POWDER DIFFRACTION

Possibilities – Problems

Kenny Ståhl
DTU Chemistry

CONTENTS

• Information from a powder diffraction pattern
• Appearances
• Phase identification
• Indexing
• Stress/strain
• Rietveld refinements
• Background, counting statistics
• Preferred orientation
• Absorption
• Axial divergence
POSSIBILITIES

Information content of a powder pattern

- Background
 - Sample
 - Scattering from sample holder, air etc.
 - Compton scattering
 - Diffuse scattering:
 - Local structure
 - Amorphous fraction
 - Lattice dynamics
 - Lattice parameters:
 - Space group:
 - Macro-strain
 - Qualitative phase analysis
 - Crystal structure:
 - Atomic positions
 - Temperature factor
 - Occupancy
 - Texture
 - Quantitative phase analysis

- Reflections
 - Position
 - Intensity
 - Profile (FWHM, peak shape)
 - Instrument function
 - Sample broadening

Real structure:
- Micro-strain
- Domain size

POWDER DIFFRACTION

Graph showing intensity (a.u.) against 2 Theta (degrees).
POWDER DIFFRACTION

PHASE IDENTIFICATION
PHASE IDENTIFICATION

PATTERN CALCULATION
INDEXING

2θ sin²θ (h² + k² + l²) h k l
25.96 0.05043
30.01 0.06704

Cubic:

(1 / d_{hal})² = (h² + k² + l²) / a²
2 d_{hal} sinθ_{hal} = λ
sin²θ_{hal} = (h² + k² + l²) λ² / (4a²)

62.54 0.26941
68.88 0.31984
70.97 0.33693
78.92 0.40391

\sin²\theta_{\text{hal}} = h^2 X_1 + k^2 X_2 + l^2 X_3 + hk X_4 + hl X_5 + kl X_6

PARTICLE SIZE - STRESS / STRAIN (DEFECTS)

Size (τ):

β = k λ / τ cos(θ) (Sherrer equation)
β^2 = FWHM_{obs}² - FWHM_{ref}² (rad)

Stress/strain (ε):

β = 4 ε tan(θ)

Williamson-Hall:

β = k λ / τ cos(θ) + 4 ε tan(θ)
β cos(θ) = k λ / τ + 4 ε sin(θ)
RIETVELD REFINEMENT

Least-squares: \[D = \sum w_j (Y_{oi} - Y_{ci})^2 \]

\[Y_{ci} = B_i + S \sum hkl A(2\theta) P_{hkl} Lp(2\theta) \Phi(2\theta-2\theta_{Bragg}) |F_{hkl}|^2 \]

- \(Y_{ci} \) = Calculated intensity
- \(B_i \) = Background intensity
- \(S \) = Scale factor
- \(A(2\theta) \) = Absorption correction
- \(P_{hkl} \) = Preferred orientation correction
- \(Lp(2\theta) \) = Lorentz and polarization correction
- \(\Phi(2\theta-2\theta_{Bragg}) \) = Profile function
- \(|F_{hkl}|^2 \) = Diffracted (single-crystal) intensity
RIETVELD REFINEMENT

Scolecite, Huber data

<table>
<thead>
<tr>
<th>Atom</th>
<th>Bond Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si(1)</td>
<td>O(1) 1.632(7)</td>
</tr>
<tr>
<td></td>
<td>O(2) 1.593(6)</td>
</tr>
<tr>
<td></td>
<td>O(9) 1.597(6)</td>
</tr>
<tr>
<td></td>
<td>O(10) 1.609(7)</td>
</tr>
<tr>
<td>Si(2)</td>
<td>O(3) 1.676(8)</td>
</tr>
<tr>
<td></td>
<td>O(6) 1.642(7)</td>
</tr>
<tr>
<td></td>
<td>O(7) 1.610(7)</td>
</tr>
<tr>
<td></td>
<td>O(9) 1.636(8)</td>
</tr>
<tr>
<td>Si(3)</td>
<td>O(4) 1.586(8)</td>
</tr>
<tr>
<td></td>
<td>O(5) 1.621(8)</td>
</tr>
<tr>
<td></td>
<td>O(8) 1.622(7)</td>
</tr>
<tr>
<td></td>
<td>O(10) 1.641(8)</td>
</tr>
</tbody>
</table>

Al(1) - O(1) 1.694(8)
Al(2) - O(2) 1.775(8)
Al(2) - O(4) 1.768(8)
Al(2) - O(6) 1.739(7)
Al(2) - O(8) 1.730(8)

ANISOTROPIC SIZE EFFECTS

Fe$_2$O$_3$

\[a = 5.0364(8), \ c = 13.750(2) \ \text{Å} \quad D(a) = 399(3) \ \text{Å}, \ D(c) = 87(2) \ \text{Å} \]
PROBLEMS - ERRORS

- Background
 - General
 - Fluorescence/incoherent scattering
 - Counting statistics
- Preferred orientation
 - Poor sample
 - Texture
- Systematic errors
 - Absorption – intensities
 - Absorption – peak positions
 - Axial divergence

BACKGROUND

- Read-out-noise
- Sample holder (transmission mode)
BACKGROUND

Reflection mode

Si single crystal (711 reflection tilted 5°)

BACKGROUND

Siderite, FeCO₃

Fluorescence scattering
BACKGROUND

\[b(D) = 6.671 \text{ fm} \]
\[Rp = 4.65 \% \]

\[b(H) = -3.739 \text{ fm} \]
\[Rp = 1.52 \% \]

Incoherent scattering!

COUNTING STATISTICS

Poisson statistics: \(\sigma^2(I) = I \)

\[\sigma(I) / I = 1 / \sqrt{I} \]

Huber data on sugar. 10 / 60 / 480 min
COUNTING STATISTICS

Huber data on sugar. 10 / 60 / 480 min

COUNTING STATISTICS

1°= 50 steps, 530 s/step → 7 hours
POOR SAMPLE

PREFERRED ORIENTATION (TEXTURE)
POOR SAMPLE

Emery paper

POOR SAMPLE

Al₂O₃ powder

Emery paper
ABSORPTION EFFECTS

Transmission mode
Capillary sample

Reflection mode
Flat plate sample

AXIAL DIVERGENCE
AXIAL DIVERGENCE

Capillary sample: 1 mm beam height vs. 8 mm beam height

![Graph showing AXIAL DIVERGENCE with 1 mm beam height vs. 8 mm beam height comparison.](graph.png)