Tau Lepton Identification at the ATLAS Experiment

Almut Pingel

PhD Discovery Day

22 May 2012

Motivation

Hadronic Tau Decay

Tau ID and Pileup

Motivation

Tau leptons are important (!!!)

- Higgs searches
- Searches for physics beyond the SM

... but really hard to find!

τ_{had} Decay

- One or three tracks
- Opening angle of decay cone limited by $\sim m_{\tau}$ / E_{τ}
 - -> little spread of tracks
 - -> small shower width
- Secondary vertex for three prong decay

--> use discriminating variables to distinguish taus from QCD jets

My work in the last half year: Pileup Robustness of the Tau ID for 2012

- Multiple interactions per bunch crossing: pileup
- More pileup
 - more QCD jets per event
 - more activity in the detector
- Discriminating variables need to be optimised to be robust agains pileup

How to achive pileup robustness?

- Reduce number of variables
- Reduce cone size
- Correction of pileup dependend variables

Tau Identification using a Boosted Decision Tree

old variable set (04 cone):

- centrality fraction
- calo radius
- leading 3 cluster energy over all cluster energy
- eff topo inv mass
- ftrk (etOverPtLeadTrk)
- trk avg dist
- number of wide tracks
- ip sig lead track (1p)
- max dR (3p)
- mass track system (3p)
- track flight path sig (3p)

8

reduced variable set (04 cone):

- centrality fraction
- ftrk (etOverPtLeadTrk)
- trk avg dist
- number of wide tracks
- ip sig lead track (1p)
- max dR (3p)
- mass track system (3p)
- track flight path sig (3p)

9

reduce cone size:

- calculate calorimeter variables in smaller cone
- keep track variables unchaged

corret variables:

• apply pileup correction to calorimeter variables: eg.

CorrCentFrac = CentFrac + 0.006 * nVtx

 keep track variables unchaged

Backup

The ATLAS Experiment

The ATLAS Collaboration, G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.

- Heaviest lepton: m = 1777 MeV
- Lifetime: *ct* = 87 μm
- Decay:
 - Leptonic decay: ~35%

$$- \ \tau^{\pm} \ \rightarrow \ e^{\pm} \ \nu_e \ \nu_\tau$$

• Hadronic decay: ~65%

- one prong:
$$\tau^{\pm} \rightarrow \pi^{\pm} X \pi^0 v_{\tau}$$

- three prong: $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} X \pi^{0} v_{\tau}$

Discriminating Variables

Track radius	p _T weighted track distance
Leading track momentum fraction	Fraction of leading track momentum
Core energy fraction	Fraction of transverse energy within $dR < 0.1$
Number of isolation tracks	Number of tracks in isolation annulus: 0.2 < dR < 0.4
Calorimetric radius	E_{T} weighted shower width in the calorimeter
Cluster mass	Invariant mass of clusters
Track mass	Invariant mass of core and isolation tracks
Transvere flight path significance	Decay length significance of the secondary vertex
Leading track IP significance	Impact parameter significance of the leading track
First 2 or 3 leading cluster energy ratio	Fraction of energy in leading two or three clusters
Maximum dR	maximum dR between tau axis and a core track
Corrected cluster isolation energy	transverse energy of calorimeter clusters with pileup correction

Discriminating Variables

Track radius	Cuts, Llh, BDT
Leading track momentum fraction	Cuts, BDT
Core energy fraction	Llh, BDT
Number of isolation tracks	Cut, Llh (1p), BDT
Calorimetric radius	Llh (1p), BDT
Cluster mass	BDT
Track mass	Llh (3p), BDT (3p)
Transvere flight path significance	Cuts (3p), Llh (3p), BDT (3p)
Leading track IP significance	BDT
First 2 or 3 leading cluster energy ratio	Llh (1p), BDT
Maximum dR	Llh (3p), BDT (3p)
Corrected cluster isolation energy	Cuts

 $dR = \sqrt{(\Delta \varphi)^2 + (\Delta \eta)^2}$

Discriminating Variables

"Performance of the Reconstruction and Identification of Hadronic Tau Decays with ATLAS" ATLAS-CONF-2011-152

Almut Pingel - NBI

Efficiency Definitions

• signal eff:

(number of truth matched taus with N tracks, passing ID)

(number of true taus with N tracks)

• background eff:

(number of taus with N tracks, passing ID)

(number of taus with N tracks)

- with N being 1 for one prong taus (1p), and 2 or 3 for multi prong taus (mp)
- target signal efficiencies for loose, medium, tight are 70%, 60%, 40% for 1p and 65%, 55%, 35% for mp

Tau ID - Performance 2012 - 1p

20

Tau ID - Performance 2012 - mp

