
Neutron Scattering: Theory, Instrumentation,

and Simulation

Kim Lefmann

Niels Bohr Institute, University of Copenhagen

with contributions from Bente Lebech, Risø- DTU

and Lise Arleth, University of Copenhagen

July 2, 2012



2

0.5 1 1.5 2

0.5

1

1.5

2

2.5

α−MnMoO4, Logarithmic scale

Q=(0,K,K/2) [rlu]

E
n
er

g
y
 [

m
eV

]

Figure 1: Inelastic neutron scattering data on a single crystal of the molecular magnet
α-MoMnO4, taken by the students at the Copenhagen neutron scattering course, 2005.
From Ref. [1].
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Chapter 1

Introduction to neutron

scattering

Neutron scattering is one of the most powerful and versatile experimental meth-
ods to study the structure and dynamics of materials on the nanometer scale.
Quoting the Nobel committee, when awarding the prize to C. Shull and B.
Brockhouse in 1994, these pioneers have “helped answer the question of where
atoms are and ... the question of what atoms do” [4].

Neutron scattering is presently used by more than 5000 researchers world-
wide, and the scope of the method is continuously broadening. In the 1950’ies
and 1960’ies, neutron scattering was an exotic tool for solid state physicists
and crystallographers, but today it serves communities as diverse as Biology,
Earth Sciences, Planetary Science, Engineering, Polymer Chemistry, and Cul-
tural Heritage. In brief, neutrons are used in all scientific fields that deal with
hard, soft, or biological materials.

It is, however, appropriate to issue a warning already here. Although neu-
tron scattering is a great technique, it is also time-consuming and expensive.
Neutron scattering experiments last from hours to days and are performed at
large international facilities. Here, the running costs correspond to thousands
of Euros per instrument day. Hence, neutron scattering should be used only
where other methods are inadequate.

For the study of atomic and nanometer-scale structure in materials, X-ray
scattering is the technique of choice. X-ray sources are by far more abundant
and are, especially for synchrotron X-ray sources, much stronger than neutron
sources. Hence, the rule of thumb goes: “If an experiment can be performed
with X-rays, use X-rays”. For an introduction to X-ray scattering, see, e.g., the
excellent recent textbook by D. F. McMorrow and J. Als-Nielsen [5].

However, neutrons have a number of properties that make them extremely
useful for purposes where X-rays are not sufficient. This chapter is devoted to
presenting the properties of the neutron and describing the essential differences
between neutron- and X-ray scattering.

15
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1.1 Basic properties of the neutron

The neutron is a nuclear particle with a mass rather close to that of the proton
[6]

mn = 1.675 · 10−27 kg. (1.1)

The neutron does not exist naturally in free form, but decays into a proton, an
electron, and an anti-neutrino. The neutron lifetime, τ = 886 s [7], is much
longer than the time a neutron spends within a scattering experiment, which
is merely a fraction of a second. The neutron is electrically neutral but still
possesses a magnetic moment

µ = γµN, (1.2)

where γ = −1.913 is the neutron magnetogyric ratio and the nuclear magneton
is given by µN = eh̄/mp = 5.051 · 10−27 J/T. The neutron magnetic moment is
coupled antiparallel to its spin, which has the value s = 1/2.

The neutron interacts with nuclei via the strong nuclear force and with
magnetic moments via the electromagnetic force. Most of this text deals with
the consequences of these interactions; i.e. the scattering and absorption of
neutrons inside materials and reflection from surfaces and interfaces.

1.2 Particle-wave duality

One of the remarkable consequences of quantum mechanics is that matter has
both particle- and wave-like nature [8]. The neutron is no exception from this.
In neutron scattering experiments, neutrons behave predominantly as particles
when they are created, as waves when they are scattered, and again as particles
when they are detected.

To be more specific, a particle moving with constant velocity, v, can be
ascribed a corresponding (de-Broglie) wavelength, given by

λ =
2πh̄

mv
. (1.3)

In neutron scattering, the wave nature is often referred to in terms of the neutron
wave number, k = 2π/λ, or the wave vector of length k and with same direction
as the velocity:

k =
mnv

h̄
. (1.4)

By tradition, wavelengths are measured in Å (10−10 m), and wave numbers in
Å−1, while the neutron velocity is measured in SI units: m/s. For our purpose
we consider the neutrons as non-relativistic, and the neutron kinetic energy is
given by

E =
h̄2k2

2mn

, (1.5)

which is measured in eV or meV, where 1 eV= 1.602 · 10−19 J. A useful conver-
sion table between velocity, wave number, wavelength, and energy, is shown in
Table 1.1.
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v [ms−1] λ−1 [Å−1] k [Å−1]
√
E [meV1/2]

v [ms−1] 1 2.528× 10−4 1.588× 10−3 2.286× 10−3

λ−1 [Å−1] 3956 1 6.283 9.045
k [Å−1] 629.6 0.1592 1 1.440√
E [meV1/2] 437.4 0.1106 0.6947 1

Table 1.1: Conversion table between different neutron parameters in the most
commonly used units. Examples of use: v [ms−1] = 629.6 k [Å

−1
] and (λ[Å])−1 =

0.1106
√

E[meV]. Adapted from Ref. [3]

Energy interval Common name Usual origin
less than 0.05 meV ultra cold special sources below 4 K
0.05 meV - 10 meV cold H2 moderators at 25 K
10 meV - 200 meV thermal H2O moderators at 300 K
200 meV - 1 eV hot graphite moderators at 2000 K
1 eV - 10 keV epithermal background from moderators

Table 1.2: Common names for neutron energy ranges, and typical origin of neutrons
with these energies. The ”standard“ thermal energy is 25 meV, corresponding to
λth = 1.798 Å, or vth = 2200 m/s.

