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INTRODUCTION

• Hard pQCD deals with short distance strong interactions of high transverse

momentum partons.

• Soft QCD is associated with low transverse momentum partons, separated

by large distances, where we cannot utilize perturbative methods. npQCD

calculations are based on phenomenological models, foremost (but not only)

the Regge pole model with a leading Pomeron (IP ) term.

• Total and elastic (but NOT diffractive) cross sections in the ISR-Tevatron

range are well reproduced by the DL model, where

αIP (t) = 1 + ∆IP + α′
IP t ∆IP = 0.08, α′

IP = 0.25GeV −2.

• Given a super critical IP (∆IP > 0), σel grows indefinitely faster than σtot

and will, eventually, get larger! This paradox is resolved in models where

s-channel unitarity screening is enforced on ael(s, b).



The physics, just presented, is deficient in a few fundamental issues:

• Soft diffractive channels are analogous to the elastic channel. Indeed, Good-

Walker (GW) have observed that in p-p scattering the eigen states of the

scattering matrix are linear combination of the proton and diffractive states.

• t-channel unitarity dynamics initiates additional screenings which should

be taken into account. This is formalized in updated IP models through

multi-IP t-channel interactions.

• Gribov’s partonic interpretation of the soft IP enables a re-examination of

soft versus hard Pomerons.

Most of this talk will center on updated IP models which unify the soft elastic

and diffractive physics. I shall briefly refer to other models based on partonic

concepts. I shall not discuss simulations and parametrizations.



S-CHANNEL UNITARITY

Enforcing s-channel unitarity is model dependent.

Assume a single dimension unitarity equation, 2Imael(s, b) = | ael(s, b)|
2 + Gin(s, b).

This is no more than a statement that σtot(s, b) = σel(s, b) + σinel(s, b).

Its general solution can be written as

ael(s, b) = i
(

1 − e−Ω(s,b)/2
)

and Gin(s, b) = 1 − e−Ω(s,b),

where Ω(s, b) is arbitrary. It induces a unitarity bound of | ael(s, b) |≤ 2.

In a Glauber type eikonal approximation the input opacity Ω(s, b) is real,

i.e. ael(s, b) is imaginary. It equals the imaginary part of the input Born term,

a single IP exchange in our context. The output bound is | ael(s, b) |≤ 1, which

is the black disc bound. An added bonus is that the eikonal model reproduces

the s and t dependence of the diffractive dip (shoulder) observed in p(p̄)-p

elastic scattering. The real part is obtained from dispersion relations.



The figure shows the effect of eikonal s-channel screening, securing that the

screened elastic amplitude is bounded by unity. The figure illustrates, also, the

Rel bound implied by analyticity/crossing symmetry.

The total, elastic and inelastic cross sections are given by

σtot = 2
∫

d2b
(

1 − e−Ω(s,b)/2
)

,

σel =
∫

d2b
(

1 − e−Ω(s,b)/2
)2

,

σinel = σtot − σel =
∫

d2b
(

1 − e−Ω(s,b)
)

.



GOOD-WALKER DECOMPOSITION

Consider a system of two orthonormal states, a hadron Ψh and a diffractive

state ΨD. ΨD replaces the continues population of the diffractive Fock states.

It has a non specified mass. The GW mechanism stems from the observation

that these states do not diagonalize the 2x2 interaction matrix T.

Assume that Ψ1 and Ψ2 are eigen states of T. We get,

Ψh = α Ψ1 + β Ψ2, ΨD = −β Ψ1 + α Ψ2, α2 + β2 = 1,

with 4 elastic GW amplitudes (i,k=1,2), Ai′,k′

i,k = < Ψi Ψk|T|Ψi′ Ψk′ >= Ai,k δi,i′ δk,k′.

For initial p(p̄) − p we have A1,2 = A2,1. The elastic, SD and DD amplitudes are:

ael(s, b) = i{α4A1,1 +2α2β2A1,2 + β4A2,2},

asd(s, b) = iαβ{−α2A1,1+ (α2 − β2)A1,2 + β2A2,2},

add = iα2β2{A1,1 − 2A1,2 + A2,2}.

The eikonal re-scatterings of the incoming projectiles are summed over the GW

eigen states.



Updated IP eikonal models are two channel in which:

Ωi,k(s, b) = νi,k(s) Γi,k(s, b) and νi,k(s) = gigk(
s
s0

)∆IP .

