Neutron Scattering: Theory, Instrumentation, and Simulation

Kim Lefmann
Niels Bohr Institute, University of Copenhagen

with contributions from Bente Lebech, Risø-DTU
and Lise Arleth, University of Copenhagen

α−MnMoO₄, Logarithmic scale

Energy [meV]

Q=(0,K,K/2) [rlu]
Image on front page: Inelastic neutron scattering data on a single crystal of the molecular magnet α-MoMnO$_4$, taken by the students at the Copenhagen neutron scattering course, 2005. From Ref. [1].
Foreword and acknowledgements

This text is written as lecture notes for a University course in Neutron Scattering, University of Copenhagen, autumn 2011. In contrast to most textbooks on this topic, these notes cover both theoretical and experimental aspects. Furthermore, the notes contain an introduction to ray-tracing simulations of neutron instruments.

The theoretical parts of these notes are largely inspired by the classical textbooks by Marshall and Lovesey[2], and Squires[3], but the material has been simplified to make it appropriate for beginners in this field and re-organised in (for me) a more streamlined way. Further, this text contains more recent topics like small-angle scattering and reflectivity. It is intended to make the notation consistent with Squires[3]. One major difference, though, is the use of q in stead of κ for the scattering vector, in order to make the notation compatible with current practice.

I am strongly indebted to Kurt N. Clausen for introducing me to the secrets of neutron scattering and for support far beyond the duties and timespan of a Ph.D. supervisor. Without him this work would have been utterly impossible.

A wholehearted thank you goes to Robert McGreevy for providing me the “five reasons” for neutron scattering. Even more important, he led the EU project SCANS, which inspired and funded much of the work related to computer simulations. He was also leading the previous EU NMI3 and ISIS-TS2 projects, both supporting the simulation work.

In the present EU projects (named NMI3 and NMI3-2), led by Helmut Schober and Mark Johnson (both from ILL), Pia Jensen, Linda Udby, and I develop simulation tools for the notes to create a virtual EU course for the teaching of neutron scattering and instrumentation. In this respect, the students at the Copenhagen course have acted as ”guinea pigs”, helping us to find scores of mistakes and imprecisions. Thanks to all ~ 120 participants for good spirit and much discussion. Thanks in particular to Sara Eisenhardt, Jacob Larsen, Elisabeth Ulrikkeholm, Maria Thomsen, Pia Jensen, Johan Jacobsen, and Henrik Jacobsen for spotting many errors and for useful suggestions.

I would at this point like to thank all persons who joined me in developing the McStas simulation package (in chronological order): Kristian Nielsen, Henrik M. Ronnow, Emmanuel Farhi, Per-Olof Astrand, Peter K. Willendrup, Klaus Lieutenant, Peter Christiansen, Erik Knudsen, Linda Udby, and Uwe Filges.

I thank Jonas Okkels Birk and Bente Lebech for drawing most of the illustrations. The remaining figures were provided by Peter K. Willendrup, Peter Christiansen, Linda Udby, and Robert McGreevy.

Finally, thanks once again to Linda Udby and Pia Jensen for helping me with the editing and for making the material available interactively on the internet.
Contents

