

Outline

- Part 1: 1.) Introduction
 - strongly interacting Fermions
 - effect of density imbalance
 - rf spectroscopy
 - 2.) Experiments using rf spectroscopy: Problems and solutions

Part 2: 3.) Quantitative studies with rf spectroscopy

a) Quasiparticle spectroscopy and determination of the superfluid gap

b) The 'N+1' body problem: Observation of polarons in a highly imbalanced Fermi gas

Pairing and Superfluidity of Fermions

Formation of Pairs \rightarrow Condensation \rightarrow Superfluidity

Ultracold Atom System: Interacting Fermi Mixture

An Ideal Model System: A New Sample

Interaction strength

Tuning Interactions: Feshbach Resonances

The BEC-BCS Crossover

BEC of Molecules

BCS state

The BEC-BCS Crossover

The experiment

Preparation of an interacting Fermi system in ⁶Li

⁶Li - Atom: 6 hyperfine states

States |1> and |3> correspond to Pseudospin $|\uparrow>$ and $|\downarrow>$ Optical trapping @ 1064 nm

$$\begin{split} \nu_{\text{axial}} &= 22 \text{ Hz} \\ \nu_{\text{radial}} &= 160 \text{ Hz} \\ \text{E}_{\text{trap}} &= 0.5 - 5 \ \mu\text{K} \end{split}$$

Source of ultracold fermions

Cool fermionic lithium-6 using sodium as a refrigerator 10⁷ atoms in BEC (w/o Li) 5 x 10⁷ Li atoms at $\frac{T}{T_F}$ < 0.3 **Fermions Bosons**

Z. Hadzibabic et.al., PRL 91, 160401 (2003)

From Fermion Pair Condensation

to High Temperature Superfluidity

BEC of Fermion Pairs ("Molecules")

These days: Up to 10 million condensed molecules

BoulderNov '03InnsbruckNov '03, Jan '04MITNov '03ParisMarch '04Rice, Duke

Molecule Number Per Unit Length [1/mm] 0.9 mW 2.4 mW 2.7 mW 3.3 mW 4.5 mW 1x10⁶ 8.9 mW С 0.5 0.0 1.0 Position [mm]

M.W. Zwierlein et al, PRL 91, 250401 (2003)

Observation of Pair Condensates

C.A. Regal et al., PRL 92, 040403 (2004) M.W. Zwierlein et al., PRL 92, 120403 (2004)

Vortex lattices in the BEC-BCS crossover

Establishes *superfluidity* and *phase coherence* in gases of fermionic atom pairs

M.W. Zwierlein et al, Nature 435, 1047-1051 (2005)

High Temperature Superfluid at 100 nK?

Fermionic Superfluidity with Imbalanced Spin Populations

What if there are too many singles?

Fermionic Superfluidity with Imbalanced Spin Populations

The Clogston-Chandrasekhar limit

Minority component

Phase Diagram for Unequal Mixtures

M.W. Zwierlein et al, Science 311, 492 (2006)

Radiofrequency spectroscopy

No interactions

Molecular Pairing

Photon energy = Zeeman + Binding + Kinetic energy $\hbar\omega = \hbar\omega_0 + E_B + 2\varepsilon_k$

Radiofrequency spectroscopy

Photon energy = Zeeman + Binding + Kinetic energy $\hbar\omega = \hbar\omega_0 + E_B + 2\varepsilon_k$

Radiofrequency spectroscopy

(in the BCS limit)

Binding energy per particle:

$${\rm E_B} \propto {\Delta^2 \over {\rm E_F}}$$

Photon energy = Zeeman + Quasiparticle + Kinetic energy $\hbar \omega = \hbar \omega_0 + E_k - \mu + \varepsilon_k$ Onset at $\hbar \omega = \hbar \omega_0 + \frac{\Delta^2}{2E_n}$

RF Spectroscopy vs Tunneling

Connection to tunneling experiments

Connection to tunneling experiments

Introduction to Superconductivity

Outline

- Part 1: 1.) Introduction
 - strongly interacting Fermions
 - effect of density imbalance
 - rf spectroscopy

2.) Experiments using rf spectroscopy: Problems and solutions

Part 2: 3.) Quantitative studies with rf spectroscopy

a) Quasiparticle spectroscopy and determination of the superfluid gap

b) The 'N+1' body problem: Observation of polarons in a highly imbalanced Fermi gas

