
Part II

Neutron instrumentation and
simulation

41





Chapter 3

Neutron sources and
moderators

This chapter deals with the production and moderation of research-purpose
neutrons. The instrumentation that extracts and utilizes neutrons from these
sources are discussed in chap. 4, whereas Monte Carlo ray-tracing simulations
of neutrons in sources and instruments is discussed in chap. 5.

3.1 Neutron sources

We here describe how neutrons are produced, and where large-scale neutron
scattering facilities are located around the world.

3.1.1 Producing neutrons

Neutrons can be produced in a number of ways, e.g. as by-products of cos-
mic radiation or radioactive decay of heavy nuclei. One often used laboratory
neutron source is Californium, 252Cf, wich emits neutrons by spontaneous fis-
sion (on average around 3-4 neutrons per fission [19]). However, the 252Cf half
life time of only 2 years makes frequent source changes necessary. A more long
lived laboratory source is the radium-beryllium source. Here, the radium decays
spontaneously with a half life of 1600 years according to

226Ra → 222Rn + 4α+Q, (3.1)

with the heat release Q = 4.871 MeV. In the presence of berylium, a neutron is
released according to

4α+ 9Be → n+ 12C. (3.2)

More recently, neutrons have been produced in a laboratory experiment,
using a pyroelectric crystal [20] or a high electrical field [21] to accelerate ions of
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44 Chapter 3. Neutron sources and moderators

deuterium (the heavy hydrogen isotope 2D) to high energies. This will produce
neutrons through the reaction

2D+ 2D → 3He + n+Q, (3.3)

where Q is an excess energy of 3.27 MeV, of which around 2.5 MeV goes to the
neutron.

As mentioned in chapter 1, and illustrated in figure 1.1, neutron sources
created for scattering purposes are either based upon chain reaction in a nuclear
reactor or upon accelerator-driven spallation processes.

In nuclear reactors, neutrons are produced in the fission process

235U+ n→ D1 +D2 + 2-3n+Q, (3.4)

where D represent a range of daughter nuclei and the released energy Q is of
the order 200 MeV. 235U fission typically yields 1.4 excess neutron per nuclear
process [22]. Research reactors with compact cores are used for neutron scat-
tering purposes, rather than the more abundant nuclear power plants. Reactor
sources usually emits a continuous stream of neutrons, except for the remark-
able pulsed reactor source in Dubna (RUS), where two large wheels drive the
neutron reflectors in a way, so that criticality is reached only in short bursts.

A spallation source is driven by a proton accelerator, which emits protons
with energies in the range 1-3 GeV. The protons collide with heavy, neutron-rich
nuclei, which are destroyed in the process to many smaller fragments, releasing
of the order 10-20 neutrons per proton. Spallation sources are typically pulsed,
but can also be pseudo-continuous, as is the case at PSI (CH).

3.1.2 Neutron scattering facilities

A few dozens of research neutron sources exist over the world, most of these in
Europe, North America, and Asia. During the last decade, the leading sources
have been those of ILL (F) and ISIS (UK). Many reactor sources built in the
1960’ies have exceeded their lifetime and have been closed. Notable recent
reactor close-downs have been seen at (in chronological order) Brookhaven (US),
Risø (DK), Studsvik (S), Jülich (D), and Geestacht (D). Also the spallation
source IPNS (US) was recently closed down.

To compensate for this loss, and to bring progress to neutron scattering
science, new advanced neutron sources are being built and commisioned. I will
here mention the new reactors FRM-2 at Technical University of Munich (D),
OPAL at ANSTO in Sydney (AUS), and CARR at CIAE (China). In addition,
major upgrades are being performed at ILL.

Most important for the future are, however, the spallation sources. The
second target station at the ISIS spallation source is about to double the number
of instruments at this facility. The world leaders for the coming decade will
be the new and more powerful sources SNS, Oak Ridge, Tennessee [23] (first
neutrons April 2006; Figure 3.1) and J-PARC, Tokai, Japan [24] (first neutrons
May 2008; re-opened December 2011 after earthquake/tsunami damage).
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Figure 3.1: Arial photo of the new American “Spallation Neutron Source”, SNS.
This is presently the world’s most intense pulsed neutron facility.

An even more ambitious project, the European Spallation Source (ESS) has
been promoted over the last 20 years. In May 2009 it was decided to locate this
source in Lund (S). Although the financial formalities are not yet settled, the
project is backed up by 17 European countries, including Germany, UK, and
France. According to the present plans, the first neutrons will be produced in
2019 [10]. The critical decision to start the construction is expected to be taken
in 2013; an artists impression of the ESS in Lund is given in Fig. 3.2.

In Table 3.1, we list the most important present neutron sources. European
sources not listed include Delft (NL), Budapest (H), Rez (CZ), and Kjeller (N).
A continuously updated list of neutron sources worldwide is found at the home
page of the European neutron (and muon) infrastructure initiative NMI3 [25].

3.1.3 Access to neutron sources

Research centers for neutron scattering are typically nationally or continentally
funded facilities. The most common way of utilizing these facilities are when
research groups propose scientific projects to be performed at particular instru-
ments on the facility. These proposals are then considered by an independent
panel, which will advice the facility directors on the quality and scientific ur-
gency of proposals.

Most facilities have deadline for proposals twice per year, and access (or beam
time) is often allocated 3-4 months after the deadline for the following half-year
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Figure 3.2: Arial photo of the town of Lund towards Malmö and the Öresund
Bridge, superimposed with a sketch of the planned X-ray synchrotron MAX-4 and
the prospected neutron source ESS, which is likely to become the world leading neu-
tron facility.
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Source Start Instruments
Name Location type Power year in user operation

ILL Grenoble, France R 58 MW 1971 45
ORPHEE, LLB Paris, France R 14 MW 1982 21

BER-II, HZB Berlin, Germany R 10 MW 1992 16
FRM-2, TUM Munich, Germany R 20 MW 2004 29

Dubna Russia PR
SINQ, PSI Villigen, Switzerland CS 800 kW 1996 14
ISIS, RAL Oxfordshire, UK S 160 kW 1985 36

ESS Lund, Sweden S 5 MW 2019 0 → 22

NCNR, NIST Gaithersburg, MD R 20 MW ∼ 1970 23
HFIR Oak Ridge, TN R 85 MW 1966 11
NRU Chalk River, Canada R 125 MW 1957 7

LANSCE Los Alamos, NM S 160 kW 19?? 11
SNS Oak Ridge, TN S 1.4 MW 2006 19 → 22

OPAL, ANSTO Sydney, Australia R 20 MW 2007 11 → 14
JRR-3M, JAERI Tokai, Japan R 20 MW 1990 30(?)

CARR, CIAE China R 60 MW 20?? 0
J-PARC Tokai, Japan S 1 MW 2008 18 → 22

Table 3.1: Characteristics of significant neutron sources worldwide, in operation or
under construction. Reactor sources are marked by “R” and spallation sources by
“S”. The continuous spallation source at PSI is denoted “CS”, and the pulsed reactor
source in Dubna is denoted “PR”. Data updated August 2012.

period. Hence, the actual experiment is typically performed 6-12 months after
the proposal submission. However, most facilities have other ways of allocating
beam time for particularly urgent experiments.

3.2 Moderators

Neutrons produced in nuclear reactions typically have energies in the MeV
regime. To be useful in condensed matter research, the neutrons must have
their energies reduced by many orders of magnitude. We here describe the
basics of this problem.

For more detailed information, a good introduction to neutron moderator
physics is found in Ref. [26].

3.2.1 The moderation process

The neutron moderation is performed by a large number of successive collisions
with a material that scatters strongly, but absorbs weakly. Here, hydrogen (H)
is an almost perfect choice, also since its nuclear mass is similar to that of the
neutron. This enables the H nucleus to absorb a large fraction of the neutron
energy in each collision.

To show this, let us for simplicity consider the neutron and the protons as
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spherical particles with identical mass, mn, and with identical radii, rn. In
the collision, we consider the proton to be at rest, and the neutron to move
with the velocity v1 along the z-axis. The closest distance from the neutron
trajectory to the proton center is denoted the impact parameter, a. We consider
the neutron to have a random trajectory, hence the probability for having a
particular impact parameter, a, is proportional to a. If a < 2rn, a collision
takes place.

We now consider an (x, z) plane which contains both the proton position
and the neutron trajectory. After the scattering, the proton will remain in the
plane, moving with the velocity v2,p. The proton trajectory makes an angle to
the z-axis of

sinφ =
a

2rn
. (3.5)

We denote the neutron velocity after the scattering by v2,n.