The b-profile Γi,k(s, b) is parametrized so as to reproduce the elastic and

diffractive channels dσ
dt in the forward cone.

The profile is parametrized differently in each IP models. However, all the

corresponding numerics are compatible in the forward t-cone.



MULTI POMERON INTERACTIONS

Mueller(1971) applied 3 body unitarity to equate the cross section of

a + b → M + b to the triple Regge diagram a + b + b̄ → a + b + b̄.

The signature of this presentation is a triple vertex with a leading 3IP term.

The corresponding cross section is

M 2 dσ3IP

dt dM2 =
g2
p(t)gp(0)G3IP

16 π2

(

s
M2

)2αIP (t)−2 (

M2

s0

)αIP (0)−1
,

m2
p

M2 << 1 and M2

s << 1.

The leading energy/mass dependences are dσ3IP (t=0)
dt dM2 ∝ s2∆IP ( 1

M2 )
1+∆IP .



a) b)

Mueller’s 3IP approximation for ”high mass” SD is the lowest order of a large

sequence of multi Pomeron interactions not included in the GW mechanism.

This feature is compatible with t-channel unitarity. The figure shows the low

order IP Green’s function.

a) Enhanced diagrams which renormalize (in low order) the IP propagator.

b) Semi-enhanced diagrams which renormalize (in low order) the IP -p vertexes.

The diagrams complexity leads to model dependent summing algorithms.



The analysis of soft diffraction is complicated due to the lake of uniform

experimental and theoretical definitions of its signatures and mass bounds.

Note that: The upper bound on the ”low mass” is not defined. Kaidalov, at

the time, bounded the ”low mass” diffraction from above by the lower bound

of the ”high mass” diffraction. i.e. in his parametrization there is no overlap

between ”low mass” and ”high mass” diffraction. This is practiced also by

KMR, Ostapchenko and Kaidalov-Poghosyan (KP).

In GLM, GW and non GW diffraction have the same upper bound M2

s
≤ 0.05.

Consequently, GLM diffraction is predominantly GW. The diffraction of

Kaidalov, KMR, Ostapchenko and KP is predominantly non GW.

At LHC energies the difference between the two definitions becomes significant.



LRG SURVIVAL PROBABILITY

The experimental signature of a IP exchanged reaction is a large rapidity gap

(LRG), devoid of hadrons in the η − φ lego plot, η = −ln(tanθ
2
).

S2, the LRG survival probability, is a unitarity induced suppression factor of non

GW diffraction, soft or hard: S2 = σscr
diff/σ

nscr
diff . It is the probability that the LRG

signature will not be filled by debris (partons and/or hadrons) originating from

either the s-channel re-scatterings of the spectator partons, or by the t-channel

multi IP interactions. Denote the gap survival factor initiated by s-channel

eikonalization S2
eik, and the one initiated by t-channel multi IP interactions S2

enh.

S2 is obtained from an integral convolution of S2
eik and S2

enh.

A simpler reasonable approximation is S2 = S2
eik · S

2
enh.
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Assuming no screening, αIP can be obtained from either the s dependence of

σtot, σel, σsd, or from σsd ”high mass” distribution. s and t screenings initiate

a slow decrease in the value of ∆eff
IP with growing s. The screenings of σtot, σel

and σsd are not identical, resulting in a dependence of ∆eff
IP on the channel it is

obtained from. The figure above shows the dependence of S2 on s and M 2. Note

that the M 2 dependence is considerably more moderate than the dependence

on s. Hence, the value of ∆eff
IP is closer to its non screened input.



THE PARTONIC POMERON

The microscopic sub structure of the Pomeron is provided in Gribov’s partonic

interpretation of Regge theory, in which the slope of the Pomeron trajectory is

related to the mean transverse momentum of the partonic dipoles constructing

the Pomeron, and consequently, the running QCD coupling.

α′
IP ∝ 1/ < pt >2, αS ∝ π/ln

(

< p2
t > /Λ2

QCD

)

<< 1.

Intuitively, these relations suggest a connection between the soft and hard

Pomerons. This is a non trivial relation as the soft IP is a simple moving pole

in J-plane, while, the BFKL IP is a branch cut. Recall, though, that the BFKL

IP is commonly approximated as a simple J-pole with ∆IP = 0.2− 0.3 and α′
IP = 0.