Previous Experiments on RF Spectroscopy

First evidence a pairing gap, Grimm group:

Previous Experiments on RF Spectroscopy

Radio-frequency offset [kHz]

C.H. Schunck et al, Science 316, 815 (2007)

Problems of Previous RF experiments I

- Ultracold atom sample confined in a harmonic trap
- Inhomogeneous density profiles
- \rightarrow Density broadening of the spectroscopic signal
- \rightarrow Difficult to compare with theoretical predictions

RF spectroscopy with equal mixtures

RF Spectroscopy with in situ Images

In situ phase contrast images measure the depletion region

Y. Shin et al, PRL 99, 090403 (2007)

3d Density Reconstruction

Cylindrical symmetry, Inverse Abel transformation:

→ Tomographic RF spectroscopy:

3D reconstruction

Spatially resolved RF Spectrum

Y. Shin et al, PRL 99, 090403 (2007)

Problems of Previous RF experiments II

Pair dissociation energy in units of the threshold energy

C.H. Schunck et al, Nature 454, 739 (2008)

RF Spectroscopy: Final State Interactions

Final state interactions can strongly modify the spectrum

e.g. transition from 1-2 molecule to 1-3 molecule

How to change the final state interactions without changing the initial state?

3 candidates for high T_c Superfluids in ⁶Li

Figure: M. Bartenstein et al., PRL **94** 103201 (2005)

Lifetime of all mixtures exceeds 10 s

We observe fermion pair condensation in all mixtures: Two new high T_c superfluids
3 high T_c Superfluids for Rf Spectroscopy

Dramatic effect of final state interactions

Rf spectroscopy in the (1,3) mixture

Pair dissociation energy in units of the threshold energy

C.H. Schunck et al, Nature 454, 739 (2008)

Experiments on RF Spectroscopy

Photoemission Spectroscopy, extraction of Δ and μ , Jin group:

Outline

- Part 1: 1.) Introduction
 - strongly interacting Fermions
 - effect of density imbalance
 - rf spectroscopy

2.) Experiments using rf spectroscopy: Problems and solutions

Part 2: 3.) Quantitative studies with rf spectroscopy

a) Quasiparticle spectroscopy and determination of the superfluid gap

b) The 'N+1' body problem: Observation of polarons in a highly imbalanced Fermi gas

Quantitative Studies

Address open questions, **Superfluid** state:

- Magnitude of Δ

 \rightarrow Presence of important Hartree energy

Local double peak structure?
 → evidence of quasiparticles

- "Pairing" in the normal phase?
 → Need majority spectra

Motivation I: Quasiparticles?

Shin et al, PRL 97, 030401 (2006)

Motivation II: The Superfluid Gap

Motivation III: Minority Spectra

Minority Spectra do NOT reveal the onset of superfluidity

Full pairing of minority cloud? Bosons which do not condense even at T=0 ?

Ingredient: Imbalanced Fermi Mixtures

increasing invalance

- System remains superfluid up to a critical imbalance
- -Two (of several) ways to destroy Superfluidity:
 - Imbalance
 - Temperature

Phase Diagram of a Polarized Fermi Gas

Y. Shin et al, Nature, **451**, 689 (2008).

Quasiparticles in equal mixtures?

We were not able to resolve a local double peak structure between $0.1 < T / T_F < 0.55$

How can we create quasiparticles?

Solution: Low Temperature Quasiparticles

Generate quasiparticles at the minimum energy of the dispersion curve:

RF spectra for varying local imbalances

Elliptic Average

RF spectra for varying local imbalances

Polarized Superfluid

BCS Theory: Excess Fermions = <u>Quasiparticles</u>

 \rightarrow local double peaks in RF spectrum

BUT: Note that the quasiparticle peak is at $\omega_{RF} > 0$ and not at the expected position $-\Delta$

Hartree terms U introduce an overall shift of the RF spectrum

Two Peaks = Two Equations

Hartree Terms: Where do they come from?

