X-ray phase-contrast and dark-field imaging

using scanning SAXS and
a grating interferometer

Martin Bech

Technical University Munich
Department of Physics, E17
martin.bech@tum.de

Lund Universitet
Department medical radiation physics
martin.bech@med.lu.se

High Contrast / Low Contrast

First x-ray image
made by Röntgen in 1896

Modern x-ray image
2011
X-Ray Phase-Contrast Imaging - Why?

Röntgen was also looking for refraction...

X-ray Imaging
Imaging regimes

Fresnel number:
\[F = \frac{a^2}{\lambda d} \]

- \(F << 1 \)
 Far-field regime (Fraunhofer)

- \(F \approx 1 \)
 Near-field regime (Fresnel)

- \(F >> 1 \)
 Contact regime

Three signals for imaging

- Absorption – Standard x-ray image
- Refraction – Phase-contrast image
- Scattering – Dark-field image
Conventional X-Ray Radiography: Absorption Contrast

Refraction in a lens

Vacuum
n = 1

Light
n = 1.5

X-ray
n = 0.999999
Scattering

SAXS - Small Angle X-ray Scattering

Small features
wide angles

Large features
small angles

‘Wave-Optical’ X-ray Radiography: Phase Contrast

object
detector

phase shift
Visible light: Several contrast modalities

Zeiss microscope
www.zeiss.de

Full field vs pencil beam

Pencil Beam

Parallel Beam

Fan Beam

Cone Beam

1953 Nobel Prize
Frits Zernike
STXM : Scanning Transmission X-ray Microscopy

Displacement vector on detector: \(L \frac{\lambda}{2\pi} \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y} \right) \)

Figure courtesy: Jens Als-Nielsen
SAXS: Small Angle X-ray Scattering

STXM / SAXS
SAXS, Lymph nodes

- **Histology**
 - Healthy
 - Invaded

- **Total scattered intensity**
 - Healthy
 - Invaded

- **Scattering asymmetry**
 - Healthy
 - Invaded

- **Scattering direction**
 - Healthy
 - Invaded

SAXS

Small Angle X-ray Scattering

X-ray Imaging
Coherence

Ability to interfere
Coherent x-ray scattering

Frans van der Veen1,2 and Franz Pfeiffer1

1 Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
2 ETH-Zürich, Physics Department, 8093 Zürich, Switzerland

E-mail: frans.vanderveen@psi.ch and franz.pfeiffer@psi.ch

Received 30 January 2004
Published 2 July 2004
Online at stacks.iop.org/JPhysCM/16/5003
doi: 10.1088/0953-8984/16/28/029

Abstract
This is a tutorial paper on the properties of partially coherent hard x-ray beams and their use in the structural analysis of condensed matter. The role of synchrotron radiation in the generation of coherent x-ray beams is highlighted and the requirements on the source properties are discussed. The techniques of...

Coherence

Spatial

\[L_T = \frac{\lambda R}{W} \]

Figure 1. Diffraction patterns from two narrow slits at distance \(d \), originating from the central part of the source (solid curve) and from the edge of the source at height \(w/2 \) (dashed curve). The slit distance \(d \) is such that the two patterns are in antiphase. This occurs for \(d = \lambda R/w \). Angles and distances are not to scale.
Coherence

Spectral

$$L_L = \frac{\lambda^2}{2\Delta\lambda}$$

Figure 2. Propagation of two waves with wavelengths λ and $\lambda + \Delta\lambda$. The longitudinal coherence length ξ_L is defined as the distance over which the phase difference of the two waves has become π.

