Unraveling the Origin of Overionized Plasma in the Galactic Supernova Remnant W49B

Sarah Pearson (University of Copenhagen) 3 January 2013

In collaboration with: Laura A. Lopez (MIT), Enrico Ramirez-Ruiz (UCSC), Daniel Castro (MIT), Hiroya Yamaguchi (CfA), Patrick Slane (CfA), Randall Smith (CfA)

Outline

- Introduction to supernova remnants and project
- How do supernova remnants (SNRs) get overionized?
- Methods for analysis of W49B
 - Electron temperature, T_e
 - Ionization temperature, T_z
- Results from project

Supernovae

•The death of certain stars

•They come in two types:

Core-collapse supernovae (Type lb/lc and Type II)
M > 8 M sun

•Thermonuclear explosions (Type Ia)

Supernovae

•The death of certain stars

•They come in two types:

Core-collapse supernovae (Type lb/lc and Type II)
M > 8 M sun

•Thermonuclear explosions (Type Ia)

Supernova remnants (SNRs)

- Interaction of supernova ejecta with surrounding medium
 - Interstellar medium (ISM) & circumstellar medium (CSM)
- SNRs provide knowledge of redistribution of elements in the Universe
- SNRs are extremely complex and diverse objects

Galactic SNR W49B

- Most luminous supernova remnant in x-rays
- Ejecta dominated ~ young remnant (1000 years)
- Complex morphology
- Shows overionization features
 - lons stripped of more electrons than expected

Lopez et al. (2012)

We present...

- … first spatially-resolved analysis of plasma conditions in W49B
- Using a 220 ks observation from NASA's Chandra X-ray Observatory

Pearson et al. (2013)

lonization

- Supernova remnants are normally underionized:
 - Disperse medium ~ low densities
 - Only excitation/ionization through collisional excitation of ions with electrons
 - Long timescale for electrons to collisionally ionize ions
 - lons are not stripped of as many electrons as we would expect

- Electron temperature, kT_e:
 - Actual kinetic energy of electrons and ions

Kawasaki et al. (2005)

- Electron temperature, kT_e:
 - Actual kinetic energy of electrons and ions
- Ionization temperature, kT_z:

Kawasaki et al. (2005)

- Electron temperature, kT_e:
 - Actual kinetic energy of electrons and ions
- Ionization temperature, kT_z:
 - To what extent are the ions ionized, how many electrons are they stripped of?

Kawasaki et al. (2005)

- Electron temperature, kT_e:
 - Actual kinetic energy of electrons and ions
- Ionization temperature, kT_z:
 - To what extent are the ions ionized, how many electrons are they stripped of?
- Collisional ionization equilibrium (CIE):

Kawasaki et al. (2005)

- Electron temperature, kT_e:
 - Actual kinetic energy of electrons and ions
- Ionization temperature, kT_z:
 - To what extent are the ions ionized, how many electrons are they stripped of?
- Collisional ionization equilibrium (CIE):
 - $kT_e = kT_z$

Kawasaki et al. (2005)

- Electron temperature, kT_e:
 - Actual kinetic energy of electrons and ions
- Ionization temperature, kT_z:
 - To what extent are the ions ionized, how many electrons are they stripped of?
- Collisional ionization equilibrium (CIE):
 - $kT_e = kT_z$
 - Excitations balanced by de-excitations

Kawasaki et al. (2005)

How to get overionized young supernova remnants

- Higher densities => shorter time to reach collisional ionization equilibrium (CIE)
- CIE followed by rapid cooling of electrons
- t_{recombination} > t_{cooling} =>
 overionized plasma

Kawasaki et al. (2005)

How to get overionized young supernova remnants

- Higher densities => shorter time to reach collisional ionization equilibrium (CIE)
- CIE followed by rapid cooling of electrons
- t_{recombination} > t_{cooling} =>
 overionized plasma

+: MM SNR W49B : Shell SNR N IC443 (keV) Cas A **W**28 Kes27 Kepler kT_z W44 G352.7-0.1 Tycho 0.5 Cygnus Loop [Center] Puppis A 0.5 2 1 kT_e (keV)

Kawasaki et al. (2005)

• $kT_e < kT_z$

Cooling mechanisms

Cooling through adiabatic expansion
Cooling through thermal conduction

Cooling mechanisms

Cooling through adiabatic expansion
Cooling through thermal conduction

 $t_{cooling} < t_{recombination}$

Cooling mechanisms

- Cooling through adiabatic expansion
- Cooling through thermal conduction
- t_{cooling} < t_{recombination}
- Examining the overionization features helps us determine, what physical mechanisms are important

Overionization in W49B

- Collision with molecular cloud in left part
 - Thermal conduction
- Free expansion in right part
 - Adiabatic expansion

Lopez et al. (2012)

Overionization in W49B

- Collision with molecular cloud in left part
 - Thermal conduction
- Free expansion in right part
 - Adiabatic expansion

Lopez et al. (2012)

Disposition

- Introduction to supernova remnants (SNRs), x-ray astronomy and project
- How do we get overionized SNRs?
- Methods for analysis of W49B
 - Electron temperature
 - Ionization temperature
- Results from project

Measuring electron

temperature

- Model spectra for 56 and 13 different regions
 - XSPEC modeling of plasma
 - For each region the best fit electron temperature is notified

 $1 \text{ for the second s}^{\text{regeneration}}$

data and folded model

Measuring electron temperature

- Model spectra for 56 and 13 different regions
 - XSPEC modeling of plasma
 - For each region the best fit electron temperature is

notified

Measuring electron temperature

- Model spectra for 56 and 13 different regions
 - XSPEC modeling of plasma
 - For each region the best fit electron temperature is

notified

Temperature gradient

1.8

1.6

1.4

1.2

0.6

0.4

0.2

^{1.2} 1 (**ke**) 0.8

Measuring T_z from line ratios

Figure

Measuring T_z from line ratios

Measuring T_z from line ratios

Results kT_z/kT_e

Results kT_z/kT_e

• Overionization features more prominent in right part of remnant

Results kT_z/kT_e

- Overionization features more prominent in right part of remnant
 - Supports cooling from adiabatic expansion

Results kT_z/kT_e

Sulfur

Calcium

Results kT_z/kT_e

• Overionization features more prominent in the heavier elements

Results kT_z/kT_e

- Overionization features more prominent in the heavier elements
 - Due to different radiative recombination timescales (RRC) for heavier elements

Results kT_z/kT_e

- Overionization features more prominent in the heavier elements
 - Due to different radiative recombination timescales (RRC) for heavier elements
 - Timescales: RRC_{Sulfur} < RRC_{Argon} < RRC_{Calcium}