Now, energy conservation and momentum conservation in the (x, z) plane
gives three equations

mnv
2
1 = mn(v

2
2,p + v22,n) (3.6)

mnv1 = mn(v
z
2,p + vz2,n) (3.7)

0 = mn(v
x
2,p + vx2,n) (3.8)

and (3.5) give the fourth equation to determine the four unknowns parameters
of v2,n and v2,p. The solution for the velocity of the proton aften the collisions
is

v2,p = v1 cosφ. (3.9)

Considering that the probability of reaching an impact parameter of a is pro-
portional to a up to a value of 2rn, one can calculate the average energy taken
up by the proton in the collision. The result is

E2,p =
E1

2
. (3.10)

The proof of this is left to the reader, and is posed as problem 3.3.1.

A more detailed model will also provide the result that the neutron loses
on average half of its energy per collision. Slowing the neutron energy by (a
typical value) 8 orders of magnitude, thus takes “only” 25-30 collisions. This is
clearly within practical limits, since the typical mean free path in a hydrogen-
rich material is of the order a few mm.

When the neutron energy becomes comparable to the (thermal) energy of
the protons, the approximation of zero proton velocity breaks down, and a
much more complex description is necessary, including the thermal motion of
the proton and its surroundings. The effect is, nevertheless, that the neutrons
quickly reach thermal equilibrium with the surrounding material.
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3.2.2 Energy distribution of moderated neutrons

Most moderators consist of a tank with liquid water (H2O; 300 K), which will
slow down neutrons to roughly thermal equilibrium. When neutrons of lower
energies are required, moderators of liquid hydrogen (H2; 30 K) or solid methane
(CH4; 100 K) are used in connection with the water moderator. At ILL, there
is even a hot moderator consisting of graphite at 2000 K. We will here discuss
the implications of the moderator temperature.

Neutrons moderated at a temperature, T , will ideally have a distribution
of velocities, v, given by the Maxwellian distribution of velocities, which is
proportional to v2 times the Boltzmann factor exp(−Ekin/kBT ). Since neutron
emission through a (imaginary) hole at the moderator surface is essentially an
effusion process, the flux of neutrons from a beam port can be written as:

I(v) = I0v
3 exp

(
−mnv

2

2kBT

)
, (3.11)

where I0 is a constant proportional to the source power and kB is Bolzmann’s
constant. This velocity distribution peaks at vmax =

√
3kBT/mn, corresponding

to an energy of 3kBT/2.
It is customary to define the equivalent temperature of neutrons with a certain

energy. The relation is given by

E =
mnv

2

2
= kBTequiv. (3.12)

Transferring the Maxwellian distribution (3.11) in terms of wavelength re-
quires a little care. Since v = 2πh̄/(mnλ), we have dv = −2πh̄dλ/(mnλ

2).
Hence, the wavelength and velocity axes do not scale linearly, and a transfor-
mation of the distribution must be applied:

I(λ) ≡ dN

dλ
=
dN

dv

∣∣∣∣
dv

dλ

∣∣∣∣ = I ′0λ
−5 exp

(
− 2π2h̄2

λ2mnkBT

)
, (3.13)

where I ′0 ∝ I0 and N is the total number of neutrons . This distribution peaks at
λ = 2πh̄

√
3/(5mnkBT ), corresponding to E = 5kBT/3. The energy equivalent

of the peak value is thus changed by 10% between the two representations of the
Maxwellian distribution. Neutron moderator spectra are typically expressed in
terms of the wavelength distribution, as illustrated in Fig. 3.3.

3.2.3 Moderator brilliance and the Liouville theorem

Since neutron scattering is by and large an intensity limited technique, an im-
portant quantity for a neutron source (moderator) is the produced number of
neutrons per unit of time. However, an even more useful number is the mod-
erator brilliance, B, which describes the produced number of neutrons per unit
of time, per moderator area, per solid angle of flight direction, per wavelength
interval. For example, a compact reactor core will have a higher brilliance than
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Figure 3.3: Maxwellian wavelength distributions corresponding to typical cold (30 K)
and thermal (300 K) sources. Left figure shows a plot with linear axis and right
panel shows the intensities on a logarithmic scale to emphasize the behaviour at long
wavelengths.

a less dense one, even though the total neutron production may be equal. In
reality, the brilliance (or peak brilliance for pulsed sources) is almost the only
relevant value for a neutron source. Brilliance is useful also at other positions
in the neutron instrument, typically at the sample position, and has the same
definition as above. B in general depends upon the position of the moderator,
the time (for pulsed sources), and the direction and wavelength of the emitted
neutrons

B = B(t, r, v̂, λ). (3.14)

In terms of statistical mechanics, the brilliance is closely connected with
phase space density, φ(r,v). This can be seen from the observation that λ can
be written in terms of v, and the position perpendicular to the main beam
direction is given as z = vt. For a ensemble of particles undergoing only passive
processes, the very powerful Liouville theorem is valid. It states that the phase
space density cannot increase. In the context of a neutron scattering instrument,
this means that the brilliance at the neutron beam can under no circumstances
be larger than that of the (brightest spot at the) moderator. As a relevant
example of this, focusing mirrors or lenses are somtimes used to bring more
neutrons on to a small sample. According to the Liouville theorem, however,
the increase in number of neutrons will come from an increase in the spread of
their velocity directions (their divergence).

3.2.4 Moderator geometry

To improve transmission, real moderators have a limited thickness and hence
do not moderate the neutrons completely. Their velocity distribution should
rather be described by the sum of two or more Maxwellians, possibly with the
addition of a tail towards high energies/low wavelengths, describing neutrons
that are scattered only few times in the moderator. This is illustrated for the
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Figure 3.4: Wavelength distributions for SINQ, PSI. Top row shows the measured
thermal spectrum (crosses) with a fit to a single Maxwellian at 306 K (red solid
line). Bottom row shows similar plots for the cold spectrum, with a fit to the sum
of three Maxwellians. Both fits have problems for wavelengths below 0.8 Å, where
undermoderated (hot and epithermal) neutrons are observed. Left column column the
data on a linear scale, while the right row uses a logarithmic intensity scale.

SINQ source at PSI in Fig. 3.4. To avoid completely unmoderated neutrons
from the source, the moderator geometry is chosen so that there is no line-of-
sight between the place of neutron production and the beam port that opens out
to the neutron scattering instruments.

Design and detailed understanding of moderator systems is complex and is
beyond the scope of these notes. In the following, we will be satisfied with the
existence of thermal and cold neutrons sources, and we will concentrate on the
utilization of moderated neutrons.

3.3 Problems in sources and moderators

3.3.1 Hydrogen as a moderator

Show that the energy of a neutron is on average halved by collision with a
proton; c.f. (3.10).
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3.3.2 The moderator temperature

1. In typical sources for neutron scattering purposes, the neutrons are mod-
erated by water. These “thermal” neutrons will (almost) reach thermal
equilibrium with the moderator. Calculate the equivalent energy, E, and
velocity, v, of a thermal neutron, moderated at TH2O = 300 K. Calculate
the corresponding de Broglie wavelength, λ, and wavenumber, k.

2. Perform the same calculations for neutrons thermalised by liquid H2 at
TH = 30 K.

3. For each of the two types of moderators above, calculate the ratio of
intensities: I(4 Å)/I(20 Å).

4. Many neutron instruments utilize a band of incident wavelength, ∆λ. For
many instruments, ∆λ/λ is almost constant and is of the order 0.1%-10%,
depending on instrument type. For instruments with these bandwidth,
calculate the ratio of the neutron fluxes at the sample: Ψ(4 Å)/Ψ(20 Å).

3.3.3 The beam port

Consider a moderator of a typical useful size of 150× 150 mm2. The moderator
emits neutrons isotropically and uniformly over its surface. A beam port of size
50× 50 mm2 is placed 4 m from the moderator face.

Consider a small area dA centered at the moderator-beam port axis; down-
stream from the beam port. Calculate how the neutron flux through dA varies
with distance, L, from the moderator.

The divergence, η, of a neutron is defined as the angular deviation of the
neutron velocity to the “main” axis. Calculate the maximal divergence as a
function of L for the case described above.

Hints: The variation in distance between any point of the moderator and
any point of the beam port can safely be ignored. Gravity can be neglected.
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Instrumentation

Neutron scattering instruments are built in many different designs, reflecting
that they are specialized for vastly different research purposes. Some instru-
ments deal with the study of the structure of crystals, others with excitations in
materials or structure of biomolecular aggregates, others again with the prop-
erties of thin films, and so forth.

In this chapter, we will describe the neutron-optical hardware and tricks
needed to transport the “useful” part of the produced neutrons from the mod-
erator to the sample of material we like to investigate. In addition, we will
describe the assembly of this hardware to form a selection of neutron instru-
ments, each of which is connected to one or more scientific chapters in the later
parts of this text.

Many of these devices utilize the principles of neutron reflection and refrac-
tion, which are close to the concepts of classical optics. The theory behind is
explained in chapter 7.

Instruments using neutron polarization will not be described here, but will
appear in a separate chapter in a later version two of these notes.