1.3 Neutron scattering facilities

Neutron sources with flux densities adequate for neutron scattering investiga-
tions of materials are based on one of two principles, also illustrated in Fig. 1.1:

• Fission. A high continuous flux of neutrons is produced in the core of a
conventional fission reactor.

• Spallation. By bombarding a target of heavy elements with high-energy
particles (typically protons), neutrons can be produced.

Common to both types of sources is that neutrons are moderated to ”thermal“
velocities close to the source and then transported to the neutron scattering in-
struments in neutron guide systems. For the naming of neutron energy intervals,
see Table 1.2.

Both types of neutron sources are built as dedicated facilities, each hosting
tens of instruments. All major sources are user facilities, meaning that they serve
a research community much larger than the staff affiliated with the facilities.
Typically, user experiments are selected through a competitive proposal system.

At the time of writing, more than twenty neutron facilities are in operation
worldwide, the most important being the reactor source ILL, Grenoble, France,
and the spallation source ISIS, Oxfordshire, UK. However, the European dom-
inance is challenged by the powerful, newly commissioned spallation sources:
Spallation Neutron Source (SNS), Oak Ridge, USA, and Japan Proton Acceler-
ator Research Complex (J-PARC), Tokai, Japan [9]. For this and other reasons,
it was has long been proposed to build a European Spallation Source (ESS).
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Figure 1.1: The two main methods of neutron production. Left: Traditional nuclear
reactors make use of production of neutrons for maintaining the chain reaction; surplus
of neutrons can be used for neutron scattering. Right: Protons accelerated into the
GeV regime can split heavy nuclei with a large neutron surplus, creating free neutrons
among the reaction products.

In 2009, it was finally decided to initiate the construction of this source, by
deciding upon a location[10].

A list of the most significant neutron sources is given in Chapter 3.

1.4 Five reasons for using neutrons

At last in this introductory chapter, we will present some of the assets of neutron
scattering. We will focus on cases where neutrons can be preferred to X-rays
or where neutrons are needed to complement X-rays. It is commonly agreed in
the neutron scattering community that this can be formulated in five general
points:

1. Energy and wavelength. Thermal neutrons have a wavelength (around
1.8 Å) similar to inter-atomic distances, and an energy (around 25 meV)
similar to elementary excitations in solids. One can thus obtain simul-
taneous information on the structure and dynamics of materials and e.g.
measure dispersion relations (energy-wavelength dependence) of excita-
tions in crystalline solids.

2. Isotopes and light elements. The neutron scattering cross section
varies randomly between elements and even between different isotopes of
the same element. One can thus use neutrons to study light isotopes.
In particular, this is important for hydrogen, which is almost invisible to
X-rays. With neutrons, the large difference in scattering between usual
hydrogen (1H) and deuterium, (2D) can be used in biological and soft mat-
ter sciences to change the contrast in the scattering and also “highlight”
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selected groups of large molecules.

3. Quantitative experiments. The interaction between neutrons and (most)
matter is rather weak, implying that neutrons can probe the bulk of the
sample, and not only its surface. The weak interaction also diminishes
higher order effects. Hence, quantitative comparisons between neutron
scattering data and theoretical models can be performed to a high preci-
sion.

4. Penetration. Since neutrons penetrate matter easily, neutron scattering
can be performed with samples stored in all sorts of sample environment:
Cryostats, magnets, furnaces, pressure cells, etc. Furthermore, very bulky
samples can be studied, up to tens of cm thickness, depending on their
elemental composition.

5. Magnetism. The neutron magnetic moment makes neutrons scatter from
magnetic structures or magnetic field gradients. Unpolarized neutrons are
used to learn about the periodicity and magnitude of the magnetic order,
while scattering of spin-polarized neutrons can reveal the direction of the
atomic magnetic moments.

In most cases, neutron scattering is performed in combination with other exper-
imental techniques; often with neutron scattering as one of the final techniques
to be applied before conclusions can be drawn.

1.5 On this text

After this brief introduction, we will continue the introductory part by present-
ing the formalism of the neutron scattering process (chapter 2). In part II, we
go into details with neutron sources, moderators, and guide systems (chapter
3), components for neutron optics and instruments (chapter 4), and with Monte
Carlo ray-tracing techniques for simulating the effect of the combined geometry
of neutron scattering instruments (chapter 5).

In the later parts, we will describe the actual applications of neutron scatter-
ing. For each case, we give the necessary theoretical background, a description
of the experimental set-up, and a number of corresponding problems, including
performing ”virtual experiments“ by means of simulations [12]. Part III de-
scribes the study of material structure by elastic neutron scattering and imaging.
Small angle neutron scattering (SANS) is presented in chapter 6, reflectometry
in chapter 7, diffraction from crystals in chapter 8. Part IV deals with the
study of dynamics in materials by inelastic neutron scattering. We start with
the study of coherent lattice vibrations (phonons) in chapter 9.