I Basics of neutron scattering

1 Introduction to neutron scattering

1.1 Basic properties of the neutron

1.2 Particle-wave duality

1.3 Neutron scattering facilities

1.4 Five reasons for using neutrons

1.5 On these notes

1.5.1 Reading the text

1.5.2 Future extensions

2 Basics of neutron scattering theory

2.1 The neutron cross sections

2.1.1 Neutron flux

2.1.2 The scattering cross section

2.1.3 The differential scattering cross section

2.1.4 The partial differential scattering cross section

2.1.5 Beam attenuation due to scattering

2.1.6 The absorption cross section

2.2 Wave description of nuclear scattering

2.2.1 The neutron wave

2.2.2 Elastic neutron scattering from a single nucleus

2.2.3 Scattering from two nuclei – interference

2.3 * Quantum mechanics of scattering

2.3.1 * The initial and final states

2.3.2 * Density of states

2.3.3 * The master equation for scattering

2.3.4 * Elastic scattering from one and two nuclei

2.3.5 * Formalism for inelastic scattering

2.4 Coherent and incoherent scattering

2.4.1 The coherent and incoherent cross sections

2.4.2 Incoherent nuclear scattering from randomness

2.5 The total cross section for a system of particles

2.5.1 Coherent elastic scattering from a system of nuclei

2.5.2 The significance of the scattering vector
II Neutron instrumentation and simulation 41

3 Neutron sources and moderators 43
 3.1 Neutron sources 43
 3.1.1 Producing neutrons 43
 3.1.2 Neutron scattering facilities 44
 3.2 Moderators 45
 3.2.1 The moderation process 46
 3.2.2 Energy distribution of moderated neutrons 47
 3.2.3 Moderator brilliance and the Liouville theorem 48
 3.2.4 Moderator geometry 49
 3.3 Problems in sources and moderators 49
 3.3.1 Hydrogen as a moderator 49
 3.3.2 The moderator temperature 50
 3.3.3 The beam port 51

4 Instrumentation 53
 4.1 Neutron guide systems 53
 4.1.1 Guide reflectivity 54
 4.1.2 Straight guides 54
 4.1.3 Curved guides 55
 4.1.4 Tapering guides 55
 4.1.5 Parabolic and elliptical guides 56
 4.1.6 Shielding and shutters 56
 4.2 Beam optical components 57
 4.2.1 Slits 57
 4.2.2 Collimators 57
 4.3 Neutron detectors 57
 4.3.1 Detection processes 57
 4.3.2 Background 58
 4.3.3 Monitors 58
 4.4 Determining the incoming neutron wavelength 58
 4.4.1 Monochromatizing the neutron beam 59
 4.4.2 Time-of-flight analysis 60
 4.5 Particular neutron instruments 62
 4.5.1 A small-angle scattering instrument 62
 4.6 Powder scattering instruments 63
 4.6.1 Continuous source powder diffractometers 63
 4.6.2 A pulsed source powder diffractometer 65
 4.7 Instruments for inelastic neutron scattering 66
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7.1</td>
<td>Continuous source instrumentation, triple-axis spectrometer</td>
<td>66</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Time-of-Flight inelastic spectrometers</td>
<td>67</td>
</tr>
<tr>
<td>4.8</td>
<td>Instrumentation for investigation of magnetic diffraction</td>
<td>68</td>
</tr>
<tr>
<td>4.9</td>
<td>Instrumentation for investigation of magnetic excitations</td>
<td>68</td>
</tr>
<tr>
<td>4.10</td>
<td>Problems in neutron instrumentation</td>
<td>68</td>
</tr>
<tr>
<td>4.10.1</td>
<td>The neutron guide system</td>
<td>68</td>
</tr>
<tr>
<td>4.10.2</td>
<td>The collimator</td>
<td>69</td>
</tr>
<tr>
<td>4.10.3</td>
<td>Neutron velocity selector</td>
<td>69</td>
</tr>
<tr>
<td>4.10.4</td>
<td>Pinhole collimation</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>Monte Carlo simulation of neutron instruments</td>
<td>71</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction to the Monte Carlo technique</td>
<td>71</td>
</tr>
<tr>
<td>5.1.1</td>
<td>A simple example of Monte Carlo simulations</td>
<td>72</td>
</tr>
<tr>
<td>5.1.2</td>
<td>On Monte Carlo methods</td>
<td>73</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Methods for variance reduction</td>
<td>73</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Monte Carlo Ray-tracing</td>
<td>73</td>
</tr>
<tr>
<td>5.2</td>
<td>Monte Carlo ray-tracing packages for neutrons</td>
<td>74</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Describing the neutron optical components</td>
<td>75</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Describing the neutron instrument</td>
<td>75</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Varying and optimizing the instrument parameters</td>
<td>75</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Virtual experiments</td>
<td>75</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Performing the ray-tracing simulations</td>
<td>76</td>
</tr>
<tr>
<td>5.3</td>
<td>Monte Carlo ray-tracing techniques</td>
<td>76</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Representing the neutrons in simulations</td>
<td>77</td>
</tr>
<tr>
<td>5.3.2</td>
<td>The neutron weight factor</td>
<td>77</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Estimates of simulation uncertainty</td>
<td>78</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Scattering from a sample</td>
<td>79</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Focusing in sample scattering</td>
<td>80</td>
</tr>
<tr>
<td>5.4</td>
<td>Problems</td>
<td>80</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Validity of the semiclassical approximation</td>
<td>80</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Simulation of incoherent scattering</td>
<td>81</td>
</tr>
<tr>
<td>III</td>
<td>Structure of materials</td>
<td>83</td>
</tr>
<tr>
<td>6</td>
<td>Small angle neutron scattering, SANS</td>
<td>85</td>
</tr>
<tr>
<td>6.1</td>
<td>Applications of SANS in nanoscience</td>
<td>85</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Contrast variation</td>
<td>85</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Examples of bio- and nanoscience</td>
<td>86</td>
</tr>
<tr>
<td>6.2</td>
<td>The neutron scattering cross section from nano-sized particles</td>
<td>86</td>
</tr>
<tr>
<td>6.2.1</td>
<td>The cross section for neutron diffraction</td>
<td>86</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Quantum description of the cross section</td>
<td>86</td>
</tr>
<tr>
<td>6.2.3</td>
<td>The structure factor</td>
<td>87</td>
</tr>
<tr>
<td>6.2.4</td>
<td>The small-angle approximation</td>
<td>87</td>
</tr>
<tr>
<td>6.2.5</td>
<td>SANS from particles in solution</td>
<td>88</td>
</tr>
<tr>
<td>6.2.6</td>
<td>The particle form factor</td>
<td>89</td>
</tr>
</tbody>
</table>
6.3 Useful approximations in SANS