4.1 Neutron guide systems

The earliest neutron scattering instruments used a beam of neutrons, extracted
from the moderator through holes (or tunnels) in the shielding; also called a
beam port. The neutron intensity from this type of beam port falls off in general
as 1/r2; for details: see problem 3.3.3. This square law dependence dictates
that neutron instruments of this type are placed close to the neutron source.
Therefore they will suffer from a relatively high background from the source,
e.g. from gamma-radiation, and from epithermal and fast neutrons.

In the early 1960’ies, a new concept was invented: The neutron guide. This
is a neutron conducting channel, in principle equivalent to an optical fiber. The
guide can extract a beam of neutrons from the moderator and deliver it at
another point, further away from the neutron source [27]. Guides are being
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used on most cold-neutron and many thermal-neutron instruments. Typical
guide lengths are 10-100 m.

We will here take a closer look into neutron guide systems.

4.1.1 Guide reflectivity

The neutron guide builds on the principle that surfaces of materials with positive
values of b show total reflection of thermal and cold neutrons under sufficiently
small angles. At larger angles, the reflectivity falls off to zero very fast.

We define the critical angle, θc(λ), as the largest angle between the neutron
path and the surface that still gives rise to total reflection. For a given material,
the critical angle is proportional to the neutron wavelength. Following (2.57)
and Fig. 2.2, the critical scattering vector is now given by

Qc = 2k sin(θc(λ)) ≈ 4π
θc(λ)

λ
, (4.1)

when θc is given in radians. In general, Qc is independent of λ. For the standard
guide material, Ni, the critical scattering vector is

Qc,Ni = 0.0219Å
−1
. (4.2)

For neutrons of 1 Å and 10 Å wavelengths, the critical angles from Ni become
θc = 0.10◦ and 1.00◦, respectively. This should be compared with the divegence
requirements from present instruments, which is often in the range 0.1◦ to 1.0◦.
Hence, neutron optics for 10 Å neutrons is a fairly easy task, while shorter
wavelengths present increasingly larger challenges.

Modern guides are made from multilayer material, usually with Ni as the
outmost layer. This ensures total reflectivity up to Qc,Ni. In addition, the
reflectivity is non-zero up to a much higher scattering vector

Qc = mQc,Ni. (4.3)

One therefore often speaks about the m-value of a multilayer, e.g. a m = 3
guide, as shown in Fig. 4.1. Typical values of m are 2-4, although mirrors
with up to m = 7 can now be obtained. Multilayer guides can be purchased
commercially, typically in pieces of 0.5 m length and cross sections of up to
300× 300 mm2.[28]

4.1.2 Straight guides

The “classical” and most often used guide system is the straight guide, where
the guide cross section is constant along the full length of the guide. A typical
size of such a cross section is 120×30 mm2. Assuming the guide to be sufficiently
long, the maximum divergence being transported through the guide is

ηx = 0.1◦
mλ

[Å]
, (4.4)
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Figure 4.1: Left: The geometry of a neutron reflecting off the surface of a guide,
also known as a neutron mirror. Right: Measured reflectivity profile for a m = 3.6
multilayer guide.

and the same for the y-direction. However, the effect of the supermirror de-
creases for large divergences (larger than θc), since neutrons will typically ex-
perience many reflections, and thus be attenuated by the reflectivity value to a
high power.

In addition, we notice that the maximal volume of the available phase space
in the guide is proportional to m2λ2. This explains why, until recently, guides
were primarily used for cold neutrons and thermal instruments were most often
placed at a beam port close to the moderator.

4.1.3 Curved guides

In practice, many constant-cross-section guides have sections which are slightly
curved horizontally, with radii of the order R ≈ 1 − 3 km, while keeping the
guide cross section constant. This is done in order to avoid direct line-of-sight
from the moderator to the experiment, strongly reducing the number of hot
and epithermal neutrons passing down the guide, which in turn minimizes the
experimental background.

For an example of this guide cut-off, imagine a neutron which bounces al-
ternatingly off the left and right walls of a guide with width w. The guide
curves to the left with the radius of curvature Rc. We consider the limiting
case, where the neutron just glances off the left wall, 2θ = 0. Due to the curva-
ture, the neutron will hit the right wall at an angle θ =

√
2w/R, corresponding

to a scattering vector of q = (4π/λ)
√

2w/R. To scatter the neutron, we need
q ≤ mQc,Ni. This leads to a condition for the scattered neutrons

λ ≥ 4π

mQc,Ni

√
2w

R
. (4.5)

Using the typical values for a cold-neutron guide: m = 2, w = 30 mm, and
R = 2400 m, we reach a lower cut-off for the transmitted neutrons: λ ≥ 1.435 Å.
However, this is not the whole truth. Neutron paths exist, where the neutrons
repeatedly scatter off the outer (in this case the right) wall only. The phase
space of these so-called garland reflection trajctories is, however, much smaller
than of the regular left-right trajectories.
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One way to overcome the garland reflections is to bend the guide first in one
direction, then in the opposite. In this so-called S-shaped guide, the shortest
wavelengths are completely eliminated.

4.1.4 Tapering guides

To increase the intensity of neutrons onto small samples, some more recently
built guide systems have been equipped with focusing “noses”, which are often
a linear (or curving) tapering piece of high-m supermirror guide that narrows
the beam just before the sample. A well-designed nose will increase the num-
ber of neutrons hitting the sample, but according to the Liouville theorem, this
comes at the expense of an increased beam divergence. In addition, the diver-
gence profile from a tapering nose is often non-uniform, due to the difference
in divergence between neutrons hitting the nose piece zero, one, or more times,
respectively.

A full guide set-up using tapering guides is often known as a ballistic guide
system. The guide starts with a linearly expanding section, followed by a
straight (possibly curved) section, to end with a tapering converging nose. This
guide system has the advantage that the expanding section decreases the di-
vergence of the transmitted beam (at the cost of a decreased spatial density,
according to Liouville). The lower divergence decreases the number of reflec-
tions and hence improves the guide transmission. At the nose piece, the neutron
density again increases, with a corresponding increase of divergence. [29]

4.1.5 Parabolic and elliptical guides

The continuously curving parabolic guide system is an improvement of the bal-
listic guide. It consists of a parabolic expanding start, which ideally (for a point
source) would make the beam completely parallel. Then follows a straight (pos-
sibly curved) section, and ends with a parabolic nose, which compresses the
beam onto the sample. For practical reasons, the parabola curves along the x
and y directions seperately, so that the cross section of the guide is at any place
rectangular.

The elliptical guide system consists of one fully elliptical piece with the
moderator at (or close to) one focal point and the sample at the other focal point.
Ideally (for a point source), each neutron would then be reflected only once
between moderator and sample, although recent work has shown that a finite
size of the source would result in more than one reflection. How simple it may
sound, elliptical guides are only just being installed at the first instruments, with
very good results. In practice, also here, the guide cross section is rectangular, so
that a general neutron would need a reflection both in the x and the y-direction.

Recent simulation work has shown that parabolic and elliptical guides have
almost equal neutron transport properties over large distances (50 m and above),
and that they outperform any other guide systems with transmissions of the
phase space density close to the Liouville limit. However, there is yet no detailed
experimental evidence for this result [29].
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Figure 4.2: (left) Photograph of a typical square neutron slit. (right) Photograph of
a narrow Soller collimator. Both pictures are from the vendor JJ-Xray ApS.

4.1.6 Shielding and shutters

To avoid neutron background outside the guide, a neutron absorbing material
is being used to shield its outside. In addition, the gamma radiation produced
by the neutron capture is shielded, using (typically) lead, steel, or concrete.

For safety reasons, the neutron beam can be blocked close to the guide entry
by a primary beam shutter, which will be closed during long-term maintanance.
The secondary beam shutter is placed at the guide end, close before the sample,
and will be used for minor experimental interruptions, like change of sample.
These shutters are made by a combination of materials that absorb both neu-
trons and gamma radiation.

4.2 Beam optical components

We here present components that shape the neutron beam, typically between
the moderator and the sample, but sometimes also between sample and detector.

4.2.1 Slits

A slit, also known as a diaphragm, consists of a neutron-absorbing plate with
a hole (rectangular or circular) for passage, as seen in Fig. 4.2. The slit limits
the spatial size of the beam and is in particular used just before the sample,
to eliminate neutrons that would not hit the sample. These unuseful neutrons
would in practice scatter off the sample environment to generate both overall
background and false signals, sometimes known as spurions.
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Figure 4.3: (left) Photograph of a disk chopper from the cold-neutron spectrometer at
J-PARC, Tokai. The chopper has a radius of r = 0.35 m and spins up to fmax = 350 Hz.
The neutrons are imagined to travel directly from the point of the viewer. (right) sketch
of a Fermi chopper, seen from above.