Finally, part V describes elastic and inelastic scattering from magnetic ma-
terials in chapters 10 and 11.
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Figure 1.2: Illustration of two of the “five reasons” for neutron scattering. Top row
shows schematically the neutron visibility of one polymer chain in two different so-
lutions (left) hydrogenous solvent, (right) deuterated solvent. The enhanced contrast
from the deuterated solvent gives a significant effect in a small-angle scattering ex-
periment. Bottom row shows the measurement of magnetic excitations in an applied
magnetic field. To perform the measurements, the neutron beam must penetrate the
Al walls of a large cryomagnet (left). The data from the CuGeO3 sample is shown with
neutron counts presented as a colour scale as a function of neutron energy transfer
and magnetic field value (right). Adapted from [11].

1.5.1 Reading the text

The text is intended so that after the introduction in part I, each part can in
principle be studied independently. However, parts IV and V relies to some
extent on basic results from part III.

The reader is assumed to have a general knowledge of classical physics and
complex numbers for the description of waves. The first three parts of the text
assumes very little knowledge of quantum mechanics. At places where a deeper
quantum mechanical presentation could be elucidating for some students, there
will be alternative sections containing the formally ”correct“ derivation of the
results. These sections are marked by an asterisk (*).
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1.5.2 Future extensions

In later versions of this note, we aim to include a number of advanced utiliza-
tions of neutron scattering, like scattering with polarized neutrons, radiogra-
phy/tomography, single crystal diffraction, quasielastic scattering from diffu-
sion, scattering from liquids, and ultracold neutrons.

It is also likely that material on analytical resolution calculations will be
written.
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Chapter 2

Basics of neutron scattering

theory

This chapter contains the basics of scattering formalism. The present descrip-
tion is specialised to neutron scattering, but is in general valid also for other
scattering processed, like electrons or X-rays.

In this chapter, neutrons are scattered by the nucleus by the strong nuclear
forces. The range of these forces are femtometers (fm), much smaller than
the neutron wavelength (measured in Å). Thus, the neutron cannot probe the
internal structure of the nucleus, labeled j, and the scattering from a single
nucleus is isotropic [13].

The process of neutron scattering is unavoidably of quantum mechanical
nature. However, most of this chapter is kept less rigorous, since for many
applications a full formal treatment is unnecessary. In particular, this is the
case for section 2.2, for which an alternative quantum-based section is given as
2.3. Although vastly different, these two presentations lead to identical results.

The contents if this chapter form the basis for the understanding of the later
parts of these notes, in particular elastic and inelastic neutron scattering from
particular systems, like surfaces and crystals.

2.1 The neutron cross sections

In this section, we introduce the terms by which we describe the scattering of
a neutron beam. In particular, we describe the interaction of a neutron beam
with materials by introducing the central concept of cross sections.

23
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2.1.1 Neutron flux

We define the flux of a neutron beam as

Ψ =
number of neutrons impinging on a surface per second

surface area perpendicular to the neutron beam direction
, (2.1)

having the unit n/(cm2s).

2.1.2 The scattering cross section

The neutron scattering cross section, σ, of a system is defined by its ability to
scatter neutrons:

σ =
1

Ψ
number of neutrons scattered per second , (2.2)

which has units of area. For a single nucleus, σ can be seen as the effective
area of the nucleus perpendicular to the neutron beam, as will be elaborated in
problem 2.6.1. The scattering cross section used here is the total cross section,
which depends on the system (sample) volume, V . For thin samples, σ can be
described by the volume specific cross section, Σ, through

σ = V Σ. (2.3)

2.1.3 The differential scattering cross section

The angular dependence of the scattered neutrons is a most important aspect
of all neutron scattering. To describe this, we define the differential scattering
cross section:

dσ

dΩ
=

1

Ψ

number of neutrons scattered per second into solid angle dΩ

dΩ
. (2.4)

The total number of scattered neutrons is of course the sum of neutrons in all
of the 4π solid angle, whence

σ =

∫

dσ

dΩ
dΩ. (2.5)

2.1.4 The partial differential scattering cross section

In some scattering processes, the neutron delivers energy to or absorbs energy
from the scattering system. This type of scattering we denote inelastic scatter-
ing. We define the neutron energy transfer by

h̄ω = Ei − Ef =
h̄2(k2i − k2f )

2mn

. (2.6)
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In inelastic scattering processes, energy is transfered to - or taken from - the
sample. Energy conservation gives that the energy change of the sample is

∆E = h̄ω. (2.7)

For describing inelastic scattering, one needs to take into account the energy de-
pendence of the scattered neutrons. This is described by the partial differential
scattering cross section:

d2σ

dΩdEf

=
1

Ψ

no. of neutrons scattered per sec.
in dΩ with energies [Ef ;Ef + dEf ]

dΩdEf

. (2.8)

Integrating over the final energy, Ef , gives the differential cross section

dσ

dΩ
=

∫

d2σ

dΩdEf

dEf . (2.9)

Following (2.5), the total cross section is found by a double integration:

σ =

∫∫

d2σ

dΩdEf

dΩdEf . (2.10)

For a closer description of inelastic scattering, a quantum mechanical treat-
ment of the scattering process is required, as initiated in section 2.3.