- **6.3.1 The Debye formula**
- **6.3.2 The Guinier approximation**
- **6.3.3 The Porod law**
- **6.3.4 Polydispersity**

6.4 Problems

- **6.4.1 The structure factor for dilute systems**
- **6.4.2 Scattering form factor for spheres**
- **6.4.3 SANS q-range and resolution**
- **6.4.4 Polydisperse spheres**
- **6.4.5 Phospholipid bilayer liposomes**
- **6.4.6 Calculating the SANS and SAXS from spherical surfactant micelles**
- **6.4.7 Simulation of SANS scattering**

7 Reflection and refraction

7.1 Basic neutron optics

- **7.1.1 Snell's law**
- **7.1.2 Refractive index for a neutron**

8 Diffraction from crystals

8.1 The correct elastic scattering cross section

- **8.1.1 Scattering from vibrating nuclei**
- **8.1.2 The Debye-Waller factor**

8.2 Basic crystallography

- **8.2.1 Lattice vectors**
- **8.2.2 The reciprocal lattice**
- **8.2.3 Atomic positions in the unit cell**
- **8.2.4 Crystal structures and symmetries**
- **8.2.5 How to use the information in IT**
- **8.2.6 Occupancy**

8.3 Diffraction from crystalline materials

- **8.3.1 The scattering cross section for a crystal**
- **8.3.2 The Bragg law**
- **8.3.3 Integrals over the diffraction cross section**

8.4 Diffraction from single crystals with monochromatic radiation

- **8.4.1 Rotation of a crystal in the beam**
- **8.4.2 Crystal mosaicity; secondary extinction**
- **8.4.3 Perfect crystals; primary extinction**

8.5 Laue diffraction

8.6 Diffraction from a powder

8.7 Diffraction from nano-sized systems

- **8.7.1 A cubic nanoparticle**
- **8.7.2 The Scherrer equation**

8.8 Analysis of powder data

8.9 Problems
Contents

8.9.1 Bragg scattering from Bravais lattices .. 129
8.9.2 Bragg scattering from non-Bravais lattices 130
8.9.3 Use of International Tables for Crystallography 131

IV Dynamics of materials .. 135

9 Scattering from lattice vibrations .. 137
 9.1 Lattice vibrations, classical treatment ... 137
 9.1.1 Dynamical description of nuclei in crystals 137
 9.1.2 The one-dimensional nearest neighbour model 138
 9.1.3 Optical lattice vibrations .. 139
 9.1.4 One-dimensional models with two different atoms 141
 9.2 Phonons, quantum mechanical treatment 142
 9.2.1 The harmonic oscillator .. 143
 9.2.2 The one-dimensional quantum model .. 143
 9.2.3 The three-dimensional general case .. 145
 9.3 Inelastic nuclear neutron scattering .. 145
 9.3.1 Scattering from initial to final state ... 146
 9.3.2 The observable nuclear cross section .. 147
 9.4 The scattering cross section for phonons 148
 9.4.1 Inelastic cross section of atoms in a lattice 148
 9.4.2 Details of phonon operators .. 149
 9.4.3 The phonon expansion ... 150
 9.4.4 The Debye-Waller factor ... 151
 9.4.5 Calculating $\langle UV \rangle$.. 152
 9.4.6 Understanding the one-phonon cross section 152
 9.5 Problems .. 153
 9.5.1 Classical lattice vibrations in one dimension 153
 9.5.2 Classical vibrations with a two-atom unit cell 154