4.2.2 Collimators

A horizontal Soller collimator consists of a number of thin, parallel, equidistant
sheets (like every n’th page in a book) of a neutron absorbing material; see
Fig. 4.2. Hence, neutrons traveling in the “wrong” directions are eliminated.
The degree of collimation is presented as the FWHM of the transmission curve,
understood as a plot of neutron intensity vs. angle between the collimator axis
and the direction of a very well collimated beam. Usually, the collimation is
in the range 10’ to 120’, where 60’ (arc minutes) equals 1◦. The degree of
collimation is fixed, so a different collimator piece must be inserted in the beam
to change the degree of collimation. The geometry of a Soller collimator is
calculated in problem 4.10.2.

The divergence of the neutron beam can also be reduced by two slits, placed
a distance apart. Often, this will be a pair of pinholes, whence you speak about
pinhole collimation. Alternatively, collimation can be performed in one direction
only by a pair of rectangular slits, which are narrow in one direction. Often,
one can control the pinhole diameter and distance, known as the collimation
length, Lc, by inserting different pinholes at a number of fixed positions. The
smallest practical collimation length is typically 1 m, while the longest can be
up to 20 m, depending on the particular instrument.

4.2.3 Choppers

A chopper is a spinning device that alternately allows or blocks passage of
neutrons.

The most simple chopper design is the disk chopper, which is basically a
wheel covered by neutron absorbing materials, with slits cut to allow neutron
passage at selected times. Disk choppers are being used for slow and medium
time-scale events, down to 10-20 µs opening times. A typical disk chopper is
shown in Fig. 4.3.

Another type of chopper is the Fermi chopper, also shown in Fig. 4.3. Here,
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a rotating collimator-like system ensures that neutrons are passing in short
bursts only. Fermi choppers are typically used when very short opening times
are required.

4.3 Neutron detectors

We will here briefly touch upon the way neutrons are detected.

4.3.1 Detection processes

Neutrons are typically detected by use of one of a handful of nuclear reactions,
each destroying the neutron as a result. Most used and most efficient is neutron
capture of helium-3:

3He + n→ 3H+1 H+Q, (4.6)

where the released energy, Q, here is as low as 0.764 MeV [30]. However, also
capture of 6Li and 10B is often being used.

The charged products from these nuclear reactions give rise to an electrical
signal, which is subsequently amplified by charge amplification in an Ar gas
under high voltage, as in a standard Geiger-Müller counter. The signal can
then easily be detected.

Detectors may have just a single channel, or can be position sensitive in one
or two dimensions. For particular applications, there exists area detectors with
pixel sizes of around 1× 1 mm2 of sizes up to 1× 1 m2. Alternatively, one may
use detector tubes with a diameter of the order 25 mm (one inch), being several
meters long and linearly sensitive with a positioning accuracy of the order 5 mm.

At pulsed neutron sources, the detector electronics can in addition record
the detection time of the neutron with a precision of a few µs. This is crucial
in order to utilize the time-of-flight information, as will be described later.

The field of neutron detectors is vast and we refer the reader to more spe-
cialized literature, see e.g. ref. [30].

4.3.2 Monitors

For controlling the possibly varying intensities of the beam, monitors are used at
all neutron instruments for normalization purposes. A monitor is a deliberately
inefficient detector that interacts with only a small fraction of the neutron beam
(of the order 10−3 to 10−4). The counting efficiency is determined by the neutron
absorption cross section and is hence proportional to λ. Monitors are typically
placed at the end of a guide, just before the sample.

4.3.3 Background and background levels

Background is the general notion for all neutrondetector counts that do not
arise from the physical process under investigation.
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One source of background comes from the sample itself, e.g incoherent scat-
tering, and are difficult to discriminate against.

Another background source is the experimental environment, e.g. neutrons
from other experiments or fast neutrons from the source, that penetrate a series
of shieldings to be counted in the detector. This background can always be
improved by shielding, by moving the instrument far away from the source,
and by eliminating line-of-sight between moderator and sample. Fast-neutron
background is particularly nasty from spallation sources, due to the high energies
in the spallation source itself.

At the end of a 30-100 m guide, the background count rates for a typical 3He
detector tube, 150 × 25 × 25 mm3, at a medium-size source like PSI, is about
0.1 counts/minute with both the primary and secondary beam shutters closed.
This background is mostly due to electronic noise. During an experiment (both
shutters open), the level of background not originating from the sample is 0.2
counts/minute in the best cases.

At pulsed sources, the fast-neutron background can in some cases dominate
the elastical scattering from the sample. However, time-of-flight can be used to
discriminate these fast neutrons.

4.4 Determining the incoming neutron wavelength

The famous Bragg law gives the relation between the wavelength, λ, of radiation
diffracting off a crystal with lattice spacing d, and the scattering angle, 2θ:

nλ = 2d sin(θ), (4.7)

as presented in eq. (8.27) - and derived thoroughly in the adjacent text. Accord-
ing to the Bragg law, in order to interpret the neutrons diffracted at a particular
angle, 2θ, it is necessary to know the neutron wavelength, λ. This is in prac-
tice done in two different ways. At continuous sources, the neutron beam is in
general monochromatized, while at pulsed sources time-of-flight techniques are
used. We will here look in more detail on these two rather different methods.

4.4.1 Monochromating a continuous neutron beam

One method of monochromating a continuous neutron beam is the rotating
velocity selector as presented in the SANS instrument, section 4.5.1. However,
this method only provides a crude degree of monochromaticity, of the order
δλ/λ ≈ 10%. To obtain a better resolution one uses another method: Bragg
reflection from a crystal.

Consider again the Bragg law (4.7), and imagine that the lattice spacing,
d, of the crystal is well known. In addition, the incident neutrons have a well-
specifieddirection (and hence scattering angle), but are polychromatic (a so-
called white beam). In this case, only neutrons of certain wavelengths are scat-
tered:

λ =
1

n
2d sin(θm). (4.8)
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A crystal used in this way is called a monochromator, represented by the sub-
script “m” on the scattering angle 2θm. The monochromator reflects a series
of wavelengths, given by the integer, n. The first order wavelength (n = 1)
is usually the desired one, while the higher order wavelengths are undesired.
Typically, one will try to suppress the higher order neutrons by transmission
filters and/or by guide geometries which provide low transmission for shorter
wavelength neutrons.

An order-of-magnitude estimate of the monochromaticity of the diffracted
beam is given by considering the uncertainty in the scattering angle, δθ, which
is mostly determined by the experimental geometry, guides, and possible col-
llimators. The uncertainty in the lattice spacing is in many cases negligible,
leading to

δλ =
1

n
2d cos(θm)δθ, (4.9)

when θ is calculated in radians. One often considers the relative precision of the
wavelength determination:

δλ

λ
= cot(θm)δθ, (4.10)

For 90◦ scattering (θ = 45◦) and a typical divergence value δθ = 0.5◦, we reach
δλ/λ ≈ 1%.

Monochromators for thermal neutrons are often made from single crystals
of Si, Ge, or Cu. For cold neutrons, pyrolytic graphite (PG) is the material of
choice.

As with most other large single crystals, monochromator materials often
consists of many crystallites, which have a small, random misalignment with
respect to a “common” direction. Thismosaicity is often close to being Gaussian
(i.e. a normal distribution) and affects the monochromatizing properties of the
material strongly. A small mosaicity (10’-20’) reflects a smaller amount of the
incoming neutrons than larger mosaicities (30’-60’). On the other hand, a small
mosaicity is beneficial if one requires a good resolution, i.e. a narrow wavelength
distribution of the beam.

Reflectivities of monochromators in Bragg condition depends both on the
chosen material and on the neutron wavelength. Typical values range from 20%
to 80%; the latter value achieved by PG with neutrons of λ > 4 Å.

4.4.2 Time-of-flight analysis

A completely different method of determining the neutron wavelength is by mea-
suring the speed of the particle by time-of-flight analysis. Typical moderators
at pulsed sources emit bursts of neutrons lasting τ = 10− 100 µs separated by
intervals of T ≈ 20− 100 ms. The neutron start time at the moderator is thus
very well defined. The neutron flight time from the moderator to the detector
placed a distance, L, from the moderator is

t =
L

v
=
mN

2πh̄
Lλ = αLλ , (4.11)
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where α = mn/h = 252.7µs/m/Å. The neutron wavelength can thus be deter-
mined directly from its time-of-flight. The uncertainty in the wavelength is in
practice given by the pulse width τ through

αLδλ ≈ dt = τ, (4.12)

leading to
δλ

λ
=

τ

αLλ
. (4.13)

Hence, to have a good relative wavelength resolution, one would use a long
instrument (large L), use a source with a short pulse length τ , or use a long
wavelength.