2.1.5 Beam attenuation due to scattering

Since the number of neutrons scattered is necessarily limited by the number
of incoming neutrons, the total cross section cannot be truly proportional to
volume, at least not for large, strongly scattering systems. Hence, (2.3) should
be understood only as a “thin sample approximation”. This equation is valid
only when the total scattering cross section of a given sample is much smaller
than its area perpendicular to the beam.

For a thick sample, we must consider successive thin slices of thickness dz,
each attenuating the incident beam (which we take to travel in the positive z
direction):

no. of neutrons scattered per sec. from dz = Ψ(z)ΣAdz, (2.11)

where A is the area of a sample slice perpendicular to the beam. We assume
that A is constant and that the scattering cross section is uniform within the
sample. The flux of the incident beam in the neutron flight direction is then
attenuated inside the sample according to

Ψ(z) = Ψ(0) exp(−µz) , (2.12)

where we have defined the attenuation coefficient

µ = µs = Σ. (2.13)

The derivation is simple and is left as an exercise to the reader, see problem 2.6.2.
The above results can easily be generalized to more complex geometries.
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2.1.6 The absorption cross section

Neutron absorption takes place as a result of neutron-induced nuclear processes,
which destroy the neutrons, emitting secondary radiation as a result. In most
cases, the absorption cross section, σa, of thermal neutrons is inversely propor-
tional to the neutron velocity. In other words, the absorption is proportional to
the neutron wavelength: σa ∝ λ.

The neutron absorption cross sections are measured and tabelized for all but
the rarest isotopes, see e.g. the Neutron Data Booklet [14], or the NIST home
page [15]. Traditionally, the absorption cross sections are given as σa, th per
nucleus in units of “barns” (1 barn = 10−28 m2) and is listed at the standard
“thermal” velocity vth = 2200 ms−1 (λth = 1.798 Å, see also table 1.1). The
actual absorption cross section is then given by

σa = σa, th
vth
v

= σa, th
λ

λth
. (2.14)

As in (2.12), the resulting attenuation of the beam is exponential, described by
the attenuation coefficient

µa =
∑

i

Niσa,i
V

=
∑

i

niσa,i. (2.15)

In this sum, Ni represents the number of nuclei of isotope i in the sample
volume V , and ni = Ni/V is the corresponding atomic density. The attenuation
coefficients for scattering and absorption are additive due to the rule of addition
of probabilities (see problem 2.6.2):

µt = µs + µa. (2.16)

An abbreviated list of absorption and scattering cross sections for selected iso-
topes/elements is given in table 2.1.

Experimental consideration. For a single neutron, the probabilty of scattering
or absorption will typically be much smaller than unity. However, real experi-
ments deal with thousands to billions of neutrons onto the sample per second, so
here the probabilities will sum up to give an average counting number, N , which
can often be considerable. The actual counting number is a stocastic variable,
which follows a Poisson distribution with mean N and standard deviation

√
N .

For N > 10, it can be approximated with a normal distribution with the same
average and width, meaning that 68% of the times the count value will lie in the
interval N±

√
N - and 95% in the interval N±2

√
N . Although not really valid,

this approximation is in practice often used also for smaller counting numbers.

2.2 Wave description of nuclear scattering

In this section, we discuss the basics of scattering of waves from a semi-classical
point of view. For an equivalent, fully quantum mechanical treatment of this
topic, see section 2.3.
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Z Nucleus b (10−15 m) σinc (10−28 m2) σa,th (10−28 m2)

1 H -3.741 80.26 * 0.3326
1 1H -3.742 80.27 * 0.3326
1 2D 6.674 2.05 0.000519

2 3He 5.74 1.532 5333
2 4He 3.26 0 0

3 Li -1.90 0.92 70.5
3 6Li 2.0 0.46 940
3 7Li -2.22 0.78 0.0454

4 Be 7.79 0.0018 0.0076

5 B 5.30 1.70 767
5 10B -0.2 3.0 3835
5 11B 6.65 0.21 0.0055

6 C 6.6484 0.001 0.00350
7 N 9.36 0.50 1.90
8 O 5.805 0 0.00019
9 F 5.654 0.0008 0.0096

10 Ne 4.566 0.008 0.039

11 Na 3.63 1.62 0.530
12 Mg 5.375 0.08 0.063
13 Al 3.449 0.0082 0.231
14 Si 4.1507 0.004 0.171
15 P 5.13 0.005 0.172
16 S 2.847 0.007 0.53
17 Cl 9.5792 5.3 33.5
18 Ar 1.909 0.225 0.675

19 K 3.67 0.27 2.1
20 Ca 4.70 0.05 0.43
21 Sc 12.1 4.5 27.5
22 Ti -3.37 2.87 6.09
23 V -0.443 5.08 5.08
24 Cr 3.635 1.83 3.05
25 Mn -3.750 0.40 13.3
26 Fe 9.45 0.40 2.56
27 Co 2.49 4.8 37.18
28 Ni 10.3 5.2 4.49
29 Cu 7.718 0.55 3.78
30 Zn 5.68 0.077 1.11
31 Ga 7.288 0.16 2.75
32 Ge 8.185 0.18 2.20

48 Cd 4.83 3.46 2520
51 Sb 5.57 0 4.91
58 Ce 4.84 0 0.63
60 Nd 7.69 9.2 50.5
64 Gd 9.5 151 49700
65 Tb 7.34 0.004 23.4
82 Pb 9.401 0.0030 0.171

