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Mirror plane symmetry

Mirrorplane

\
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Symmetry elements: rotation

Figure 3.11. A two-dimensional lattice with 3-fold symmetry axes per_pendicular
to the plane of the figure.
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Biomolecules display rotational symmetry

Protein from virus shell display 2-fold symmetry

TBE Virus Surface Glycoprotein E: Top View of the Dimer

C~terminal domain

\ J Dimerization domain

N-terminal domain

Gajhede/Copyright 2008 Side 4



UNIVERSITY OF COPENHAGEN

Symmetry Elements

Translation

moves all the points in the
asymmetric unit the same distance
In the same direction. This has no
effect on the handedness of
figures in the plane. There are no
invariant points (points that map
onto themselves) under a
translation.




Rotational and translational symmetry
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Screw axis
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120° rotation
1/3 unit cell translation
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Unit translation
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Figure 3.20. Screw axis 3,.
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A virus has a high symmetry
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Point groups

e All symmetry operations associated with a
molecules forms a point group. This groups
completely describes the symmetry of the
molecule

e Some point groups only contain rotations:
These are called C,, C; etc.

e Molecules with a principal symmetry axis of
order n and n orthogonal to-fold symmetry
axis’s belong to the D point groups (D, etc.

e Higher symmetries are octahedral and

icosahedral D

Cyclobutan is Dy
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Point group symmetry
diagrams

(o) (b) (c)

Figure 3.18. (a) Crystal with symmetry mmm. (b) Set of points related by symmetry
mmm. (c) Plane representation of symmetry mmm.
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There are a total of 32 point groups

Triclinic Onhorhomblc Trigonal Tetragonal Hexagonal Cubic

OOOOO

OGNSR AGAC
JOJOIONSX SRR )
“@@0000

2m=mm

QO

22=222

000 Q!

4/mm=4/mmm 6/mme6/mmm 4/m3mem3m

# % Centrosymmetric

Figure 3.19. Plane representations of the 32 point groups.
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N-fold axes with n=5 or n>6 does not occur in
crystals

Cheeriap

Lintiled space

Adjacent spaces must be completely filled (no
gaps, no overlaps).
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Asymmetric unit

e Any symmetric object can bed reduced to an
asymmetric unit

e We can use symmetri operations to build up a
lattice motif: E.g a 2-fold axis Asymmetric unit

/

/
/

Symbol for 2-folds axis
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Crystals

. The crystal is build by translating the lattice motif in all 3 spatial directions
. The crystal is a lattice. The parallelopipidum that defines the lattice unit is called the unit cell

" @

Asymmetric unit

Unit cell
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Bravais-lattices
e Lattices has to fill all space. Tt _Triclinic e
Bravais lattices VL 2
e Some are centered - -
.-" b Jr‘rJ c
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Bravais-lattices II

) . : Manaclini
e The unit cell form restricts which symmetry opei Triclinic onocinie
unit cell R , '
]
° Triclinic: Only inversion center (combination of : ’*:V
. Monoclinic: Only 2-fold axis ; i
. Orthorhombic: 3 mutually orthogonal 2-fold axis FoT fap 2
. Tetragonal: 4-fold axis f P ; c
o Hexagonal: 3/6 fold axis’s
o Cubic: 3 and 4-folds | I .
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Crystal systems

o Bravais lattices are grouped in crystal systems
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Space groups

o If you combine the 13 Bravais lattices with the possible rotations ( 2,3,4,6-
fold rotation) including screw axis’s 24, 31,35, 41, 45,45, 64, 65, 63, 64, 65)
and mirror planes you get 230 space groups

Twofold screw axis
parallel to b

—>

2) Shift by b2

Q 1) Rotate 180 deg
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230 space groups

TRICLINIC

P1 P -1

MONOCLINIC

P2 P 21 c 2 P M P C

Cc M cc P 2/M P 21/M c 2/M

P 2/C P 21/C c 2/c

ORTHORHOMBIC

P222 P 2221 P 21 21 2 P21 2121 C2221
c222 F222 I1222 I 212121 PMM?2

P MC 21 PCC?2 PMA?2 P CA 21 PNC 2

P MN 21 PBA2 PN A 21 PNN 2 CMM2
CcCMC 21 cccz2 AMM2 ABM2 A MA 2
ABA2 FMM2 FDD2 IMM?2 IBA?2
IMA?2 PMMM P NNN PCCM PBAN
PMMA PNNA PMNA PCCA PBAM
PCCN PBCM PNNM P MMN PBCN
PBCA PNMA cCMCM CMCA CMMM
cccCcM CMMA ccca FMMM FDDD
IMMM IBAM IBCA IMMA

