Lecture 4

* Radiation damage

* |n sensors
* |n readout electronics



Literature

e Semiconductor Radiation Detectors, Gerhard Lutz,
Springer-Verlag, 1999

e http://rd48.web.cern.ch/RD48 (ROSE)
* http://rd49.web.cern.ch/RD49 (RADTOL)


http://rd48.web.cern.ch/RD48
http://rd49.web.cern.ch/RD49

Radiation damage to
semiconductors

We want to detect ionising radiation with our detector but at the same
time the radiation will damage our detector. The radiation induced
damage is for most users small but for applications in high energy physics,
space and in medicine the damage to the detector may be substantial
degrading the performance. There are two kinds of radiation damage

» Bulk damage, which affects the the doping and structure of the
sensor bulk.

« Surface damage, which affects the oxide and oxide interface in
the sensor.




Expected dose in HEP
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Expected dose in space
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Bulk and surface damage

Bulk damage is caused by

charged and neutral heavy
particle (heavier than electrons)
destroying the structure of the
semiconductor crystal. The
damage is seen by:

v Leakage Current increase

v Depletion Voltage
increase

v Charge Collection
decrease

Surface damage is caused by

photons and charge particles
ionising the oxide leaving
trapped charge in the oxide
changing the Flat Band
condition. The damage is seen
by:

v Increased capacitance to
neighbour cells in a
segmented sensor

v Surface current

v Impedance change to
neighbour cells in a
segmented sensor



Bulk Damage (1)

 The damage to the semiconductor bulk depend on the particle type
—>Non lonising Energy Loss (NIEL)
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Bulk Damage (2)

* Since the bulk damage depend on the particle fluence (=integrated
flux), particle type, particle energy we normalise the fluence
parameter by using the NIEL curve to equal damage for 1 MeV neutrons
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Damage parameter
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Annealing

Some of the damage to the semiconductor by NIEL is repaired by
annealing. The annealing depend on temperature and time.
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Reverse annealing

« Unfortunately not all annealing is beneficial. The beneficial annealing
is a fast process while the reverse annealing is a slow process. The
reverse annealing is like the beneficial annealing temperature
dependent.

« The damage parameter is defined by a observable, change in leakage
current (Al). The increase in current is in fact caused by the change in
the material doping, N__.
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Type inversion

» The silicon bulk change doping concentration and become more p-
type. A n-type crystal becomes p-type - Type inversion

 The depletion voltage change because of changed doping
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Trapping

The radiation damage create defects in the crystal lattice > new

levels introduced into the energy gap where electrons/holes are
trapped.

Charge collection efficiency falls off at about 1% per 10" n/cm (®_ )
E
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Surface damage

Surface damage is changing the properties of the oxide layer and its
interface with the crystal-> change in €

The effect saturates at 1-2 kGy (100-200 krad) increasing the
capacitance by x2



Radiation damage in readout
electronics

« Like the sensors the readout electronics is damaged by radiation giving

* Threshold shift
 Increased leakage

 Single event Latch-up, Single event Upset
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Latch-up

Latch-up can be initiated by an ionising particle—> high current which
may damage the electronics
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Single Event Upset

« A memory bit in a memory cell can be flipped by ionising radiation
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Rad-hard electronics

To fight radiation damage to electronics special design rules and
especially by radiation hardened fabrication processes. Most processes
were developed under the "Cold War” for military usage and become
available only after the end of the "Cold War". Unfortunately the

science community did not possess a budget capable of matching the
reduction in military funding..... end of the saga?



Moore's law and transistor size
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Dose scaling in electronics
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The Miracle

* The steep fall off in dose scaling
with thin oxide thickness allow
leading edge electronics to be used
in radiation environments.
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