Hamiltonian in general difficult: $H \propto c_1^{\dagger} c_2^{\dagger} c_3 c_4$

<u>Hartree-Fock</u>, replace 4-fermion-operator by best 2-fermion-operator you can find:

$$\begin{split} H &\propto \left\langle c_{2}^{\dagger}c_{3}^{} \right\rangle c_{1}^{\dagger}c_{4}^{} + \left\langle c_{1}^{\dagger}c_{4}^{} \right\rangle c_{2}^{\dagger}c_{3}^{} & \begin{array}{c} \text{Hartree} \\ \text{(direct)} \\ \hline - \left\langle c_{1}^{\dagger}c_{3}^{} \right\rangle c_{2}^{\dagger}c_{4}^{} &= \left\langle c_{2}^{\dagger}c_{4}^{} \right\rangle c_{1}^{\dagger}c_{3}^{} & \begin{array}{c} \text{Fock} \\ \text{(exchange)} \\ + \left\langle c_{1}^{\dagger}c_{2}^{\dagger} \right\rangle c_{3}c_{4}^{} + \left\langle c_{3}c_{4}^{} \right\rangle c_{1}^{\dagger}c_{2}^{\dagger} & \begin{array}{c} \text{Non-zero} \\ \text{only in BCS} \end{array} \end{split}$$

Hartree Terms: Where do they come from?

BCS Hamiltonian:
$$V_{BCS} = -V_0 c^{\dagger}_{k\uparrow} c^{\dagger}_{-k\downarrow} c_{k'\downarrow} c_{-k'\uparrow}$$

Free Energy:

$$H - \mu N = \sum_{k\sigma} (\varepsilon_{k} - (\mu - U))c_{k\sigma}^{\dagger}c_{k\sigma}$$
$$- \sum_{k} (\Delta c_{k\uparrow}^{\dagger}c_{-k\downarrow}^{\dagger} + \Delta^{*}c_{-k\downarrow}c_{k\uparrow})$$

Hartree Terms: Where do they go?

Quasiparticle excitation spectrum:

$$\mathbf{E}_{\mathbf{k}} = \pm \sqrt{\left(\boldsymbol{\varepsilon}_{\mathbf{k}} - (\boldsymbol{\mu} - \mathbf{U}) \right)^{2} + \left| \boldsymbol{\Delta} \right|^{2}}$$

Quasiparticle operator (Bogoliubov):

$$c_{k\uparrow}^{\dagger}|\,BCS
angle \propto \gamma_{k\uparrow}^{\dagger}|\,BCS
angle$$

→excess Fermion = Quasiparticle

Hartree Terms: Where do they go?

RF spectrum (from FGR):

$$\Gamma(\omega) \propto \frac{\sqrt{\omega - \omega_{th}}}{\omega^2} \times (...)$$

Hartree Terms: Where do they go?

The importance of Hartree Terms

(1)
$$\frac{4}{3}\omega_{th}(\mu, \Delta) + E_{final} = 0.75$$

(again: μ ≈ 0.42)

Peak Positions in the Polarized Superfluid

- Comparison of Majority and Minority RF spectra reveal a change in pairing character
- Polarized Superfluid: Observation of Quasiparticles
- Position of Quasiparticle peak highlights importance of Hartree terms U in RF spectroscopy
- Double peak spectrum allows determination of Δ and U

Outline

- Part 1: 1.) Introduction
 - strongly interacting Fermions
 - effect of density imbalance
 - rf spectroscopy

2.) Experiments using rf spectroscopy: Problems and solutions

Part 2: 3.) Quantitative studies with rf spectroscopy

a) Quasiparticle spectroscopy and determination of the superfluid gap

b) The 'N+1' body problem: Observation of polarons in a highly imbalanced Fermi gas

Quantitative Studies

Address open questions, **Normal** state:

- Magnitude of Fermi liquid parameters (µ, Z, m*, F)

- Critical interaction strength Fermi liquid $\leftarrow \rightarrow$ Bose liquid ?

What is the fate of a single impurity in a Fermi sea?

Crucial question for
electron transport in lattices
Kondo problem
(single magnetic impurity)
mobility of ⁴He in ³He

Polarons: The "N+1"-body problem

Polarons

- Historically: e⁻ interacting with ion lattice
 L. D. Landau, Phys. Z. Sowjetunion 3 664 (1933).
- Quasi-particle: particle dressed by surrounding
- Long lifetime
- "Dressed" energy
- Quasiparticle residue or Weight Z
- Effective mass *m**
- Same question asked across all of physics for different types of particles, environments, and coupling between them (colossal magnetoresistance, the pseudo-gap phase of High-T_C superconductors, fullerenes, polymers, etc...)

