \frac{\alpha_s(p_T)}{\pi} \frac{1}{\rho} \ln\frac{R^2 e^{-\frac{3}{4}}}{\rho} \Theta\left(\rho - R^2 y\right) \Theta\left(R^2 - \rho\right) + \mathcal{O}(y)$$

Pruning

 $\frac{d\Sigma}{d\rho} = C_F \frac{\alpha_s}{\pi} \left(\frac{1}{\rho} \ln \frac{D^2}{\rho} \Theta \left(z D^2 - \rho \right) + \frac{1}{\rho} \ln \frac{1}{z} \Theta \left(\rho - z D^2 \right) \right) \\ + \frac{1}{\rho} \ln \frac{R^2}{\rho} \Theta \left(\rho - z R^2 \right) \Theta \left(R^2 - \rho \right) \right).$

(日) (同) (E) (E) (E) (E)

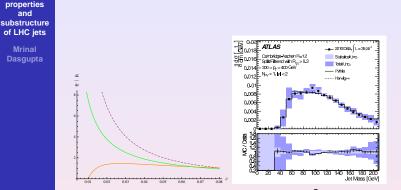
Groomed masses and logarithms

properties and substructure of LHC jets

> Mrinal Dasgupta

Mass drop (Filtering)

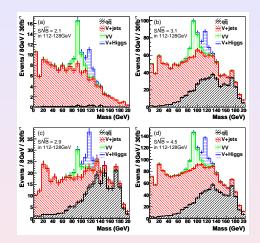
$$\frac{d\Sigma}{d\rho} = C_F \frac{\alpha_s(\rho_T)}{\pi} \frac{1}{\rho} \ln\left(\frac{1}{y}e^{-\frac{3}{4}}\right) \Theta\left(R^2 y - \rho\right)$$
$$+ C_F \frac{\alpha_s(\rho_T)}{\pi} \frac{1}{\rho} \ln\frac{R^2 e^{-\frac{3}{4}}}{\rho} \Theta\left(\rho - R^2 y\right) \Theta\left(R^2 - \rho\right) + \mathcal{O}(y)$$


Pruning

$$\begin{split} \frac{d\Sigma}{d\rho} &= C_F \frac{\alpha_s}{\pi} \left(\frac{1}{\rho} \ln \frac{D^2}{\rho} \Theta \left(z D^2 - \rho \right) + \frac{1}{\rho} \ln \frac{1}{z} \Theta \left(\rho - z D^2 \right) \right. \\ &+ \frac{1}{\rho} \ln \frac{R^2}{\rho} \Theta \left(\rho - z R^2 \right) \Theta \left(R^2 - \rho \right) \right). \end{split}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

-1


Elimination of double logarithms

Soft logs cut out. For pruning need $D^2 \sim \rho$. Single logs of a simple (pure collinear) origin remain. More convergent series so described by fixed-order? MC models agree better here.

QCD radiation, properties and substructure of LHC jets

> Mrinal Dasgupta

An unpromising channel rescued.

Butterworth, Davison, Rubin, Salam 2008

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Mrinal Dasgupta QCD radiation, properties and substructure of LHC jets

properties and substructure of LHC jets

> Mrinal Dasgupta

- Significant progress in defining, speeding up and understanding jets.
 - New ideas aimed at optimizing jet studies in the context of discoveries. Optimal *R*, pile up subtraction are examples.
- Substructure techniques developed at an enormous rate in context of boosted heavy particle searches.
- Fast flexible tools for jet analyses available for use (FastJet, SpartyJet)
- Substructure techniques appear experimentally viable. Some work needed on theoretical side to understand the accuracy of theory tools better.

() < </p>

properties and substructure of LHC jets

> Mrinal Dasgupta

- Significant progress in defining, speeding up and understanding jets.
- New ideas aimed at optimizing jet studies in the context of discoveries. Optimal *R*, pile up subtraction are examples.
- Substructure techniques developed at an enormous rate in context of boosted heavy particle searches.
- Fast flexible tools for jet analyses available for use (FastJet, SpartyJet)
- Substructure techniques appear experimentally viable. Some work needed on theoretical side to understand the accuracy of theory tools better.

・ロ・・ (日・・ (日・・ (日・)

properties and substructure of LHC jets

> Mrinal Dasgupta

- Significant progress in defining, speeding up and understanding jets.
- New ideas aimed at optimizing jet studies in the context of discoveries. Optimal *R*, pile up subtraction are examples.
- Substructure techniques developed at an enormous rate in context of boosted heavy particle searches.
- Fast flexible tools for jet analyses available for use (FastJet, SpartyJet)
- Substructure techniques appear experimentally viable. Some work needed on theoretical side to understand the accuracy of theory tools better.

properties and substructure of LHC jets

> Mrinal Dasgupta

- Significant progress in defining, speeding up and understanding jets.
- New ideas aimed at optimizing jet studies in the context of discoveries. Optimal *R*, pile up subtraction are examples.
- Substructure techniques developed at an enormous rate in context of boosted heavy particle searches.
- Fast flexible tools for jet analyses available for use (FastJet, SpartyJet)
- Substructure techniques appear experimentally viable.
 Some work needed on theoretical side to understand the accuracy of theory tools better.

(日) (同) (E) (E) (E) (E)