In the Following I shall discuss 4IP models rooted in Gribov’s partonic IP theory.

The models are conceptually similar, but differ in their IP diagram summations.



• GLM (Tel AVIV) input is a single IP , ∆IP = 0.20, α′
IP ≃ 0. The hardness of

the exchanged IP depends on the unitarity screenings. In the limit of no

screening the IP is hard, whereas, in the limit of strong screening it is soft.

GLM utilize pQCD procedures, where nIP → mIP reduces to a sequence of

G3IP vertexes (Fan diagrams). G3IP and γ2 =
∫

G3IPd2pt are free parameters.

• KMR (Durham) input is a single IP , ∆IP = 0.3, α′
IP ∝ 1/p2

t . The hardness of

the exchanged IP depends on pt.

KMR nIP → mIP couplings are gn
m = 1

2 gN nm λn+m−2 = 1
2 nm G3IP λn+m−3.

n + m > 2, G3IP = λgN . λ and gN are free parameters.

Ostapchenko and KP have a different normalization.

• Ostapchenko (Bergen) has 2 Pomerons, soft: ∆IP = 0.17, α′
IP = 0.11,

and hard: ∆IP = 0.31, α′
IP = 0.085.

• KP (Moscow, CERN) is a single channel soft IP model with many secondary

Regge trajectories. ∆IP = 0.12, α′
IP = 0.22.



SOFT AND HARD POMERONS

GLM and KMR IP models have a single IP , with similar ∆IP and α′
IP input values.

The obvious question is if this observation conveys a dynamical property of the

IP , where an input hard pQCD IP can be softened by unitarity screening (GLM),

or the decrease of its partons’ transverse momentum (KMR).



The experimental study of e-p DIS provides a ”laboratory” in which we can

investigate the Pomeron properties as a function of its kinematic variables.

Indeed, HERA e-p DIS data is a rich source of information on IP features.

The figure presents σ(γ∗ + p→ p + X) ∝ sλ, as a function of Q2. λ = ∆IP .

It shows the transition from the soft (non perturbative) Pomeron to the

hard (perturbative) Pomeron.

As seen, at very small Q2, ∆IP ≃ 0.1, compatible with the hadronic soft data.

At higher Q2, up to ≃ 100 GeV 2, ∆IP grows smoothly toward ∆IP ≃ 0.30 − 0.35.
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LHC CROSS SECTION DATA

A conceptual issue, which should be settled by LHC study of soft scattering

data, is if the ISR-Tevatron soft data can be smoothly extrapolated to LHC.

A) NSD data on dNch/dη = {1/σNSD}dσ/dη, the charged multiplicity density

distribution, has been published by ALICE, CMS and ATLAS at central pseudo

rapidity −2.5 ≤ η ≤ 2.5. This data provides an additional perspective on the IP

model in the framework of Gribov’s IP calculus.

dNch/dη is calculated using Mueller diagrams and GLM fitted parameters.
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We add 3 parameters: aIPIP , aIPR = aRIP , accounting for hadron emission from

the exchanged IP or Reggeon. Q is the average pt of the produced mini-jets.

The data base for this fit covers the 546-7000 TeV range and was taken over

many years, with different approaches.

We have obtained a satisfactory fit of this data. The shown figure presents a

very good GLM fit to CMS data at 900, 2360, 7000 GeV. The two sets of fitted

parameters are compatible.

Our calculations reproduce the SppS-LHC inclusive data.



ATLAS ALICE CMS TOTEM

69.4 ± 2.4 ± 6.9 72.7 ± 1.1 ± 5.1 71.8 ± 1.1 ± 2.0 ± 7.9 73.5 ± 0.6 + 1.8 − 1.3

TABLE I: LHC σinel at 7 TeV

Achilli et al. Block-Halzen GLM KP KMR

60-75 69.0 71.3 70.0 62.6-67.1

TABLE II: σinel model predictions at 7 TeV

B) σinel = σtot − σel = σsd + σdd + σnd. The early LHC measurements of σinel were

derived from the minimum bias data samples. TOTEM is the only collaboration

which obtains σinel as a cross sections difference. The 2 tables compare the 7

TeV σinel data and its model predictions. The LHC average < σinel >=71.1mb,

is well reproduced by GLM.