Theory: Landau, Froehlich, Feynman, Anderson

Every man, wherever he goes, is encompassed by a cloud of comforting convictions, which move with him like flies on a summer day. (Bertrand Russell, 1919)

Theory: Chevy, Lobo, Giorgini, Stringari, Prokof'ev, Svistunov, Sachdev, Sheehy, Radzihovsky, Lamacraft, Combescot, Sa de Melo

A single $|\downarrow\rangle$ atom immersed in a $|\uparrow\rangle$ cloud with unitarity limited interactions

Binding energy must be universal

$$\mu_{\downarrow} = \gamma E_{\rm F\uparrow} \qquad \qquad \qquad \gamma = -0.6$$

F. Chevy PRA **74**, 063628 (2006), Variational Cooper pair Ansatz C. Lobo, A. Recati, S. Giorgini, S. Stringari, PRL **97**, 200403 (2006), Monte-Carlo

Polaron:

 $|\Psi\rangle = \phi_0 |\mathbf{0}\rangle_{\downarrow} |FS\rangle_{\uparrow}$

F. Chevy PRA **74**, 063628 (2006), Variational Cooper pair Ansatz C. Lobo, A. Recati, S. Giorgini, S. Stringari, PRL **97**, 200403 (2006), Monte-Carlo

F. Chevy PRA **74**, 063628 (2006), Variational Cooper pair Ansatz C. Lobo, A. Recati, S. Giorgini, S. Stringari, PRL **97**, 200403 (2006), Monte-Carlo

Polaron Energy

Diagrammatic Monte-Carlo: N. V. Prokof'ev and B. V. Svistunov, PRB 77, 125101 (2008) Variational approach/T-Matrix: F. Chevy PRA **74**, 063628 (2006), R. Combescot and S. Giraud, PRL 101, 050404 (2008), R. Combescot et al., PRL 98, 180402 (2007), T-matrix/ladder approximation: P. Massignan, G. Bruun and H. Stoof, PRA 78, 031602 (2008)
Polaron Quasi-particle weight

F. Chevy PRA **74**, 063628 (2006), Variational Cooper pair Ansatz C. Lobo, A. Recati, S. Giorgini, S. Stringari, PRL **97**, 200403 (2006), Monte-Carlo

Experimental Realization

- Spatially resolved
- 3D reconstructed

RF Spectra with high density imbalance

A. Schirotzek et al., in preparation

Interpretation of the spectra

Polaron = \sqrt{Z} Free particle + $\sqrt{1-Z}$ scattered states

Z for various interaction strengths

Polaron Energy vs Interaction Strength

Diagrammatic Monte-Carlo: N. V. Prokof'ev and B. V. Svistunov, PRB 77, 125101 (2008) Variational approach/T-Matrix: F. Chevy PRA **74**, 063628 (2006), R. Combescot and S. Giraud, PRL 101, 050404 (2008), R. Combescot et al., PRL 98, 180402 (2007), T-matrix/ladder approximation: P. Massignan, G. Bruun and H. Stoof, PRA 78, 031602 (2008)

Conclusion

- Observation of Spin-Polarons in a new Fermi liquid with tunable interactions
- Benchmark test for many-body theories
- Very good agreement in the binding energy
- Determines the low-temperature phase diagram of imbalanced Fermi gases
- Future: Dynamic properties. Measure effective mass m*.

Martin Zwierlein,

Andre Schirotzek,

Christian Schunck

Wolfgang Ketterle,

Yong-II Shin

The team

BEC 1: Andre Schirotzek Ariel Sommer

Fermi 1: Cheng-Hsun Wu Ibon Santiago Dr. Peyman Ahmadi

Caroline Figgatt Jacob Sharpe

Realization in ultracold Fermi gases

Atomic Fermi Gases allow to freely choose

- Spin imbalance
- Interaction strength between spin up and spin down Situation maps onto tunable square well (k_Fr_{eff} << 1):

strong attraction *deep bound state*

Resonance weak attraction bound state appears no bound state

 $\alpha < \beta$

scattering length

a > 0

Full Phase Diagram

S. Pilati and S. Giorgini, PRL 101, 030408 (2008)

Phase Transition from Density Distribution

Yong-il Shin et al., PRL 070404 (2008)