In diffraction experiments, one typically allows a broad wavelength band from
the incident beam to hit the sample, and later determine the wavelength of the
detected neutrons from the time-of-flight at the (time-sensitive) detectors. The
reason for not allowing the full white beam in the incident beam is to avoid frame
overlap. This happens when the slow neutrons from one pulse are overtaken by
fast neutrons from the following pulse, creating ambigiuity in the data analysis.
This is best illustrated on a time-of-flight diagram; see Fig. 4.4. The spread
in arrival times, ∆t, cannot be allowed to exceed the time between pulses, T .
From (4.11), the wavelength spread, ∆λ is limited by

αL∆λ < T. (4.14)

The (broad) wavelength band is usually limited by disk choppers, which are
in this connection denoted bandwidth definition choppers. Similar choppers are
placed slightly longer downstream to prevent very slow neutrons from entering
the bandwidth chopper from a wrong source pulse. Such choppers are called
frame overlap choppers.

It is possible by fast spinning choppers to define a (nearly) monochromatic
neutron beam from a pulsed source. This is used for inelastic neutron scattering
and will be discussed later.

The ESS will have a very long pulse, τ = 2.86 ms. Hence, standard logic
for pulsed sources does not apply, and many instruments concepts must be
re-considered.

4.5 Small-angle scattering instruments

4.5.1 A small-angle scattering instrument at a continuous source

The principle of an ordinary SANS instrument is rather simple. We will here
present a SANS instrument for a continuous source, although a generalization to
a time-of-flight instrument is straightforward. A sketch of a SANS instrument
is shown in Fig. 4.5.

Source. A SANS instrument uses neutrons from a cold moderator and is sit-
uated at the end of a guide.
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Figure 4.4: Time-of-flight diagram for a typical diffraction experiment. The horizon-
tal axis denote time, t, where the initial pulses begin at 0, T, 2T , etc. The vertical x-axis
denote the position along the main axis of the instrument, where C is the chopper, S
the sample, and D the detector. Each neutron follows one path in the time-of-flight
diagram, depending on its emission time and its velocity/wavelength; the shaded ar-
eas represent the continuum of allowed paths. At the moderator, a broad wavelength
band is emitted, corresponding to a large spread in slopes in the (x, t) diagram. The
chopper selects a certain wavelength interval, which is narrow enough to avoid frame
overlap (overlap between neutrons from different pulses at the detector). Very short
and very long wavelength neutrons are removed by “frame overlap” choppers, which
are for simplicity not drawn in the figure.

Figure 4.5: The principles of a SANS instrument. The pinholes (left) limit the beam
divergence, while a position sensitive detector inside the vacuum tank (right) detects
all neutrons scattered at small angles from the sample (middle).
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Figure 4.6: A principal sketch of a neutron velocity selector. The neutrons travel left-
right, and the absorbing blades of the velocity selector rotate around an axis parallel
to the neutron flight path.

Velocity Selector. The neutrons are being monochromatized by a rotating
velocity selector made from spinning absorbing blades, tilted from the main axis;
see figure 4.6. This arrangement will allow passage of neutrons with velocities
close to a particular value (see problem 4.10.3); typical values are 4-20 Å. The
monochromatization is coarse; typically of the order of ∆λ/λ ≈ 10%.

Collimator The divergence of the incident neutrons is limited by a pair of
pinholes, that act as a collimator. Often, one can control the pinhole diameter
and their distance, the collimation length, Lc, by inserting different pinholes at
a number of fixed positions. The smallest collimation length is typically 1 m,
while the longest varies between 5 m and 20 m, depending on the particular
instrument.

Sample. The sample is often flat and mounted perpendicular to the beam
direction, so that all neutrons scattered at small angles will penetrate the full
sample thickness. Hence, samples are often thin to limit absorption and multiple
scattering.

Detector. The neutrons are detected by a position-sensitive detector (PSD),
which can determine the position of an incident neutron, placed at a distance
Ld from the sample. A typical PSD is 1× 1 m2 with a precision in positioning
of 1-5 mm. The PSD is placed within an evacuated tank to avoid air scattering
(which is mainly due to nitrogen), and the sample-detector distance can be
varied by moving the PSD within the tank. The minimum PSD distance is
around 1 m, while the maximum distance varies in the range 5-20 m determined
by the length of the tank. Typically, one would match the sample-detector
distance to the collimation length.

Beam stop. An absorbing beam-stop is placed in the direct beam just before
the detector to limit the number of neutrons from the direct beam. This strong
beam could otherwise saturate, or even damage, the detector. For correct plac-
ing of the beamstop, it is necessary to take into account how gravity affects
neutrons of different wavelengths; see problem 12.2.5.
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Figure 4.7: (left) Schematic lay-out of the typical high-resolution thermal powder
diffractometer HRPT at SINQ, PSI. (right) Picture of the HRPT multidetector (white-
blue) and its monochromator shielding (red).

4.6 Powder scattering instruments

We will here present typical lay-out of powder scattering instruments for con-
tinuous and pulsed sources, respectively.

4.6.1 Continuous source powder diffractometers

A typical continuous-source powder diffractometer, HRPT at PSI, is illustrated
in Fig. 4.7. It uses a beam of thermal neutrons straight from a beam port
without use of neutron guides. The beam is reflected by a monochromator (see
subsection 4.4.1), which selects the neutron wavelength, typically in the range
1-2 Å. The monochromatic beam passes through a narrow horizontal collimator
and hits the powder sample, which may be situated in a vacuum environment
to reduce background from air scattering.

The neutrons are scattered out according to Bragg’s law, see chapter 8.
Then, the neutrons are detected by a large arc-shaped detector bank, with
typically hundreds of channels, each covering a narrow range of the scattering
angle, 2θ. Background neutrons flying around in the sample-detector area are
suppressed by a radial collimator. The detectors have a limited height (perhaps
10-20 cm), to avoid a smearing effect in the data, caused by the blur in total
scattering angle when the out-of-plane component is significant.

A typical set of powder diffraction data is given in Fig. 4.8. Both the raw
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Figure 4.8: A typical powder diffraction pattern, taken by the TAS3 diffractometer
at Risø (now placed at Kjeller(N)), which has a similar construction as HRPT. (left)
The raw data shown as count vs. scattering angle, 2θ. (right) The data as counts
vs. scattering vector, q.

data and the data converted into scattering vector is shown. The background
value between the peaks is mostly elastic incoherent scattering from the sample,
but also thermal diffuse scattering contributes at larger scattering angles; see
chap. 9. Towards low scattering angles, there is an increased background due
to small-angle scattering of the direct beam.

As can be clearly seen, the resolution of the diffractometer (the width of
the powder peaks) varies with scattering angle. In particular, the peaks are
broadest at high scattering angles. This effect is well understood, but we will
not go into details with it here.

4.6.2 A pulsed source powder diffractometer

In a time-of-flight diffraction experiment, the neutron wavelength will change
with time, with the shortest wavelength arriving earliest. Hence, at a typical
moment in time, there will be Bragg scattering from several lattice spacings.
However, the scattering angle from any given reflection will increase with time
as the wavelength increases.

To maximize count rate, a typical powder diffractometer is equipped with a
large number of time- and position-sensitive detectors that cover a significant
fraction of the 4π solid angle. The typical raw data from a time-of-flight powder
diffraction experiment will be (transformed to be) two-dimensional: Neutron
counts vs. flight time, t, and detector angle, 2θ. In such a plot, powder lines
will be seen as connected curves through (2θ, t) space. The processed data
will contain only neutron intensity vs. q (or vs. lattice spacing, d), probably
normalized in proper units of cross section.

The presently most powerful time-of-flight diffractometer is named GEM,
and is placed at the 50 Hz source ISIS (UK). With this instrument, a com-
plete powder diffraction pattern can be recorded within a single pulse (lasting
10-15 ms). In this way, it is possible to monitor diffraction signals from fast
processes in real time, e.g. chemical reactions.
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4.7 Instruments for inelastic neutron scattering

In inelastic neutron scattering, is is necessary to determine both the initial and
the final neutron energy, Ei and Ef , in order to calculate the energy difference
h̄ω = Ei−Ef . This is done differently for continuous and pulsed neutron beams,
as we shall see below.

4.7.1 Continuous source instrumentation, triple-axis spectrom-
eter

On instruments that uses a continuous beam of neutrons, it is necessary to
directly select both Ei and Ef , in order to determine the neutron energy transfer,
h̄ω. It is here customary to use Bragg diffraction from crystals for both purposes.
Such a type of instrument is denoted a triple-axis spectrometer, since the neutron
changes direction by scattering three times before being detected:

1. A monochromator crystal selects Ei of the incoming beam, as discussed in
4.4.1, by Bragg scattering an angle 2θm.

2. The sample scatters the beam by the angle 2θ.

3. The analyzer determines Ef by Bragg scattering by an angle 2θa, in the
same way as the monochromator.

The path of the neutron beam is kept in the same horizontal plane, also denoted
the scattering plane. The build-up of the triple-axis spectrometer is shown in
Figure 4.9.

By correct selection of the three scattering angles, and the sample rotation
around a vertical axis, ω, the triple-axis spectrometer can be adjusted to any
value of scattering vector, q, and energy transfer, h̄ω, allowed by the scattering
condition (2.6). In fact, q can only obtain values within the scattering plane.
This means that there are 4 free angles to determine only 3 parameters: h̄ω and
2 dimensions of q. In practice, this ambigiuity is solved by fixing either Ei or
Ef to a predetermined value.