C) TOTEM recent results at 7 TeV, σtot = 98.3 ± 2.71mb, σel = 24.8 ± 2.81mb.

Achilli et al. Block-Halzen Halzen-Igi et al. GLM KP KMR

σtotmb 91.6 95.4 96.1 94.2 96.4 89.0

σel mb 26.4 22.9 24.8 21.9

TABLE III: σtot and σel theoretical predictions.



The table presents the theoretical predictions.

The theoretical predictions are moderately below the TOTEM cross sections.

IP models’ problem is that their formalism has a large number of free

parameters, in no proportion to their small adjusted data base.

In my opinion, prior to theoretical modifications, one should improve the

adjustment procedures.

The predictions of Halzen et al. are some what better than the competition.

However, this class of partonic models has two deficiencies:

i) It is strictly a phenomenological parton model based on parametrizations.

ii) It does not incorporate diffraction with elastic scattering.

D) GLM and KMR reproduce TOTEM’s dσel(t ≤ 0.5GeV 2)/dt, see GLM figure.

So does a recent DL model based on soft+hard IP . TOTEM forward elastic

slope is Bel = 20.1 ± 0.36GeV −2. GLM get a very close value Bel = 19.8GeV −2.
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As it stands, none of the existing models reproduces TOTEM’s dσel
dt at high

t > 0.5GeV 2, in particular the position and the shape of the p-p diffraction dip.

E) LHC diffractive data is limited, at this stage. ALICE has measured

σsd = 14.16 ± 3mb, and σdd = 8.86 ± 3mb,, where M ≤ 200GeV, (ξ ≤ 0.0008).

GLM values for ”low mass” diffraction at 7 TeV are lower, σsd = 10.5mb

and σdd = 6mb. ATLAS preliminary SD cross section at 7 TeV is σsd = 17 − 21mb

for M > 15.7GeV , (ξ > 6.6 × 10−7).



EXCEEDINGLY HIGH ENERGY BEHAVIOR

Saturating the s-unitarity and analyticity/crossing bounds we get the

Froissart-Martin bound,

σtot ≤ Clog2(s/s0), in which C = π/2m2
π.

The coefficient C is far too large to make this bound useful.

Note that, The Froissart-Martin log2s behavior relates to the bound, NOT to

the total cross section which can grow more rapidly than log2s as long as it is

below the bound.

Hence, a σtot model with log2s behavior is compatible with, but NOT induced,

by Froissart-Martin bound!

In a single channel non GW model, σel ≤
1
2σtot and σinel ≥

1
2σtot. Equality is reached

at the saturated black disc bound, where σel = σinel = 1
2
σtot.

Single channel models neglect the GW mixing of the proton and ”low mass”

diffractive wave functions. In GW multi-channel models we distinguish between



GW and non GW diffraction.

In such a model, we obtain the Pumplin bound: (σel + σGW
diff) ≤

1
2σtot.

Equality is attained at the black disc saturation. The implication is that in a

multi-channel GW model, σel ≤
1
2σtot − σGW

diff , σinel ≥
1
2σtot + σGW

diff .

Recently, Block and Halzen analyzed an AUGER event at W = 57 ± 6TeV.

They get: σtot = 134.8mb and σinel = 90mb, σinel
σtot

= 0.67.

The corresponding GLM predictions are:

σtot = 122mb, σel = 31.1mb. σinel = 90.9, σsd = 21mb σdd = 13.5mb, σinel
σtot

= 0.75.

The implication from those very different models is that s-channel saturation

will be attained, if at all, at energies of the order of the Planck scale. The

basic GW amplitudes are A1,1, A1,2 and A2,2. with which we construct ael, asd

and add. The Ai,k amplitudes are bounded by the unitarity black disc bound

of unity. ael(s, b) reaches this bound. at a given (s, b), when, and only when

A1,1(s, b) = A1,2(s, b) = A2,2(s, b) = 1, independent of the GW mixing parameter.
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When ael(s, b) = 1, asd(s, b) = add(s, b) = 0.

Lets re-check the diffractive channels at exceedingly high energies. The elastic

amplitude which is essentially black, has a high b tail where ael(s, b) < 1. In this

domain diffraction can survive. The Figure shows the GLM elastic, SD and DD

amplitudes at the Planck scale. colorblue Note that the analyticity/crossing

Rel bound is not effective even at the Planck scale.


