LHC MPI and underlying event results

Marianna Testa (ATLAS) for the ALICE, ATLAS, CMS & LHCb collaborations

SM@LHC 2012, Copenhagen, 10-13 April 2012

The Underlying Event

Hard Scattering

Event"

Outgoing Parton

Everything in hadron collisions apart from the hard parton interaction is called the Underlying Event (UE)

UE = Multiple parton interactions+beam-beam remnants

(with ISR and FRS contamination)

• UE definition is intrinsically model dependent

• UE is sensitive to the connection between soft QCD collective behaviors and hard interaction

•It is an irreducible background for high- p_{τ} analyses Affect E_{τ}^{miss} resolution, jets reconstruction, isolations cones

 Best possible description in MC is crucial MC generators for soft QCD rely on phenomenological model→need to tune

LHC detectors

tracking, ECAL, HCAL, counters lumi, muon, hadron PID

- ATLAS and CMS are general-purpose, fully 4π detectors.
- ALICE has a central tracker comparable in η range to ATLAS and CMS.
- LHCb is an entirely forward, one-sided detector, with a forward-facing tracker geometry.

Underlying event measurements

Transverse method

- Consistent separation of UE and hard contributions by geometrically slicing the event
- Select suitable event topologies(e.g. di-jet events, Drell-Yan muons)
- Identify leading object in event (tracks, clusters, track-jets)
- Leading object defines event scale
- Examine transverse region
- •Typical observables include
 - < p_T>, Σ p_T and nTracks/nClusters

in transverse region

• Very well suited for MC tuning

Other Approaches

Several additional measurements are closely connected to the UE Range goes from jet substructure to forward activity and particle correlation

ATLAS underlying event results

ATLAS underlying event results

- Particle density vs phi
- Development of 'jet-like' region of higher density as p_{τ} of leading track/particle increases (toward,away)
- Particle density is higher and has a different angular distribution than predicted by MC

Alice underlying events results

• Track-based analysis

arXiv:1112.2082v2

- pp collisions and minimum bias data at 0.9 and 7 TeV
- Multiplicity and Σp_{τ} density in the transverse region in good agreement with ATLAS

Alice underlying events results

arXiv:1112.2082v2

Scaling with center of mass energy is in agreement with ATLAS and CMS results

Summed p₋ ratio between 7 and 0.9 TeV in Transverse region

Alice underlying events results

arXiv:1112.2082v2

- Particle density vs phi
- •The regions $-1/3\pi < \Delta \phi < 1/3\pi$ (Toward) and $2/3\pi < |\Delta \phi| < \pi$ (Away) collect the fragmentation products of the leading and sub-leading jets.
- Monte Carlo simulations considered fail to reproduce the shape of the measured distributions

CMS underlying events results

- Track based analysis:
 Use track-jet: Extending event scale far into plateau region
- Minimum bias and jet stream data at 0.9 and 7 TeV

- Fast rise for p_T < 8 GeV/c (4 GeV/c), due to increase of MPI activity 3
 - Dedicated tunes Z1 and 4C perform very well for both 0.9 and 7 TeV.
 MPI growth with √s well described by Z1 and 4C

CMS

25

15

Leading track-jet p_ [GeV/c]

CMS underlying events results in the **DrellYan processes**

- No hadronic activity from hard interaction, no interplay of production mechanisms expected
- A slow growth of the activity is observed with increasing $\sqrt[4]{1.4}$ $p^{\mu\mu}_{T}$ which can be attributed to the increase in radiation $\sqrt[4]{1.2}$
- N_{ch} (and p_{T}) densities being independent of the muon pair \Rightarrow the already saturated MPI in the selected event scale.

0.6

0.4

0.2^L

charged particles

20

 $(p_{-} > 0.5 \text{ GeV/c}, |\eta| < 2.0, 60^{\circ} < |\Delta \phi| < 120^{\circ})$

40

60

80

 $p_{-}^{\text{leading jet}}$ or $p_{-}^{\mu\mu}$ [GeV/c]

CMS √s=7 TeV

100

Other approaches for underlying event measurements: particle correlations and forward activity

Two particle correlation at ATLAS

Two-particle angular correlation function:

$$R(\Delta\eta,\Delta\phi) = \frac{\langle (N_{ch}-1)F(N_{ch},\Delta\eta,\Delta\phi) \rangle_{ch}}{B(N_{ch},\Delta\eta,\Delta\phi)} - \langle N_{ch}-1 \rangle$$

Foreground (F): all particle pairs in same event (correlated + uncorrelated pairs) Background (B): particle pairs from different events (uncorrelated pairs)

- Minimum bias data at 0.9 and 7 TeV (N_{ch}>2 and N_{ch}>20)
- All MC show a similar complex structure in Δη and Δφ but fail to reproduce the strength of the correlations seen in data.

