

HOW MERGERS AFFECT DARK MATTER HALOS

Martin Sparre, PhD Student, DARK, NBI

- 1. Structure formation
- 2. Merger simulations: Ejection of particles
- 3. Properties of merger remnants

Redshift 18.3

Redshift 5.7

Redshift 1.4

Processes in halo formation

- Accretion of matter
- □ Mergers

N-body simulations of mergers

N-body simulations of mergers

□ Some particles are ejected.

Others are captured in the big halo.

Which particles are ejected?

Why are they ejected?

Unbound Particles in Dark Matter Halos

Behroozi, Loeb and Wechsler 2012, arXiv:1208.0334

Merger remnants

How are the bound particles affected by a merger?

How are the bound particles affected by a merger?

Galaxies in galaxy clusters

Stacked sample of 1743 galaxy clusters from SDSS

Andreas Skielboe et al. 2012, ApJ Letters

Halos in cosmological simulations

The same trends that we have found in idealised merger simulations have been found in cosmological simulations (Wojtak et al. in prep.)

Conclusion

The velocity distribution is affected by the merger history (Sparre & Hansen 2012).

Martin Sparre