Coherence

Intrinsic coherence of different sources

(a) Wiggler

(b) Undulator

Coolidge Tube

Filament

electrons

X-rays

anode

cathode

water

Log (Intensity)

Energy

Bremsstrahlung

K

M

K

Coolidge Tube

Rotating Anode

X-rays

Filament

electrons

cathode

anode

water

in

out
SASE - Self Amplification by Spontaneous Emission

![Diagram of SASE](image)

Coherence

![Coherence Diagram](image)

Courtesy of Chang Chang, UC Berkeley and LBNL.
Coherence

Figure 6. X-ray diffraction from a disordered medium with particle distance d. The object size is a. (a) Incoherent scattering, giving rise to a continuous diffraction ring; (b) coherent scattering, resulting in a speckled diffraction ring.
History of phase contrast imaging

Crystal Interferometer, Bonse & Hart 1965
Diffraction Enhanced Imaging, Davis 1995 and Ingal 1995
Propagation Based Imaging, Snigirev 1995 and Wilkins 1996

Grating Interferometer:
- Synchrotron
- David 2002, Momose 2003
- Weitkamp 2005
- X-ray tube: Pfeiffer 2006
- Darkfield: Pfeiffer 2008

Grating Interferometer:
- Synchrotron
- David 2002, Momose 2003
- Weitkamp 2005
- X-ray tube: Pfeiffer 2006
- Darkfield: Pfeiffer 2008

Free space propagation
Real Space

Plane wave:
Sphere wave:

Huygens-Fresnel principle:
at any instant
a wavefront can be considered as a collection of point sources
Free space propagation

\[\Psi(x, y) = \iint q(X,Y)A \exp(i2\pi \frac{r}{\lambda})dXdY \]

\[r = \sqrt{R^2 + (x-X)^2 + (y-Y)^2} = R + \frac{(x-X)^2}{2R} + \frac{(y-Y)^2}{2R} \]

Free space propagation

\[\Psi(x, y) = \exp(ikR) \iint u_0(X,Y)A \exp \left(\frac{i\pi}{d\lambda} \left((x-X)^2 + (y-Y)^2 \right) \right) dXdY \]

\[\Psi(x, y) = q(x,y) * P_R(x,y) \quad P_R(x,y) = A \exp(ikd) \exp \left(\frac{i\pi}{d\lambda} (x^2 + y^2) \right) \]
Free space propagation

Fourier Space

Define Fourier transform as

\[F(k) = \int f(x) \exp(-ikx) dx \]

Wavefront at \(z = 0 \)

\[\tilde{q}(k_x, k_y) = \int q(x, y) \exp\left\{ -i(k_x x + k_y y) \right\} dx dy \]

\[q(x, y) = \frac{1}{(2\pi)^2} \int \tilde{q}(k_x, k_y) \exp\left\{ i(k_x x + k_y y) \right\} dk_x dk_y \]

A superposition of planewaves

\[q(x, y) = \frac{1}{(2\pi)^2} \int \tilde{q}(k_x, k_y) \exp\left\{ i(k_x x + k_y y) \right\} dk_x dk_y \]

\[k_z = \sqrt{k_x^2 - k_i^2 - k_y^2} = k \sqrt{1 - \frac{k_i^2}{k^2}} = \frac{k}{\sqrt{k^2 - k_x^2}} \]

Propagation of a plane wave in free space is described by the phaseshift \(\exp(ikr) \)

\[\Psi(x, y) = \frac{1}{2\pi} \int \tilde{q}(k_x, k_y) \exp\left\{ i(k_x x + k_y y) \right\} dk_x dk_y \]

Free space propagation

Fourier Space

\[\Psi(x, y) = \frac{1}{2\pi} \int \tilde{q}(k_x, k_y) \exp\left\{ i k_z \right\} \exp\left\{ i(k_x x + k_y y) \right\} dk_x dk_y \]

When the angle \(\Theta \) between propagation direction and z-axis is small

\[\Theta = |\sin(\Theta)| = \frac{\sqrt{k_x^2 + k_y^2}}{k} \]

is small

\[k_z = \sqrt{k^2 - k_i^2 - k_y^2} = k \left(1 - \frac{k_i^2}{2k^2} - \frac{k_y^2}{2k^2} \right) = \frac{k}{2k} (k_x^2 + k_y^2) \]
Free space propagation

Fourier Space

\[
\Psi(x,y) = \frac{1}{2\pi} \iiint \tilde{q}(k_x,k_y) \exp\left\{ i(k_x x + k_y y) \right\} \, dk_x dk_y \]