TETRAGONAL

P4 P 41 P 42 P 43 I4

I 41 P -4 I -4 P 4/M P 42/M

P 4/N P 42/N I 4/M I 41/A P 422

P 421 2 P41 2 2 P 41 21 2 P 42 2 2 P 42 21 2
P 43 2 2 P 43 21 2 I422 I 41 2 2 P4 MM
P4BM P 42 CM P 42 N M P4cCcC P 4NC

P 42 M C P 42 B C I4MM I 4CM I 41 MD
I 41CD P-42M P-42¢C P -421 M P-4 21CcC
I -4M2 P -4C2 P -4 B2 P -4 N 2 P-4M2
I -4C2 P-42M I -42D P 4/MMM P4/MCC
P 4/N B M P 4/N N C P 4/M B M P 4/M N C P 4/NMM
P 4/N C C P 42/MMC P 42/MCM P 42/NBC P 42/NNM
P 42/MBC P 42/MNM P 42/NMC P 42/NCM I 4/MMM
I 4/M C M I 41/AMD I 41/ACD

TRIGONAL

P 3 P 31 P 32 R 3 P -3

R -3 P312 P321 P 3112 P 3121
P 3212 P 3221 R 32 P3MI1 P31M
P3Cl1 P31C R 3 M R 3 C P-31M
P-31C P-3 M1 P-3C1 R -3 M R -3 C
HEXAGONAL

P 6 P 61 P 65 P 62 P 64

P 63 P -6 P 6/M P 63/M P622
P 61 2 2 P 65 2 2 P 62 2 2 P 64 2 2 P 63 2 2
P6MM P6CC P 63 C M P 63 M C P -6M2
P -6C2 P-62M P-62C P 6/M MM P 6/M C C
P 63/MCM P 63/MMC

CUBIC (minus sign in front of triade optional)

P23 F23 I23 P 21 3 I213
PM3 PN 3 FMS3 FD3 I M3
PAS3 IAS3 P 432 P 42 3 2 F 432

F 41 3 2 I1432 P 43 3 2 P 41 3 2 I 41 3 2
P-4 3 M F-43M I-43M P -4 3N F-43C¢C
I-43D PM3M PN 3N PM3N PN3M
FM3M FM3C FD3M FD3C IM3M

I A3D
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Chiral space groups

e Mirror planes and centers of inversion change the handedness
of molecules

e Chiral molecules (like protei
groups with such symmetry I 2
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65 chiral space groups

Triklin

P1

Monoklin

P 2 P 21 C 2

Orthorhombisk

P222 P2221 P 21 21 2 P21 2121 C2 2 21
c222 F 222 I 222 I 212121
Tetragonal

P 4 P 41 P 42 P 43 I 4

I 41 P 422

P 4 21 2 P 41 2 2 P 41 21 2 P 42 2 2 P 42 21 2
P 43 2 2 P 43 21 2 I 422 I 41 2 2

Trigonal

P 3 P 31 P 32 R 3

P312 P321 P 3112 P31 21

P 3212 P32 21 R 3 2

Hexagonal

P 6 P 61 P 65 P 62 P 64

P 63 P62 2

P 61 2 2 P 65 2 2 P 62 2 2 P 64 2 2 P 63 2 2
Kubisk

P23 F 23 I 23 P 21 3 I 21 3

P 432 P 42 3 2 F 4 32

F 41 3 2 I 432 P 43 3 2 P 41 3 2 I 41 3 2
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Coordinate triplets, equivalent
positions

Figure 3.15. This crystal has a 2-fold axis
along c. The point P with coordinate triplet
X, y, z, is related by the symmetry opera-
tion to point P’ with coordinate triplet —x,

=

r =ax + by +cz
Therefore, each point can be described by its
coordinates, that is, by 1ts coordinate triplet (x, y, z) K
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A diagram from International Table of Crystallography

P2,.2,2, P2,2,2 222 No. 19 @,
| o 1 o
7 ™ O%_ 4
' ' ' 1 x,9,z
1 O | 2 34XV, 5 —2
0 ¢ 0 4%, 55—V, 5+2
Lo 9
| O |
a IR




UNIVERSITY OF COPENHAGEN

Identification of the Space Group is called indexing the crystal.
The International Tables for X-ray Crystallography tell us a huge
amount of information about any given space group. For instance,
If we look up space group P2, we find it has a 2-fold rotation axis
and the following symmetry equivalent positions:

and an asymmetric unit defined by:

0<x<1
O<y<1
0<z<1/2

An interactive tutorial on Space Groups can be found on-line in Bernhard Rupp’s
Crystallography 101 Course: http://www-structure.llnl.gov/Xray/tutorial/spcgrps. g
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Rotation matrices and translation vectors

1 0 0 /(x\ IfON!| ( = x )

0 -1 0y 0 |=] -y

(O 0z (L) Lzt

R:- x4+t =X’

Two equivalent positions (x y z) and (-x =y z+72) are g=

related by a rotation matrix R and a translation
t.