ATLAS-CONF-2011-055

Azimuthal ordering of hadrons (ATLAS)

 Spectral analysis of correlations between the longitudinal and transverse components of charged hadrons

$$S_{\eta}(\zeta) = \frac{1}{N_{ev}} \sum_{event} \frac{1}{n_{ch}} \left| \sum_{g}^{n_{ch}} \exp\left(i(\zeta \eta_{j} - \phi_{j})\right) \right|^{2}$$

- Sensitive to new formulation of certain components of models (e.g. fragmentation)
- •Data corrected for detector in efficiencies and the measurement is presented at particle level.
- Too much correlation in typical MCs, for high-p_T charged particles (top), but too little correlation for low-pT charge particles.

arXiv:1203.0419

Forward-backwards correlations (ATLAS)

Measurement of the correlation between charged particle multiplicities and Σp_{τ} in the forward and backward regions

$$\rho_{fb}^{n} = \frac{\langle (n_{f} - \langle n_{f} \rangle) \rangle \langle (n_{b} - \langle n_{b} \rangle) \rangle}{\sqrt{\langle (n_{f} - \langle n_{f} \rangle)^{2} \rangle \langle (n_{b} - \langle n_{b} \rangle)^{2} \rangle}}$$

$$\rho_{fb}^{p_{T}} = \frac{\langle (\Sigma p_{T}^{\prime} - \langle \Sigma p_{T}^{\prime} \rangle) \rangle \langle (\Sigma p_{T}^{b} - \langle \Sigma p_{T}^{b} \rangle) \rangle}{\sqrt{\langle (\Sigma p_{T}^{f} - \langle \Sigma p_{T}^{f} \rangle)^{2} \rangle \langle (\Sigma p_{T}^{b} - \langle \Sigma p_{T}^{b} \rangle)^{2} \rangle}}$$

Latest MC tunes adequately describe the correlations observed in the data.

arXiv:1203.3100

Forward Energy flow (CMS)

- Investigates geometrical space inaccessible to tracking based analyses
- Minimum bias and di-jet events at 0.9 and 7 TeV
- Strong dependence on center of mass energy
- Significant contribution from multiple parton interactions.
- Pythia 8 and Pythia 6 tunes fail at high eta
- Herwig++ describes the data using center-of-mass specific tunes.

Forward Energy flow (CMS)

- Investigates geometrical space inaccessible to tracking based analyses
- Minimum bias and di-jet events at 0.9 and 7 TeV
- Significantly higher forward energy flow in di-jet events than in minimum bias
- Pythia 8 describes the data at \sqrt{s} =7 TeV
- Herwig++ good, when using c.o.m. specific tunes
- Large contribution from multiple parton interactions

UE activity at forward rapidity (CMS)

Compare energy density in forward calorimeter (-6.6 < η < -5.2) for events with a central leading charged jet (p_{τ} >1 GeV and $|\eta|$ <2) w.r.t. minimum bias events at \sqrt{s} =0.9, 2.76 and 7 TeV \Rightarrow sensitivity to MPI contributions

Most of the tunes (except an older tune of Pythia) describe well data

UE activity at forward rapidity (CMS)

Energy densities vs \sqrt{s} normalized at $\sqrt{s} = 2.76$ TeV

- Minimum bias events: Most of the MC (except QGSJET cosmic ray model) underestimate the relative increase at \sqrt{s} = 7 TeV
- Events with leading jet: Pythia6 D6T and QGSJET cosmic ray model describe data, other tunes underestimate the increase

Forward Energy Flow (LHCb)

• Study energy flow in 1.9 < η < 4.9

LHCb-CONF-2012-012

- 4 topologies to test complementary aspects of MPI:
 - Minim bias data,
 - Hard scattering processes, at least 1 long track in 1.9<q<4.9 with pT>3 GeV/c
 - Diffractive enriched events no backward tracks reconstructed in –3.5<n<–1.5
 - Diffractive enriched at least 1 backward track in –3.5<η<–1.5

PYTHIA-based models underestimate energy flow at large η

Forward Energy Flow (LHCb)

• Study energy flow in 1.9 < η < 4.9

LHCb-CONF-2012-012

- 4 topologies to test complementary aspects of MPI:
 - Minim bias data,
 - Hard scattering processes, at least 1 long track in 1.9<η<4.9 with pT>3 GeV/c
 - Diffractive enriched events no backward tracks reconstructed in -3.5<n<-1.5
 - Diffractive enriched at least 1 backward track in -3.5<n<-1.5
- PYTHIA8 describes the diffractive energy flow much better than all other models
- non-diffractive and diffractive EF are underestimated by the PYTHIA-based models

Multiple Parton Interaction at high p_{τ}

- Multiple parton interactions play an important role in hadron collisions at high energies and are one of the most common, yet poorly understood phenomenon at the LHC

 Assume factorization of A and B: Factorization of longitudinal & transverse components and two parton distributions =>

 σ^{A}_{SPS} = inclusive cross section of single hard scattering σ_{eff} = non-perturbative quantity related to transverse size of hadrons

• correlations between parton distributions may change this simple relation of σ_{DPS}