When the angle \(\Theta \) between propagation direction and z-axis is small

\[
\Theta = |\sin(\Theta)| = \frac{\sqrt{k_x^2 + k_y^2}}{k}
\]

is small

\[
\Psi(x,y) = \frac{1}{(2\pi)^2} \iiint \tilde{q}(k_x,k_y) \exp\left\{ ikd - id\left(\frac{k_x^2 + k_y^2}{2k}\right) \right\} \exp\left\{ i(k_x x + k_y y) \right\} \, dk_x dk_y
\]

\[
\Psi(x,y) = \frac{1}{(2\pi)^2} \iiint \tilde{\Psi}(k_x,k_y) \exp\left\{ i(k_x x + k_y y) \right\} \, dk_x dk_y
\]

\[
\tilde{\Psi}(k_x,k_y) = \tilde{q}(k_x,k_y) \exp\left\{ ikd - id\left(\frac{k_x^2 + k_y^2}{2k}\right) \right\} = \tilde{q}(k_x,k_y) \tilde{P}_d(k_x,k_y)
\]

Free space propagation

Fourier Space

\[
\tilde{P}_d(k_x,k_y) = \exp\left\{ -id\left(\frac{k_x^2 + k_y^2}{2k}\right) \right\}
\]

\[
= \exp\left\{ -i\lambda d\left(\frac{1}{\lambda_x^2} + \frac{1}{\lambda_y^2}\right) \right\}
\]
Free space propagation

Fourier Space

\[\tilde{\Psi}(f,g) = \tilde{q}(f,g) \tilde{P}_d(f,g) \]
\[\tilde{P}_d(f,g) = \exp\left\{ ikd - i\pi\lambda \, d(f^2 + g^2) \right\} \]
\[\Psi(x,y) = \iiint \tilde{q}(f,g) \tilde{P}_d(f,g) \exp\left\{ i(k_x x + k_y y) \right\} df dg \]

Simulated propagation

Figure: Timm Weltkamp
Applications

Propagation based phase contrast image

Figure 5. A mouse femur head imaged at 15 keV at different sample–detector distances. From [26].
Wavefront propagation. Phase grating = -dp x \cos(p_d x)
Phase-Contrast Imaging using X-Ray Optical Gratings

Momose et al | Optics Express | 2003
Weitkamp et al | Optics Express | 2005
Pfeiffer et al | Physical Review Letters | 2005

Franz Pfeiffer

Talbot Effect

In the Fourier transform of a periodic function, only $k = \frac{2 \pi n}{p}$ is non-zero

$$q(x) = \frac{1}{2\pi} \int \tilde{q}(k_x) \exp\{i(k_x x)\} dk_x = \sum_n \tilde{q}(2\pi n/p) \exp\{i(2\pi n/p) x\}$$

The fourier space propagator becomes

$$\tilde{P}_d(k_x) = \exp(ikd)\exp\{-id(\frac{n}{p})^2/2k\} = \exp(ikd)\exp\{-i\frac{\lambda d}{4\pi} \left(\frac{2\pi n}{p}\right)^2\}$$

i.e. apart from a phase factor, the wavefront repeats itself at distance

$$d_T = \frac{2P^2}{\lambda} \Rightarrow \tilde{P}_d\left(2\pi n/p\right) = \exp(ikd_T)\exp\{-i2\pi(n)^2\}$$
Grating interferometer

- **Reference grating**
- **Analyzer grating**

T. Weitkamp et al., Optics Express 13, 6296 (2005)

Differential Phase Imaging

\[\delta \Theta = \frac{\lambda}{2\pi} \frac{\partial \Phi}{\partial x} \]
An interferometer based on the Talbot effect

A.W. Lohmann and D.E. Silva
Optics communication 2 (1971), 413-415

X-ray phase contrast imaging with a grating interferometer

C. David, B. Nöhammer, H. H. Solak and E. Ziegler
Scattering

Extracting phase contrast image

\[I(m, n, x_g) = \sum a_i(m, n) \cos(ikx_g + \phi_i(m, n)) \]

absorption local scattering power phase gradient

Chicken wing

Nature Materials, January 2008