V Magnetic materials ... 155

10 Magnetic neutron scattering ... 157
 10.1 Magnetism in materials ... 157
 10.1.1 Magnetic ions ... 157
 10.1.2 Interactions between magnetic ions 159
 10.1.3 Classical magnetic structure ... 160
 10.1.4 Magnetic phase transitions .. 162
 10.1.5 Quantum magnetism ... 163
 10.2 The interaction between neutrons and magnetic ions 165
 10.2.1 The magnetic matrix element .. 165
 10.2.2 Matrix element for unpolarized neutrons 166
 10.2.3 The master equation for magnetic scattering 167
 10.2.4 The magnetic form factor ... 167
10.2.5 Orbital contributions 168
10.2.6 The final magnetic cross section 168
10.3 Magnetic diffraction .. 168
 10.3.1 Paramagnetic scattering 169
 10.3.2 Scattering from magnetically ordered structures 169

11 Inelastic magnetic scattering 173
 11.1 Spin waves in a ferromagnet 173
 11.1.1 The equation-of-motion method 173
 11.1.2 The stationary operator method 175
 11.2 Spin waves in an antiferromagnet 176
 11.2.1 The anisotropic Hamiltonian 176
 11.2.2 The equations of motion 176
 11.2.3 Fourier and Bogoliubov transformations 177
 11.2.4 The spin wave energy 178
 11.3 Inelastic magnetic neutron scattering 178
 11.4 Neutron cross section from ferromagnetic spin waves 180
 11.5 Neutron cross section of antiferromagnetic spin waves 182
 11.5.1 The simple nearest neighbour antiferromagnet 182
 11.5.2 Antiferromagnetic nanoparticles in zero field 183
 11.6 The dynamic correlation function 183
 11.6.1 Finite-size quantum systems 184
 11.6.2 The sum rule 184
 11.6.3 The generalized susceptibility 185

VI Simulation projects ... 187
12 McStas simulation projects 189
 12.1 Simple simulation problems 189
 12.1.1 Estimating the circle area 189
 12.1.2 A neutron guide system 190
 12.1.3 Simple Bragg scattering, the monochromator 190
 12.1.4 The Be filter 190
 12.2 Simulation project: SANS-2 191
 12.2.1 The source-guide system 191
 12.2.2 Velocity selector 191
 12.2.3 Pinhole collimation 192
 12.2.4 Detector 192
 12.2.5 The effect of gravity 192
 12.2.6 A full virtual experiment - spheres sample 192
 12.2.7 A full virtual experiment - Liposome sample 193
 12.2.8 Normalizing data 193
 12.2.9 Data analysis 193
 12.2.10 Resolution of the SANS instrument 194
 12.3 Simulation project: Powder diffraction 194
Contents

12.3.1 The guide system 194
12.3.2 Monochromator 194
12.3.3 Collimator .. 195
12.3.4 Sample ... 195
12.3.5 DMC multi-detector 195
12.3.6 A full virtual experiment 195
12.3.7 Emulating real experimental data 196
12.3.8 Determine the crystal structure of the sample 196
12.3.9 Optional: Improve your instrument 196

12.4 Simulation project: A triple-axis spectrometer 197
12.4.1 The source-guide system 197
12.4.2 A focusing monochromator 197
12.4.3 Tuning the RITA-2 monochromator 198
12.4.4 Collimator .. 198
12.4.5 Filter .. 198
12.4.6 Analyzer and detector 198
12.4.7 Energy resolution 199
12.4.8 Phonon sample 199
12.4.9 A full virtual experiment 200
12.4.10 Optional 1: Determine the full phonon dispersion of the sample .. 200
12.4.11 Optional 2: The resolution function 200

A Appendix ... 203

A.1 Mathematical identities 203
A.1.1 Vector analysis 203
A.2 Electrodynamics 203
A.2.1 The classical electron radius 203
A.3 Quantum mechanics 204
A.3.1 The Fermi Golden Rule 204