Table 2.1: Neutron cross sections and scattering lengths for the first 32 elements
(isotopic average using the natural abundancies). In addition, data from selected
isotopes and some heavier elements are presented. Data taken from [14].
* It should be noted that the important incoherent cross section for H varies with
wavelength. The value listed is valid for λ >1.798 Å [16, 17].
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2.2.1 The neutron wave

The incoming (or initial) neutron can be described as a (complex) plane wave

ψi(r) =
1√
Y

exp(iki · r) , (2.17)

where Y is a normalization constant, implying that the density of the incoming
neutron wave is |ψi|2 = 1/Y . This has no implication on the final results, since
Y will eventually cancel in the final equations, but we keep the normalization
for completeness. From (1.4), the velocity of a neutron described by a plane
wave is

v =
h̄ki
mn

. (2.18)

Similarly, the corresponding incoming neutron flux is

Ψi = |ψi|2v =
1

Y

h̄ki
mn

. (2.19)

2.2.2 Elastic neutron scattering from a single nucleus

We consider the idealized situation where a neutron with a well defined velocity
is scattered by a single nucleus, which is (somehow) fixed in position. The
scattered neutron can be described as a spherical wave leaving the nucleus,
which is centered at rj , as shown in Fig. 2.1. The scattered, or final, wave
function reads:

ψf(r) = ψi(rj)
−bj

|r− rj |
exp(ikf |r− rj |) , (2.20)

where bj is a quantity characteristic for the particular isotope. Since bj has the
unit of length, it is usually denoted scattering length and is of the order fm.
This above equation is valid only ”far” from the nucleus, i.e. for |r − rj | ≫ b,
The minus sign in (2.20) is a convention chosen so that most nuclei will have a
positive value of bj .

In experiments, r is typically of the order 1 m, while the nuclear coordinate,
rj , is typically of the order 1 mm or less (assuming we place origo close to the
centre of the “relevant” part of the sample). Hence, the density of outgoing
neutrons can be approximated by |ψf |2 ≈ b2j/(Y r

2). The number of neutrons

per second intersecting a small surface, dA, is v|ψf |2dA = vb2j/(Y r
2)dA. Using

(2.18) and dΩ = dA/r2, we reach

number of neutrons per second in dΩ =
1

Y

b2j h̄kf

mn

dΩ. (2.21)

Since the nucleus is fixed, energy conservation requires that the energy of the
neutron is unchanged. In this so-called elastic scattering, we therefore have



2.2. Wave description of nuclear scattering 29

λi

λf = λi

dA
Detector

kf

ki

rj

Figure 2.1: An illustration of the initial wave, ψi, of wavelength λi, and the final
wave, ψf , of wavelength λf , describing a neutron scattering off a single nucleus with
positive scattering length (meaning a phase shift of π). The area, dA, for measuring
the flux of the outgoing neutrons is the detector area as sketched.

ki = kf . Using (2.4) and (2.19), this leads to the simple expression for the
differential cross section:

dσ

dΩ
= b2j , (2.22)

giving the total scattering cross section for a single nucleus

σ = 4πb2j . (2.23)

2.2.3 Scattering from two nuclei – interference

In the field of neutron scattering from materials, we are concerned with the effect
of scattering from a system of particles. We begin by considering the scattering
from two nuclei, labeled j and j′, placed at fixed positions. This simple system
will reveal some very important features, which we will utilize later.

The neutron wave that is scattered from the two nuclei is in fact describing
just one single neutron. Nevertheless, this neutron “senses” the presence of both
nuclei, meaning that the wave scattered from one nucleus will add to the wave
scattered from another nucleus. This interference is a central aspect in most
scattering techniques.

Let us describe this in more precise terms. We assume elastic scattering,
ki = kf ≡ k and identical nuclei, bj = bj′ ≡ b. Generalizing (2.20), the outgoing
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(final) wave can be described as

ψf(r) = −b
(

ψi(rj)

|r− rj |
exp(ikf |r− rj |) +

ψi(rj′)

|r− rj′ |
exp(ikf |r− rj′ |)

)

, (2.24)

where ψi(r) is the plane wave given by (2.17). The two nuclei are assumed to
be closely spaced compared with the distance to the observer: |rj − rj′ | ≪ r.
Choosing the origin to lie close to the two particles, the denominators can be
considered equal and we reach

ψf(r) =
1√
Y

−b
r

[

exp(iki · rj) exp(ikf |r− rj |) (2.25)

+ exp(iki · rj′) exp(ikf |r− rj′ |)
]

We now want to calculate the length |r − rj |, since it enters the phase of the
complex wave function. It is convenient to write the nuclear coordinate, rj , as
a component parallel to and perpendicular to r:

|r− rj | = |r− rj,|| − rj,⊥| =
√

∣

∣r− rj,||
∣

∣

2
+ |rj,⊥|2, (2.26)

where the last step is due to Pythagoras. The last term in the square root is
by far the smallest and vanishes to first order, meaning that only one nuclear
coordinate, rj,||, contributes and that the square root can be lifted to give
|r− rj | = |r− rj,|||. Now, we can write

kf |r− rj,||| = kf · (r− rj,||), (2.27)

where kf is a wave vector with length kf (which here equals k), oriented parallel
to r. Since kf · rj,⊥ = 0, we reach

exp(ikf |r− rj |) = exp(ikf · (r− rj)). (2.28)

Rearranging terms, the final wave can be written as

ψf(r) = − 1√
Y

b

r
exp(ikf · r) [exp(i(ki − kf) · rj) + exp(i(ki − kf) · rj′)] (2.29)

This shows that the observer at position r will experience a scattered neutron
wave that locally seems like a plane wave with wavevector kf ||r.