Direct measurement of double parton interaction in ATLAS

• Production of W bosons in association with two jets

- Cross section for W+2jet production $d\sigma_{W+2j}^{tot}(s) = d\sigma_{W+2j}^{dir}(s) + \frac{d\sigma_{W}(s) \times d\sigma_{2j}(s)}{\sigma_{eff}}$
 - W selection Single lepton trigger 1 lepton (e, μ) p_T > 20 GeV, | η | < 2.5 MET > 25 GeV, m_T > 40 GeV 2 jets, p_T > 20 GeV, |y| < 2.8

 Jet selection Minimum bias trigger
 2 jets, pT > 20 GeV, |y| < 2.8

Direct measurement of double parton interaction in ATLAS

σ_{eff} [mb]

- Measure fraction of $W_0 + 2j_{DPI}$ in the W+2jet sample $f_{DP}^R = \frac{N_{W^0 + 2jDPI}}{N}$
- Exploiting p_{τ} -balance of jets: Jets from second scatter will be more balanced in p_{τ}

$$\Delta_{jets}^{n} = \frac{\left| \vec{p_{T,1}} + \vec{p_{T,2}} \right|}{\left| \vec{p_{T,1}} \right| + \left| \vec{p_{T,2}} \right|}$$

• Relate with $\sigma_{_{eff}}$

$$\sigma_{eff} = \frac{1.}{f_{DP}^{R}} \cdot \frac{N_{W0} N_{2j}}{N_{W+2j}} \cdot \frac{1}{\epsilon_{2j} L_{2j}}$$

- $\sigma_{_{eff}}$ consistent with Tevatron results
- s-dependence not excluded

′[」]24

J/ψ production vs charged particle multiplicity in pp collisions at 7 TeV in ALICE

arXiv:1202.2816

- Linear increase as a function of multiplicity
- J/ψ mesons are detected at mid-rapidity (|y | < 0.9) and forward rapidity (2.5 < y < 4), while dNch /dη is determined at mid-rapidity (|η | < 1).
- Same trend in the two rapidity regions

• Comparison with PYTHIA 6.4.25 in the PERUGIA 2011 tunes where J/ψ yields originated from the first hard interaction decreases as a function of relative multiplicity do not follow the same trend as seen in the data

25

Double charm production and Double Parton Scattering (LHCb)

- •Measurement of Double J/ ψ , J/ ψ with open charm (C) and double open charm (CC)
- First measurement of charmonia pairs at LHC by LHCb Collaboration $\sigma^{J/\Psi J/\Psi} = 5.1 \pm 1.0 \text{ (stat)} \pm 1.1 \text{ (syst) nb}$ Phys. Lett. B 707 (2012) in agreement with pQCD calculation $\sigma_{pQCD} = 4.1 \pm 1.2 \text{ nb}$
- Recently measured J/ψ with open charm and double open charm in pp collision at 7 TeV (paper in preparation)
- Important to test Double Parton scattering(DPS) $\sigma_{DPS}^{A,B} = \frac{m}{2} \frac{\sigma_{SPS}^{A} \sigma_{SPS}^{B}}{\sigma_{eff}^{DPS}}, m = 1(2) \text{ for } A = B(\neq B)$ $\sigma_{DPS}^{DPS} = \frac{m}{2} \frac{\sigma_{SPS}^{A} \sigma_{SPS}^{B}}{\sigma_{eff}^{DPS}}, m = 1(2) \text{ for } A = B(\neq B)$ Measured by CDF PDR 56 3811 (1997)
- \bullet Predictions for the production cross-sections of the J/ ψC and CC modes

Mode	[12, 13]	$\sigma_{ m gg}$ [17]	$\sigma_{ m DPS}$	$\sigma_{ m IC}$
	[nb]			
$J/\psi D^0$	10 ± 6	7.4 ± 3.7	146 ± 39	220
$\mathrm{J}/\psi\mathrm{D}^+$	5 ± 3	2.6 ± 1.3	60 ± 17	100
${ m J}/\psi { m D}_{ m s}^+$	1.0 ± 0.8	1.5 ± 0.7	24 ± 7	30
${ m J}/\psi\Lambda_{ m c}^+$	0.8 ± 0.5	0.9 ± 0.5	56 ± 22	

Double charm production and Double Parton Scattering (LHCb)

Cross sections measurements: The expectations from gg fusion processes significantly below the measurements for J/ψ C modes

Extraction of $\,\sigma_{_{eff}}$: For J/ ψ C modes good agreement with CDF For CC modes higher by a factor of 2-3

Conclusions

Underlying Event:

- Several studies investigating the Underlying Event have been presented from ATLAS,CMS and ALICE
- Different approaches, physical objects and detector components have been used to produce a complete picture of UE contributions at the LHC
- New tunes have been produced by both experiments based on these analyses that are already widely in use

Multiple Parton Interactions:

- ATLAS results on $\sigma_{_{eff}}$ from W $\rightarrow 1v$ + 2 jets consistent with results obtained in different channels at the Tevatron
- New result on double charm production from LHCb
- First experimental measurement of J/ ψ production as a function of charged particle multiplicity in pp collisions at \sqrt{s} = 7 TeV with the ALICE experiment