A thorough presentation of how to perform experiments with a triple-axis
spectrometer is given in Ref. [31].

Experimental considerations. The 3 scattering angles, 2θm, 2θ, and 2θa, are
often denoted by the less-obvious symbols A2, A4, and A6, respectively. The
symbol A3 denotes the sample rotation ω, while the symbols A1 and A5 denotes
the rotation of monochromator and analyzer crystals, respectively.

The fixed value of Ei or Ef is often selected, knowing which devices can be
used to eliminate higher-order scattering from monochromator and/or analyzer.
As one example, a block of PG will allow passage of only a few selected energies
(or wavelengths). One example for PG is 14.7 meV. Other types of filters
consist of cooled block of Be or BeO, which transmit energies below 5.2 meV
and 3.8 meV, respectively. See also problem 12.1.4.
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Figure 4.9: A sketch of a triple-axis spectrometer, showing the three scattering
angles, 2θm, 2θ, and 2θa, and the sample rotation, Ω. The upper right part of the
figure shows the scattering triangle for the particular configuration of the instrument.
Note that kf > ki

.

Often, an experimental series consists of scans along a particular axis in
(q, h̄ω) space. One speak about constant-energy scans and constant-q scans. For
the latter, it is costumary to use a constant Ef for the scans and then measure
each scan point until a constant count number in the beam monitor has been
reached. Since the sensitivity of the monitor is proportional to wavelength, λi,
the number of neutrons reaching the sample for each scan point is proportional
to 1/λi - or to ki. These facts causes the factor kf/ki in the final cross section
(9.36) to be constant. Hence, the variation of this factor can be neglected, easing
the subsequent data analysis.

4.7.2 Time-of-Flight inelastic spectrometers

On instruments at pulsed sources, one can utilize time-of-flight techniques as
for diffraction. However, the time-of-flight cannot be used to determine both
Ei and Ef . Either the initial or final energy must be selected by other means,
typically by Bragg reflection from crystals or by chopping the beam in short
time pulses close to the sample. This leads to two essentially different types of
spectrometer geometries:

• Direct. The incoming neutrons are monochromatized, Ei is fixed, and
the time-of-flight is used to determine the variable Ef .

• Indirect. The sample is hit by a “white” beam, and only outgoing neu-
trons with a particular energy is detected, i.e. Ef is fixed. The time-of-
flight is then used to determine Ei.
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The advantages with time-of-flight spectroscopy are so large, that at many con-
tinuous sources one chooses to chop the beam close to the source, producing
pulses by sacrificing around 98% of the neutrons produced.

In later versions of these notes, there will be more material on time-of-flight
spectrometers, including figures.

4.8 Instrumentation for investigation of magnetic
diffraction

The study of magnetic diffraction uses the same instrumentation as described
in the earlier chapters. For example powder diffractometers or single crystal
diffractometers.

A special, and very powerful, addition to neutron instruments for the study
of magnetic structures is the option of using polarized neutrons. This will be
discussed in later versions of this text.

4.9 Instrumentation for investigation of magnetic
excitations

The study of spin wave and other types of magnetic excitations uses the same
instrumentation as described in chap. 9. In particular, time-of-flight spectrom-
eters and triple-axis spectrometers are useful.

As for the study of magnetic structures, also the study of magnetic excita-
tions benefits from the use of polarized neutrons. This will be discussed in later
versions of this text.

4.10 Problems in neutron instrumentation

4.10.1 The neutron guide system

Consider a 20 m long Ni (m = 1) guide with a constant square cross section
50 × 50 mm2, illuminated by a moderator of area d2 = 150 × 150 mm2 at a
distance, L. We can assume that L≫ d.

1. Calculate the critical scattering angle at the guide for 4 Å and 20 Å neu-
trons.

2. What is the maximal (horizontal or vertical) divergence of neutrons that
passes through the guide without being reflected? Compare this to the
previous question.

3. A guide is “underilluminated” when the moderator size, not the guide
reflectivity, limits the divergence of the transmitted neutrons in any di-
rection. How close must the guide be to the moderator in order not to be
underilluminated at 4 Å and 20 Å wavelengths?
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4. The guide entry is placed at L = 1.5 m. Compare the neutron flux at
λ = 4 Å at the end of the guide to the flux in the situation where the
guide entry is replaced with a beam port of the same size (equivalent to
removing the reflecting mirrors from the guide).

5. Can you imagine why guides are often not used for instruments using
thermal or hot neutrons?

4.10.2 The collimator

A horizontal collimator consists of a number of thin, parallel, equidistant sheets
(like every n’th page in a book) of a neutron absorbing material, so that neutrons
traveling in the “wrong” directions are eliminated. The distance between sheets
is denoted D and the length of the sheets L.

1. Calculate the transmission, T , as a function of horizontal neutron diver-
gence, ηh (the horizontal deviation from the beam axis). You can assume
that the sheets are infinitely thin. Further, assume that the position of
individual collimator sheets are unknown (or equivalently that the colli-
mator oscillates sidewards during the experiment).

2. A collimator is described by the FWHM (full width at half maximum) of
the transmission curve. Calculate the FWHM in terms of D and L.

3. A typical collimator is 30’ (or 0.5◦) and has a length of L = 200 mm.
What is the distance, D, between the absorbing sheets?

4. A 60’ collimator is inserted after the guide in 4.10.1 (question 4). How
does that affect the neutron flux for 4 Å and for 20 Å neutrons?

4.10.3 Neutron velocity selector

A neutron velocity selector is a drum that spins around an axis parallel to the
beam. This axis lies below the guide. From the drum, a series of absorbing
neutron blades sticks out radially. The ends of the drum are twisted with
respect to each other. A principal sketch is shown in figure 4.6. This effect of
the selector is that only neutrons around a certain velocity (or wavelength) can
pass through.

Assume a selector length of L = 0.25 m, n = 68 blades, and a twisting angle
of 48.3◦, as for the selector at the SANS-2 instrument at PSI. Calculate the
rotation speed you should use to select 10 Å neutrons.

4.10.4 Pinhole collimation

The collimation in a typical SANS instrument is performed by two pinholes
separated by a distance. Consider a circular pinhole (made from an absorbing
material), d = 8 mm, placed in the centre of a neutron beam and an identical
circular pinhole a distance L = 6 m further down the beam. Calculate the
maximal divergence in the x and y direction.
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Monte Carlo simulation of
neutron instruments

Even in the simplest cases, it is not straightforward to calculate the optics of
a neutron instrument. This is illustrated, e.g., by considering multiple bounces
in a neutron guide system, see problem 4.10.1. An accurate calculation of the
properties of a realistic neutron instrument becomes almost hopeless, and vari-
ous other schemes must be applied.

One approach beyond back-of-the-envelope estimates is the approximate,
analytical calculations, made for determining the instrument resolution, which
was performed around 1970 by Cooper and Nathans [32] and Popovici [33].
Calculations of this type have been extremely useful for many types of neutron
instruments over the past decades, in particular triple-axis spectrometers, which
are mostly used for elastic and inelastic measurements on single crystals, with
high q-resolution. The triple-axis spectrometer was presented in section 4.7.

The alternative way to describe neutron instruments, which we here will
present, is to perform computer simulations of neutron trajectories. This can
give essentially correct descriptions of neutron instrument models. The results
are, however, subject to statistical sampling errors, always present in computer
simulations (as in real experiments).

The present chapter gives an introduction to Monte Carlo simulations and to
existing Monte Carlo ray-tracing packages for neutron scattering. The Cooper-
Nathans-Popovici type calculations are (in this version of the notes) not dis-
cussed.

5.1 Introduction to the Monte Carlo technique

Monte Carlo simulations are in general a way to perform approximate solutions
to complex problems by use of random sampling. The phrase “Monte Carlo”
comes from the generous use of random numbers, which resembles the gambling
of the famous Monaco casino. The method was, in fact, originally designed

71
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Figure 5.1: A simple example of Monte Carlo simulations. Random points are chosen
within the 2×2 square, and the area of the enclosed figure (the unit circle) is estimated
from the fraction of points that lie inside the figure. See also the discussion in the
text.

to facilitate calculations of neutron physics - more precisely for the Manhattan
project. For the history of the Monte Carlo technique, we refer to an excellent
essay by one of its inventors [34].

5.1.1 A simple example of Monte Carlo simulations

As an introduction, we consider a simple example. We intend to estimate the
area of an object. For simplicity let us consider the unit circle, x2 + y2 ≤ 1, as
shown in Fig. 5.1. We now select N points randomly in the square of known
area, As = 4, that contains the circle fully. The area is defined by

−1 ≤ x ≤ 1 ∧ −1 ≤ y ≤ 1. (5.1)

Each of the selected points inside this square are determined by retrieving inde-
pendent, random values of x and y from a (pseudo-) random number generator.
We will not here dwell on the issue of random number generation, which is
described elsewhere [35], we only mention that such generators exist with spec-
ifications useful for our purpose.