The intensity of neutrons impinging on a small area is again given as v|ψf(r)|2dA.
Hereby we can write the scattering cross section as

no. of neutrons per sec. in dΩ

=
1

Y

b2h̄kf
mn

dΩ |exp(iq · rj) + exp(iq · rj′)|2 , (2.30)

where we have defined the very central concept of neutron scattering, the scat-
tering vector, as

q = ki − kf . (2.31)
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The final expression for the differential scattering cross section for elastic scat-
tering from nuclei now becomes:

dσ

dΩ
= b2

∣

∣ exp(iq · rj) + exp(iq · rj′)
∣

∣

2
= 2b2

(

1 + cos[q · (rj − rj′)]
)

. (2.32)

At some values of q, this cross section vanishes, while at others the value is up
to 4 times that of a single nucleus. This is the essence of interference.

2.3 * Quantum mechanics of scattering

We will now go through the principles of neutron scattering from nuclei in a
way, which is more strictly quantum mechanical than section 2.2.

This section does not contain new results, but may be more satisfactory for
readers with a physics background. Further, the formalism developed here car-
ries on to the detailed treatment of inelastic scattering of phonons and magnetic
scattering in subsequent chapters.

This section is strongly inspired by the treatments in the textbooks by Mar-
shall and Lovesey [2] and Squires [3].

2.3.1 * The initial and final states

We define the state of the incoming wave as

|ψi〉 =
1√
Y

exp(iki · r) , (2.33)

where Y = L3 can be identified as the (large) normalization volume for the state
which is assumed enclosed in a cubic box with a side length L. The incoming
neutron flux is given as (2.19)

Ψi = |ψi|2v =
1

Y

h̄ki
mn

. (2.34)

In contrast to the spherical outgoing wave from section 2.2, we express the final
state as a (superposition of) plane wave(s)

|ψf〉 =
1√
Y

exp(ikf · r) . (2.35)

We here ignore the spin state of the neutron, which will be discussed in the
chapter on neutron polarization.

2.3.2 * Density of states

For the spinless states, we calculate the number density in k-space:

dn

dVk
=

(

2π

L

)−3

=
Y

(2π)3
. (2.36)
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We now consider a spherical shell in k-space to calculate the (energy) density
of states,

dn

dEf

=
dn

dVk

dVk
dkf

(

dEf

dkf

)−1

=
Y

(2π)3
4πk2f

mn

kf h̄
2
=
Y kfmn

2π2h̄2
. (2.37)

In order to describe the differential scattering cross sections, we would like to
describe the fraction of the wavefunction which is emitted into directions of kf ,
corresponding to a solid angle dΩ. Here, the densities are given by

dn

dVk

∣

∣

∣

∣

dΩ

=
dn

dVk

dΩ

4π
=

Y

(2π)3
dΩ

4π
. (2.38)

Following the calculations leading to (2.37), we can now calculate the density
of states within the scattering direction dΩ:

dn

dE

∣

∣

∣

∣

dΩ

=
Y kfmn

(2π)3h̄2
dΩ. (2.39)

We will need this expression in the further calculations.

2.3.3 * The master equation for scattering

We describe the interaction responsible for the scattering by the operator V̂ .
The scattering process itself is described by the Fermi Golden Rule [18]. This
gives the rate of change between the neutron in the single incoming state, |ψi〉
and a final state, |ψf〉, where |ψf〉 resides in a continuum of possible states.

Wi→f =
2π

h̄

dn

dEf

∣

∣

〈

ψi

∣

∣V̂
∣

∣ψf

〉
∣

∣

2
, (2.40)

We wish to consider only neutrons scattered into the solid angle dΩ. Using
(2.39) and (2.40), we reach

Wi→f,dΩ =
Y kfmn

(2π)2h̄3
dΩ

∣

∣

〈

ψi

∣

∣V̂
∣

∣ψf

〉∣

∣

2
. (2.41)

Wi→f,dΩ is the number of neutrons scattered into dΩ per second. We now only
need the expression for the incoming flux (2.19) to reach the result for the
differential scattering cross section (2.4)

dσ

dΩ
=

1

Ψ

Wi→f,dΩ

dΩ
(2.42)

= Y 2 kf
ki

(

mn

2πh̄2

)2
∣

∣

〈

ψi

∣

∣V̂
∣

∣ψf

〉∣

∣

2
.

In this expression, the normalization volume, Y , will eventually vanish due to
the factor 1/

√
Y in the states |ki〉 and |kf〉, since the interaction, V̂ , is always

independent of Y . We will thus from now on neglect the Y dependence in the
states and in the cross sections.

The factor kf/ki in (2.42) is of importance only for inelastic neutron scat-
tering, where it always appears in the final expressions. For elastic scattering,
kf = ki, so the two wave numbers cancel.