Space group P1

Pl

9+ 9+
(1)

a Figure 3.23. P1, equivalent positions
9+ %+ X,y Z.

Point group 1 + Bravais lattice P1




Space group Plbar

Figure 3.24. P1, equivalent positions
(1) x,y,2z; (2 X, 5, Z.

Point group 1bar + Bravais lattice P1

) Pl
6 -6 b
o 9+ - 9+
(1)
[ ©

-
0\




Space group P2

l:l P2
2 % b J->
: & 9+
m
< -+~ ”
. : .. o- d-
Figure 3.25. P2, equivalent positions < —
(1) %, 9, 2:42) &, v, 2. 7 e+ 9+

Point group 2 + Bravais lattice “primitive monoclinic”
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Space group P24

P2,
0 ?- b
- 4
9+ 9+
n
P -+~ —
< °- ,, Figure 3.26. P2,, equivalent positions
a9+ 9+ (Dx,y,z;(2) %, y+3, 2.

Point group 2 + Bravais lattice “primitive monoclinic”,
but consider screw axis
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BPTI example from Livermore lab IlI

Complete unit cell




UNIVERSITY OF COPENHAGEN

The diffraction pattern also forms a lattice

Oscillation (rotation) photograph.

Most contemporary x-ray data
collection used the rotation
geometry, in which the crystal
makes a simple rotation of a
degree or so while the image is
being collected. The geometry of
the diffraction pattern is less
obvious than for a precession
photograph, although data
collection is more efficient.

>|:| —
\
Crystal rotates i \

during exposure




The diffraction pattern also forms a lattice
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Structure factor expression

The structure factor F(h) can be written as below:

N
F(h) = ) fi(lh])e?mhm
=1

Here h is the scattering vector
h = ha* + kb* + Ic*
where a*, b* and c* are the reciprocal lattice vectors, f,(|h|)

is the atomic scattering factor and r; is the coordinate vector
of the /'th atom

r; =x;a+yb+zc

and a, b and c are the direct lattice vectors.
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Intensity of reflections

The intensity of the scattered wave is
proportional to the square of the structure
factor

N N
[(h) & F(h)? = () filhDe? () fi(lRDe2mkr)




UNIVERSITY OF COPENHAGEN

Friedels law

N N
1(h) & F(hY? = () fillkDe>™0)(Y” fillhl)e=2mmm)
i=1 i=1

From the intensity equation it can be seen
ICh,k,1) =I1(—h,—k,—1)
Thus in the absence of anomalous scatterers (heavy

atoms) the intensity weighted reciprocal lattice is always
centrosymmetric. This is referred to as Friedels law.
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Rotational symmetry

If the space group of the crystal is P2 then the following
symmetry operators are present

x,y,zand — x,y,—Z

The structure factor for the reflection with indices h,k,/ can
then be written

N

2
F(h k1) = zﬁ(|h|)(92ﬂi(hxi+kyi+lzi) + eZni(—hxi+kyi—lzi))

=1
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Hypothesis

Symmetry in real space will also introduce symmetry in the
intensity weighted reciprocal lattice

e True for the space group P2 ?
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True
The expression for the —-h,k,-I reflection
N

2
F(—=hk,—1) = zfl.(|h|)(32ﬂi(—hxi+kyi—lzi) + eZni(hxi+kyi+lzi))

=1
is seen to be identical to the expression for the h, k,I reflection
N

2
F(h k1) = z fi(|h|)(32ﬂi(hxi+kyi+lzi) + eZni(—hxi+kyi—lzi))

=1

Consequently two-fold symmetry in direct space also imposes two-
fold symmetry in reciprocal space. Thus in space group P2 the
following relations hold

I(h,k, 1) =1(—h,k,—=1l) = I(=h,—k,—1l) = I(h,—k,])

i.e. only one fourth of the possible reflections are unique.
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Screw axis symmetry
Space group P2, has the following equivalent positions

x,y,zand—x,y+§,—z

N
2

F(h k1) = zfi(|h|)(32ﬂi(hxi+kyi+lzi) + eZni(—hxi+k(yi+1/2)—lzi))
i=1

_ Zﬁ(lhl)(ezni(hxi+kyi+lzi) + enkeziti(—hxi+kyi—lzi))