We now calculate the number of points, Ni, that fall inside the unit circle.
For large N , the fraction of accepted points will by the law of large numbers
approach the ratio of the areas:

Ni

N
→ Ac

As
. (5.2)

Hence, this “numerical experiment” can be used to estimate the value of the
circle area, Ac. Of course, the answer of this example is well known: Ac/As =
π/4.
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5.1.2 On Monte Carlo methods

Monte Carlo techniques can be used to solve problems much more complex than
the example above. This may involve multiple dimensions, complex figures,
and/or a number of branches (choices between different possibilities). Here,
analytical solutions are often impossible, making the Monte Carlo method show
its full virtue.

In general, Monte Carlo techniques can be used for problems in different
fields:

• In physics, the method can describe a number of many-body problems.
E.g. in high-energy physics where a particle under consideration can be
either absorbed, scattered, or converted into other particles.

• In mathematics, the method can be used to solve complex integrals in
many dimensions with complex boundary conditions.

• In finance theory, the method is used to estimate the effect of uncertainties
in market values.

• In computer science, the method has been used to optimize multi-variable
functions.

5.1.3 Methods for variance reduction

As with all stochastical methods (including experiments), Monte Carlo methods
are prone to statistical errors or variances. To reduce the statistical errors of
simulations, a number of variance reduction methods have been designed. We
here mention

• Stratified sampling. To ensure that the sampling is spread evenly, one
would divide the parameter space up into mutually exclusive strata, and
sample a given amount of each strata. In the circle example above, one
could divide the area up into smaller squares and sample equally often
from each.

• Importance sampling. When it can be shown that sampling from some
places in parameter space is more crucial to the final result than others, one
can choose to sample more often in the important regions. If the problem
was e.g. to calculate the average height over sea level of a landscape, one
would measure the mountain more careful than the lake, i.e. the Monte
Carlo sampling would be denser at the mountain. In the stratified version
of the circle example, one would sample more often in those small squares
that contain a part of the circle rim, while completely filled or empty
squares need little sampling.
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Package Origin Start Platform Home page

NISP Los Alamos Nat. Lab. (US) 1970’ies Windows [38]
IDEAS Oak Ridge Nat. Lab. (US) 2000 Windows [39]
McStas Risø (DK) and ILL (F) 1999 Unix, Windows, Mac [40]
VITESS Helmholtz Center Berlin (D) 1999 Unix and Windows [41]
RESTRAX NPI (CZ) 1996 Unix and Windows [42]

Table 5.1: Actively developed simulation packages for thermal/cold neutrons, as of
September 2012. It is uncertain if IDEAS will still be maintained in the future.

5.1.4 Monte Carlo Ray-tracing

We will not explain the general Monte Carlo technique in further detail, this
information can be found in a number of textbooks [36]. Rather, we specialize
immediately to the method relevant for our purpose. This is known as Monte
Carlo ray-tracing and can be performed to study objects which travel along a
path (a ray), and can be (partially) absorbed or scattered into another direction,
but not converted into other types of radiation. The most known example of
this is light, and this type of ray-tracing is frequently used to generate realistic
illumination in 3D computer graphics.

In a scientific environment, ray-tracing can be used to study non-interacting
radiation, e.g. neutrons or X-rays. We will now dive into the explanation of
ray-tracing simulations for this purpose.

5.2 Monte Carlo ray-tracing packages for neutrons

In the early 1990’ies, simulation of the optics in a neutron instrument was
performed mostly by monolithic Monte Carlo codes. Although being marvelous
pieces of work, these codes were mostly written as one-person projects with
limited manpower resources. Hence, the codes were designed to solve only
one particular problem. They were thus subject to lack of generality, possible
programming mistakes, low documentation level, and limited user-friendliness.
(One notable exception from this is the package NISP.)

Today, a fair number of well-tested and documented general freeware pack-
ages exists for neutron ray-tracing simulations. Each package has the aim of
enabling neutron scientists (and students) to quickly set up simulations. The
development projects of the package co-exist in an atmosphere of collaboration
and friendly competition for users. The collaboration between the three Euro-
pean packages were 2004-2012 supported by a European Union research project,
MCNSI [37]. The 5 currently maintained packages are listed in table 5.1.

The main author of these notes is also a co-author of the McStas package.
However, we have kept the text part of these notes free from reference to any
particular package, to the extent possible. The hands-on problems on simula-
tions found in chapter 12 are related directly to the McStas package, but could
with little effort be ”translated“ into covering any other simulation package.
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5.2.1 Describing the neutron optical components

In the simulation packages, the individual optical components (or modules), like
source, guide, sample, and detector, are parametrized and pre-programmed.
Each package contains a library of well-tested components that cover the most
often used optical ones, as well as some model samples. It is, however, possible
for the user to program additional components when needed. Some of these
components may later find their way into the corresponding library, which is
thus strengthened by user contributions.

Some of the components contain full quantum mechanical treatment of the
neutron as a wave on the microscopic length scales to compute the correct
physics of the component. However, it should be emphasized that quantum
mechanics is only present in the simulations at this level of description. The
transport of rays between components is performed by classical kinematics,
possibly including gravity.

5.2.2 Describing and visualizing the neutron instrument

It is the task of the user (the simulator) to assemble the components into a full
working instrument. The Monte Carlo simulation itself is then performed by
the simulation package on the basis of the instrument description.

All packages have features to visualize the instrument geometry, the simu-
lated rays, and the monitor/detector data.

5.2.3 Varying and optimizing the instrument parameters

The packages give the opportunity to perform a series of simulations, where
one or more instrument parameters are systematically varied. In this way, it is
possible to perform a scan of one or more instrument parameters and plot some
key data, e.g. the neutron counts in a monitor, as a function of the scanned
parameter(s). The packages can automatically produce such plots.

In addition, some packages are able to vary a number of instrument param-
eters to perform optimization of the instrument settings. Many numerical opti-
mization methods exist, and we will not here go into details. General about the
optimizations is, however, that the user should define a certain Figure of Merit
(FoM) for the optimizer to maximize. This could be the number of neutrons at
the sample, the reciprocal of the beam spot size (if a narrow beam is wanted),
the reciprocal width of the neutron energy distribution (if a monochromatic
beam is desired), or any combination of these. The optimal parameter settings
of course depend upon the choice of the FoM, and hence a careful selection is
necessary.

5.2.4 Virtual experiments

Using a detailed instrument description with a realistic sample component, it
is possible to produce a computer model of a complete neutron scattering ex-
periment. This virtual instrument can then be controlled with software that
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resembles the actual instrument control program, and the simulation data can
be analyzed with the same tools as used for real experimental data. This is
known as a virtual experiment. It is foreseen by many scientists in the field
that virtual experiments can be used to support and complement experimental
activities in a number of ways [12]:

• In the design phase of an instrument it can be investigated how the in-
strument will perform certain key experiments. This can in turn be used
to optimize the instrument design.

• When applying for beam time at a facility, the experimentalists can esti-
mate whether the experiment will be feasible at a given instrument and
how much beam time is needed.

• Experiments (and experimentalists) can be prepared prior to performing
the actual experiment by analyzing the optimal instrument configuration
[43].

• Running experiments can be diagnosed “on the fly” to faster react on
various mistakes and unexpected results.

• Analysis of the data can be conducted in more detail by including instrument-
related features in the data analysis [44].

• New data analysis programs can be benchmarked against virtual data
from known samples [45].

• Students and new users can be trained before their first actual experiment.
This is, in fact, the idea behind the simulation problems in these notes.

5.2.5 Performing the ray-tracing simulations

Since the (neutron) rays in the simulations are non-interacting and in principle
statistically independent, the simulations can without methodological problems
be carried out in parallel on several computers. Many packages are equipped to
parallize the simulations automatically, and the performance has been seen to
scale linearly with the number of processors up to at least 1000.

Hence, the technique of neutron ray-tracing simulations can take full advan-
tage of the large parallel supercomputers emerging in many research facilities
and universities.

5.3 Monte Carlo ray-tracing techniques

The neutron ray-tracing packages have a very similar philosophy in the way
simulations are described and performed, and in the way the neutrons are rep-
resented. We here describe this in some detail.
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5.3.1 Representing the neutrons in simulations

In simulations, a neutron is represented semiclasically by simultaneously well-
defined position, r, velocity, v, and all three components of the neutron spin
vector, s. Formally, this violates the laws of quantum mechanics, in particu-
lar the Heisenberg uncertainty relations [18], given for the position/momentum
coordinates by

δxδp ≥ h̄

2
(5.3)

However, as we shall illustrate in problem 5.4.1, the semiclassical approximation
is very good for describing instruments that use “typical” neutrons with veloc-
ities of the order 0.1− 10 km/s. One important region where the semiclassical
approximations breaks down is for very slow (or “ultra-cold”) neutrons, where
quantum effects become prominent in the optical properties[46, 47, 48, 49].
Ultra-cold neutrons will not be discussed in this version of the notes.