2.3. * Quantum mechanics of scattering 33

2.3.4 * Elastic scattering from one and two nuclei

The interaction between the neutron and the nuclei is expressed by the Fermi
pseudopotential

V̂j(r) =
2πh̄2

mn

bjδ(r− rj) . (2.43)

Here, bj has the unit of length and is of the order fm. It is usually denoted the
scattering length. The spatial delta function represents the short range of the
strong nuclear forces and is a sufficient description for the scattering of thermal
neutrons.

It should here be noted that a strongly absorbing nucleus will have an sig-
nificant imaginary contribution to the scattering length. We will, however, not
deal with this complication here.

For a single nucleus, we can now calculate the scattering cross section. We
start by calculating the matrix element

〈

ψf

∣

∣V̂j
∣

∣ψi

〉

=
2πh̄2

mn

bj

∫

exp(−ikf · r)δ(r− rj) exp(iki · r)d3r (2.44)

=
2πh̄2

mn

bj exp(iq · rj),

where we have defined the very central concept of neutron scattering, the scat-
tering vector, as

q = ki − kf . (2.45)

Inserting into (2.42), we reassuringly reach the same result as found from the
semi-classical calculation (2.22):

dσ

dΩ
= b2j . (2.46)

For a system of two nuclei, we obtain interference between the scattered neutron
wave. We can write the scattering potential as a sum V̂ = V̂j+ V̂j′ . In this case,
the matrix element becomes

〈

ψf

∣

∣V̂
∣

∣ψi

〉

=
1

Y

2πh̄2

mn

(

bj exp(iq · rj) + bj′ exp(iq · rj′)
)

. (2.47)

Inserting into (2.42), we reach the same result (2.32) as the simpler approach
in section 2.2.

2.3.5 * Formalism for inelastic scattering

When describing the quantum mechanics of the inelastic scattering process,
it is important to keep track of the quantum state of the scattering system
(the sample), since it changes during the scattering process (for h̄ω 6= 0). The
initial and final sample states are denoted |λi〉 and |λf〉, respectively. The partial
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differential cross section for scattering from |λi,ki〉 to |λf ,kf〉 is given in analogy
with (2.42) by

d2σ

dΩdEf

∣

∣

∣

∣

λi→λf

=
kf
ki

(

mn

2πh̄2

)2
∣

∣

〈

λiψi

∣

∣V̂
∣

∣ψfλf
〉
∣

∣

2
δ(Eλi

− Eλf
+ h̄ω) , (2.48)

where the δ-function expresses explicit energy conservation and the normaliza-
tion factor Y 2 is omitted.

This expression will be our starting point in the chapters on inelastic scat-
tering from lattice vibrations and magnetic excitations.

2.4 Coherent and incoherent scattering

In general, the neutron scattering length varies from nucleus to nucleus. This
can be caused by the variation of the nuclear spin direction with time, or by
variations between isotopes of the same element - or between different elements.
We here describe how this affects the scattering cross sections.

2.4.1 The coherent and incoherent cross sections

Variation in scattering length due to element or isotope disorder is a static effect,
while nuclear spin variations are dynamic. However, for a macroscopic sample
they can be treated in the same way, since we can assume that 1) the sample
is large enough to essentially represent an ensemble average and 2) we observe
the system over times much longer than nuclear fluctuation times, meaning that
the time average equals an ensemble average.

Let us for simplicity assume that the scattering length at site j has the
stochastic value

bj = 〈bj〉+ δbj , (2.49)

where 〈bj〉 is shorthand for the average of bj and δbj is the local deviation from
the average, 〈δbj〉 = 0 . The deviations are assumed to be independent between
sites, 〈δbj δbj′〉 = 0. The mean scattering cross section is found from interference
terms of the type seen in the two-atom problem.

〈

dσ

dΩ

〉

=
〈

|bj exp(iq · rj) + bj′ exp(iq · rj′)|2
〉

, (2.50)

where the average here means both time and ensemble average. We now see that
the “self terms” give 〈b2j 〉 = 〈bj〉2 + 〈δb2j 〉, while the “interference terms” give

〈bjbj′〉 = 〈bj〉〈bj′〉. Identifying σinc with 4π〈(δb)2〉, we can rewrite the equation
above

〈

dσ

dΩ

〉

=
σinc,j + σinc,j′

4π
+

∣

∣〈bj〉 exp(iq · rj) + 〈bj′〉 exp(iq · rj′)
∣

∣

2
. (2.51)
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Here it can be seen that σinc represents a constant scattering of neutrons, i.e.
in all directions, without interference. Hence, σinc is called the incoherent scat-
tering cross section. The average value 〈bj〉 represents the strength of the in-
terferent scattering and is denoted the coherent scattering length. In general,
the coherent scattering depends on the scattering vector q, and hence on the
scattering angle. One defines coherent scattering cross section for nucleus j as
σcoh,j = 4π〈bj〉2.

Usually, the explicit average notation 〈b〉 is dropped, and the symbol b almost
exclusively means the average scattering length of a certain isotope or element.
This is also the notation used in Table 2.1.

2.4.2 Incoherent nuclear scattering from randomness

There are several sources of the incoherent scattering, described in general terms
above. One source is the spin-dependent term, which is described in detail in
[2], and which is the one given by the isotope tables. Below, we will deal
with incoherent scattering caused by variations in the scattering length due
to isotopic mixture or chemical randomness. From the neutron point of view,
all these mechanisms are very similar, as described above. The values of the
incoherent scattering cross sections for the elements, found in Table 2.1, deal
with the combined effect from spin and isotopic mixture.