N
2
i=1

F(_h; k; _l)

N

2 . 1
zfl_(lhl)(ezm(—hxi+kyi—lzi) +82nl(hxi+k(yi+§)+lzi))
=1

N

2
fi(|h]) (e2™i(-hxitkyi=lzi) 4 omk g2mihxitkyi+lz)Y

=1

Copenhagen February 8
Dias 40
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Screw axis

If k even then e™ =1 then

F(h k1) = F(=h k,—1)
As for the P2 case

If k odd then e™ = —1 then

N
2
F(h k1) = Zfi(|h|)(32”i(hxi+kyi+lzi) _ eZni(—hxl-+kyi—lzi))
=1
N

2
F(—hk,—1) = Zfi(lhl)(ezni(_hxi+kyl'—lzi) _ 827Ti(hxl-+k(yl-+lzi))
i=1

= —F(h k1)
And in general for all kK and for P2,

I(h k1) = [(—h, k,—1)

Copenhagen February 8
Dias 41
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Rotational/screw axis in reciprocal space

So generalizing:

« All rotational symmetry is conserved in
reciprocal space

« Centrosymmetry is induced

« Screw axis induce the same symmetry as
the corresponding rotational axis.

Copenhagen February 8
Dias 42
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Symmetry of the Diffraction Pattern

The combination of rotational
symmetry and a center of
inversion can give rise to
mirror plane symmetry in
the diffraction pattern

hkO layer of the reciprocal
lattice

Identify symmetry
elements !
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Systematic extinctions

Look again at the structure factor expression in P2,
N

2
F(h, k, l) = zﬁ(|h|)(€2ni(hxi+kyi+lzi) + eZni(—hxi+k(yi+1/2)—lzi))
=1

When looking at reflections of type 0kO
z
F(0,k,0) = ) fi(lhl)(e?m + emike2mitan)
=1

If kK even

F(0,k,0)

zfl |h|)(82r£ikyi 4+ eZnikyl-)

N

2
i=
2

1
N
2

=

(
> ke

1

Copenhagen February 8
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Systematic extinctions

If kK odd

N
2

F(0,k,0) = > fi(lh])(e>mhi — e2mikri)
i=1

=0

So the presence of a 2-fold screw axis along the b axis will implicate
that the reflections of class 0,k,0 will have those with odd k
systematically extinct.

Copenhagen February 8
Dias 45
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Systematic absences

This SAED pattern of '-‘_ '
Ta,P shows mm-, but not “vimeraisTer v
4-fold symmetry as seen
from the intensities of
diffraction spots.

Notice that all odd
reflections along both the
h and k axes are absent.
This shows there must be
2, screw axes along
and/or glide planes
perpendicular to both
axes.
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The symmetry of the lattice belongs to a laue class

Crystal System Point Group Laue Class
Triclinic 1 -1
Monoclinic 2 2/m
Orthorhombic 222 mmm
Tetragonal 4 4/m

422 4/mmm
Trigonal 3 -3

32 (312 and 321) -3m

Hexagonal 6 6/m
622 6/mmm
Cubic 23 m-3

432 m-3m

Copenhagen February 8
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part

Systematic extinctions give information on
centerings, glide plans and screw axis

|Tab|e 4. Systematically Absent Reflection Conditions. I
Symmetry Element Types Reflection Condition
A centered hkl k+1=2n
B centered h+1=2n
C centered h+k=2n
F centered §+l:2n,h+/:2n,h+k:

n
I centered h+k+/=2n
R (obverse) -h+ k+1=3n
R (reverse) h-k+1=3n
Glide reflecting in a 0kl
b glide k =2n
c glide I=2n
n glide k+1=2n
d glide k+1=4n
Glide reflecting in b hol
a glide h=2n
c glide I=2n
n glide h+1=2n
d glide h+1=4n
Glide reflecting in ¢ hk0
b glide k =2n
a glide h=2n
n glide k+h=2n
d glide k +h=4n
Glide reflecting in (110) hhl
b glide h=2n
n glide h+1=2n
d glide h+k+1=4n
Screw || [100] h0o
2,4, h=2n
41, 43 h=4n
Screw || [010] 0kO
2y, 4, k=2n
41, 43 k=4n
Screw || [001] 00/
2y, 45, 63 /=2n
34, 32, 63, 64 /=3n
4,, 45 I=4n
6y, 65 /=6n
Screw || [110] hh0
2, h=2n

Copenhagen February 8
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