The neutrons are simulated in “rays”, by which we mean the neutron trajec-
tory; position r, as a function of time t. Therefore, at any point in the simulation
of one ray, t is a necessary parameter. This is of particular importance when
simulating pulsed neutron sources.

The validity of the semiclassical approach is discussed in detail in Ref. [50].

5.3.2 The neutron weight factor

To represent realistic values for neutron numbers, a neutron ray in general
represents more than a single physical neutron. As a consequence, the ray
contains an additional parameter, the weight factor, p. This generally has the
unit of neutrons per second. When the ray begins at the source, p has a typical
initial value of thousands or millions neutrons per second.

To improve simulation speed, the weight factor can be manipulated through
the simulation. For example, when some physical neutrons are “lost” due to
e.g. finite reflectivity or absorption, the simulated ray will in general continue
in the simulations, while p is adjusted to reflect the correct average physical
behaviour. When (if) the neutron ray reaches the detector, p may be only a
fraction of a neutron per second. This weight factor adjustment is a very efficient
implementation of importance sampling, as presented in section 5.1.

To quantify the method, we consider a certain position in the simulated
instrument. Here, the neutron intensity is given by the sum of all rays reaching
this point (again with units neutrons per second):

Ij =
N∑

i=1

pi,j−1 (5.4)

where i is the ray index, N is the total number of rays, and j is the index of the
given component. The index j − 1 on p indicate that we consider the intensity
being emittes by the previous component. If the ray does not reach this point,
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we take pi,j−1 = 0. The weight of the neutrons emitted from this point in the
simulations, i.e. after interacting with component j, is expressed by

pj = wjpj−1, (5.5)

where the ray index, i, is omitted for simplicity. The weight multiplier of the
j’th component, wj , is calculated by the probability rule

fMC,bwj = Pb , (5.6)

where Pb is the physical probability for the event ”b“, and fMC is the probability
that the Monte Carlo simulation selects this event.

Often, there is only one allowed event, giving fMC = 1, whence wj = P .
This may, e.g., be the case for neutrons being attenuated when passing through
absorbing materials. When a Monte Carlo branch point is reached (selection
between several events), we have (fMC)b < 1 for each branch, b. However, since
fMC is a probability function, we must have

∑

b

(fMC)b = 1. (5.7)

5.3.3 Estimates of simulation uncertainty

In a stochastical simulation, it is important to be able to estimate the uncer-
tainty, in the same way as for experiments. We here present a simple derivation
of the uncertainty in simulations with weight factors.

As a simple start, let us imagine M rays, all with weight factor p. Each ray
is imagined to have an overall probability, Pd, of reaching the detector. The
distribution of observed rays will be binominally distributed with a mean value
N̄ =MPd and variance σ2(N) =MPd(1− Pd). Very often, we will have small
values of Pd and large values of M , so that MPd ≫ 1. Here, it is valid to
approximate the distribution as a Gaussian with standard deviation

σ(N) =
√
MPd =

√
N, (5.8)

where the observed value, N , is used as the best estimate for the average, N̄ .
The total simulated intensity will in this case be

I = Np, (5.9)

with a variance
σ2(I) = Np2. (5.10)

Imagine now that the rays can have a number of (discrete) different weight
factors, pi. The simulated number of rays in each class is denoted ni (standard
deviation

√
ni). The total simulated result is now

I =
∑

i

nipi. (5.11)
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Using that the variance of a sum is the sum of variances, we reach the statistical
error of the simulated result:

σ2(I) =
∑

i

nip
2
i . (5.12)

Now, let the simulations occur with rays of arbitrary weight factors, pj ,
different for each ray, i.e. ni ≡ 1, corresponding to a continuous distribution of
pi. If the distribution of these weight factors is reasonably well behaved, we can
generalize the equations above to reach

I =
∑

i

pi , (5.13)

with a statistical error:

σ2(I) =
∑

i

p2i , (5.14)

which is consistent with (5.10) and (5.12). This is the way uncertainties of sim-
ulation results are calculated in all detectors (monitors) in the McStas package.

5.3.4 Scattering from a sample

The place where most Monte Carlo choices are made is when the neutron ray
interacts with a sample. First, it must be decided whether the ray scatters or
not. If scattering takes place, the algorithm must select the point in the sample
for the scattering event, the scattered direction, and (for inelastic scattering)
the final energy. Finally, there is potentially an issue of multiple (repeated)
scattering.

To simplify the description, let us just study the scattering direction. Assume
we have a sample that only scatters elastically and isotropically with volume
specific cross section Σ and has no absorption. Then, the attenuation factor is
µ = Σ, and the physical probability for scattering is

Pscatt = 1− exp(−ΣL), (5.15)

where L is the length of the particular ray within the sample. However, we
must also consider the outgoing ray. The probability for scattering into the
solid angle dΩ is

P (Ω)dΩ = Pscatt.
dΩ

4π
. (5.16)

Let us require that the ray must always scatter, and let us select the outgoing
ray direction with uniform probability (the “physical” scattering). Then we
have

fMCphys.dΩ =
dΩ

4π
, (5.17)
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and (5.6) gives

wphys. =
P (Ω)dΩ

fMCphys.dΩ
= 1− exp(−ΣL) ≈ ΣL , (5.18)

where the rightmost approximation is valid only for “thin” samples, ΣL ≪ 1.
We have here ignored the attenuation of the outgoing neutron ray.

5.3.5 Focusing in sample scattering

Some neutron instruments have a geometry such that only rays scattered in
certain “interesting directions” have any chance of being detected. In such cases,
one will employ the technique of focusing to improve simulation efficiency. This
implies a need to modify (5.18), as we discuss below.

In focusing, the ray will be emitted only within a certain solid angle, ∆Ω.
This solid angle must contain all the directions contributing to the detector
counts, otherwise the focusing will give false results. Assuming uniform selection
within ∆Ω, the Monte Carlo probability will be given by

fMC focusdΩ =
dΩ

∆Ω
, (5.19)

and (5.6) gives

wfocus =
Pscatt.

fMC focus
=

∆Ω

4π

(
1− exp(−ΣL)

)
≈ ∆Ω

4π
ΣL . (5.20)

Comparing to the physical case, the focusing method gives smaller weight factors
per ray, but a larger number of rays traveling towards the detector. This gives
the same final result, but with a smaller statistical error. The focusing technique
is an important example of variance reduction through importance sampling.

5.4 Problems

We now present a number of pen-and-paper problems, which illustrate the basics
of simulation methods. Proper hands-on simulation problems are presented in
chapter 12.

5.4.1 Validity of the semiclassical approximation

Cold and thermal neutrons are considered as classical particles at the instrument
level, saving the wave description to the component level. We will now look
closer at the soundness of this semiclassical approximation.

1. In a typical high-angular-resolution experiment to measure diffraction
from single crystals, the neutron direction is determined within 10’ (10
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arc minutes) in the horizontal direction. Consider a set-up with a low
neutron energy of 3.7 meV, where the beam is limited in space by a slit
(or diaphragm) with a width (horizontally) of 1 mm. How does this set-up
agree with the uncertainty relations? And how small a beam would still
be consistent with the present value of collimation?

2. At the high-energy-resolution neutron scattering instrument BASIS at
SNS, the neutron energy can be measured with an accuracy of 2.2 µeV,
using backscattering from Si analyzer crystals, while the neutron energy
itself is E = 2.08 meV. Since SNS is a pulsed neutron source, the energy
resolution of the incoming neutrons is determined by the pulse length,
which is around 40 µs. How does that match the Heisenberg uncertainty
relations? (Similar instruments operate at reactor sources, e.g. the in-
strument SPHERES at FRM-2 (Munich), with an energy resolution of
0.6 µeV.)

5.4.2 Simulation of incoherent scattering

We will now excercise the rule of weight transformations, (5.6). First, consider
a thin sample of an incoherent scatterer, area A, thickness t with dΣ/dΩ =
ρσinc/(4π), where ρ is the number density per unit volume and dΣ/dΩ is the
differential scattering cross section per unit volume.

1. Show from (2.4) that the scattering probability for a given neutron ray is
P = σincρt. Calculate the value for vanadium, where ρ−1 = 13.77 Å3.

2. In a particular simulation, we choose to focus the neutron rays into an
area of ∆Ω in the following way: (a) pick a random direction inside ∆Ω,
(b) scatter all incident neutrons. Argue that the weight factor adjustment
should be w = ρσinct∆Ω/(4π).

3. For a general sample, the cross section per unit volume is denoted (dΣ/dΩ)(q).
Argue that the weight factor adjustment will be w = (dΣ/dΩ)(q)t∆Ω, also
if the cross section varies with q across ∆Ω.
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