For a simple example of site randomness, assume that a material consists of
two isotopes with the abundances ac = a, and ad = 1 − a, and the scattering
lengths bc and bd, respectively. The average scattering length is

〈b〉 = abc + (1− a)bd, (2.52)

and the average incoherent cross section can be calculated by an average over
the isotope abundances:

σinc
4π

= 〈(δb)2〉

= a(bc − 〈b〉)2 + (1− a)(bd − 〈b〉)2

= a(1− a)(bc − bd)
2. (2.53)

This expression can easily be generalized to more than two isotopes.

2.5 The total cross section for a system of particles

We have learned above that the total cross section can be written as a sum
of the coherent and incoherent cross sections. In general, each of these cross
sections can have an elastic and an inelastic part, giving rise to four terms:

d2σ

dΩdEf

=
∑

j

d2σj
dΩdEf

∣

∣

∣

∣

inc

+
d2σ

dΩdEf

∣

∣

∣

∣

coh

+
∑

j

dσj
dΩ

∣

∣

∣

∣

inc

δ(h̄ω) +
dσ

dΩ

∣

∣

∣

∣

coh

δ(h̄ω).

(2.54)
We will in the remainder of these notes concentrate upon the two coherent
scattering processes.
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Experimental considerations. The distinction between coherent and incoher-
ent scattering is very important. In most types of experiment you will aim to
minimize the incoherent cross section, which creates a uniform background, and
maximize the coherent cross section, which generates the features you intend to
study. A typical strong source of incoherent scattering is hydrogen, 1H, where
the incoherence is due to a strong spin dependence of the interaction between
the neutron and the proton.

Inelastic incoherent scattering can also be used to study dynamic processes;
mostly the motion of hydrogen. This type of scattering is not discussed further
in this version of the notes.

2.5.1 Coherent elastic scattering from a system of nuclei

In chapters 6 and 8, we will discuss neutron diffraction from macromolecules and
crystals, respectively. These topics essentially deal with interference between
waves scattered from a large number of nuclei in the same way as we have seen
for two nuclei above. For this purpose, equation (2.32) is easily generalized to
several particles

dσ

dΩ

∣

∣

∣

∣

coh

=

∣

∣

∣

∣

∑

j

bj exp(iq · rj)
∣

∣

∣

∣

2

. (2.55)

This is a very important result, which is used in most types of neutron scattering.

2.5.2 The significance of the scattering vector

In a scattering experiment, one will always measure the scattering angle with
respect to the incoming beam, as illustrated in Fig. 2.2. The scattering angle is
known as 2θ. In elastic scattering, ki = kf ≡ k, and we can see from the figure
that

q = 2k sin(θ) . (2.56)

2.6 Problems

2.6.1 The cross section

Imagine a beam of neutrons arriving randomly over a surface of area A per-
pendicular to the beam, with an arrival rate of N neutrons per second. In
a semi-classical approximation, you can consider each neutron point shaped.
Now, on the surface we place one nucleus with an effective radius of 2b. Assume
that each neutron hitting the nucleus is scattered and all other neutrons are left
unscattered.

1. Calculate the neutron flux

2. Calculate the probability for one neutron to hit the nucleus

3. Show that the scattering cross section of the nucleus is σ = 4πb2
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ki kf

θ θ

2θ

q

Figure 2.2: An illustration of the scattering process with the incoming and outgoing
beam, the wave vectors, ki and kf , and the scattering vector q.

2.6.2 Attenuation of the neutron beam

1. Derive the exponential decay (2.12).

2. Prove that when there is both absorption and scattering, then the total
attenuation coefficient is the sum of the individual coefficients.

2.6.3 Selection of materials for neutron scattering experiments

Most nuclei scatter neutrons incoherently, i.e. in random directions. Further,
some nuclear isotopes are able to absorb neutrons by nuclear processes. We will
now take a closer look at these properties for various materials.

1. Consider the incoherent scattering cross section σinc for the typical ele-
ments occuring in organic materials: H, C, N, O and P. How could one
reduce the incoherent background from organic samples?

2. Some transition metals (Sc → Zn) display a strong incoherent scattering,
and one of them is used as a standard incoherent scatterer (for calibration
purposes). Try to figure out which one it is.

3. Sometimes other, more easily accessible, materials are used as incoherent
scatterers instead. Suggest one.

4. Which metals may be used for neutron shielding? Calculate the penetra-
tion depth 1/µ in these materials for neutron energies of 5 meV. Assume
that the number density of atoms in the metal is 1/(16 Å3).
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5. Also boron nitride, BN, (V0 = 11.81 Å3) is used for shielding purposes.
This material is used e.g. to make adjustable diaphragms (slits) to control
the size of the neutron beam.

Calculate the thickness of BN needed to reach an attenuation factor of
10−6 for 5 meV neutrons. What will the attenuation then be for neutrons
of 20 meV and 180 meV?

6. In a neutron scattering experiment, the sample surroundings must be
“clean” in the sense of absorption and (incoherent) scattering. Which
metal would you suggest for constructing cryostats for neutron experi-
ments?
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