

Inclusive and dijet measurements in ATLAS and their relevance for Pdf's

Esteban Fullana⁽¹⁾ for the ATLAS Collaboration

Standard Model @ LHC 2012 10-13 April HCØ institute Copenhagen

(1) The researcher is being supported by a Marie Curie Incoming Fellowship of the European Commissions 7th Framework Program under contract number PIIF-GA-2009-252986

a bit of history

from the 17 nb⁻¹ to the 37 pb⁻¹ measurement

Large new kinematic regime & coherent treatment of inclusive jets and dijet measurements

- 2200 times more integrated luminosity
- Much wider kinematic reach
 - For jet inclusive:
 - At high P_T end : from 600 GeV to 1.5 TeV
 - At low PT end: from 60 GeV to 20 GeV
 - In rapidity: from |y| < 2.8 to |y| < 4.4
 - For dijet:
 - From m₁₂ I.8 TeV to 4.8TeV
 - $y^* = |y_1 y_2|/2 < 4.4$ (replacing y_{max})

Trigger efficiencies

- Inclusive jet (per-jet for dijets) trigger efficiencies determined in-situ using orthogonal and bootstrap methods
- Each trigger used in the region where it is fully efficient

Jet calibration and uncertainty

- Jet calibration:
 - Pile-up correction, origin correction, final energy and η correction
- JES uncertainty:
 - less than 2.5% in the central region for 60-800 GeV jets
 - Calorimeter component dominant in the central region
 - η inter calibration dominant in the forward region (due to MC modeling)

From detector level to particle level

 3 steps matrix based unfolding method matching (in)efficiency correction at reconstructed level IDS / SVD / bin-by-bin unfolding for jets with matching matching (in)efficiency correction at particle level 	Unfolding
 In-situ determination of the shape uncertainty reweight MC by smooth function: improve data/recoMC agreement Unfold the reweighted reconstructed MC Compare with reweighted particle level MC Measurement unfolded using IDS: smallest bias in the closure test 	Unfolding systematics
 Full uncertainty propagation: statistical uncertainty (data+MC) using pseudo-experiments Systematic uncertainties using nuisance parameters Asymmetric uncertainties taken into account 	Uncertainty propagation

Systematic uncertainties: central

Largest systematic uncertainty from JES

3.4% uncertainty of the integrated luminosity are not shown here.

Systematic uncertainties: forward

Largest systematic uncertainty from JES

3.4% uncertainty of the integrated luminosity are not shown here.

Theoretical uncertainties

- QCD predictions from NLOJET++
- Uncertainties from renormalization & factorization scales, α_S and PDFs via APPLGRID
- Non-perturbative correction applied (binby-bin) to parton level NLO cross sections:
 - account for hadronization and UE
 - Derived using Pythia MCI0 (AMBTI)
 - Uncertainties envelope of deviations from Pythia tunes (Perugia 0, Perugia 2010, Perugia X) + different MC generators (Herwig++)
 - Additional comparisons to Powheg (NLO ME + PS)

2010 Inclusive jet cross section

Inclusive jet pT cross-section compared to NLO pQCD + non-pert. corrections

PDF comparisons for R=0.6

PDF comparisons for R=0.4

2010 Dijet mass spectrum

Dijet mass cross-section compared to NLO pQCD + non-pert. corrections

2011 Dijet mass spectrum

Dijet mass cross-section compared to NLO pQCD + non-pert. corrections

PDF comparisons

POWHEG comparisons

Conclusions

- Measurements of inclusive jet p_T and dijet mass cross sections performed using full 2010 ATLAS dataset of 37 pb⁻¹
- Measurement of the dijet cross section also performed for the full 2011 dataset (4.7 fb⁻¹)
- Major extensions to previous EPJC publications
- Measured cross sections corrected for all detector effects
- Full propagation of (asymmetric) uncertainties and correlations
- Comparisons to predictions from NLO pQCD and NLO+parton shower (POWHEG)
 - QCD agrees well with the data across a large kinematic range in jet pT, dijet mass, and rapidity
 - Will help to constrain various PDF sets

Backup

POWHEG&PDF comparisons

POWHEG comparisons for R=0.6 (NLO matrix element + parton shower)

POWHEG comparisons for R=0.4 (NLO matrix element + parton shower)

PDF comparisons for R=0.6 (dijets)

PDF comparisons for R=0.4 (dijets)

