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-  Overview of current cosmological experiments 
and results 

-  Detailed examples of data analyses 

-  Paradigms and approaches in present-day 
cosmology including concrete examples 
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-  Deep understanding of astrophysical processes and objects 

-  Careful design of observations 

-  Justify and continuously revised assumptions 

-  Account properly for covariances between parameters, 
instrumental and astrophysical systematic uncertainties and 
biases 

-  Simultaneous fits of all the relevant astrophysical and 
cosmological parameters 

 

Underlying standpoints of data analysis to take home from the lectures:  
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First Lecture:  
 

-  Introduction to cosmological analyses 

-  Expansion history measurements and cosmological results 

-  Detailed data analysis: gas mass fraction experiment 
 
Second Lecture: 

 
-  Cosmological models and modeling 
 
-  Growth history measurements and cosmological results 
 
-  Detailed data analysis: cluster abundance experiment 
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Recent discoveries and current results 
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Nobel Prize in Physics 1978: Arno Penzias & Robert Wilson (CMB discovery in 1965) 
[Pyotr Kapitsa (Low-temperature physics)] 
Nobel Prize in Physics 2006: John Mather & George Smoot (CMB blackbody and 
anisotropy) 

Cosmic Microwave Background (CMB) 
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Nobel Prize in Physics 1978: Arno Penzias & Robert Wilson (CMB discovery in 1965) 
[Pyotr Kapitsa (Low-temperature physics)] 
Nobel Prize in Physics 2006: John Mather & George Smoot (CMB blackbody and 
anisotropy) 

Cosmic Microwave Background (CMB) 

From NASA’s COBE satellite  
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Cosmic Microwave Background (CMB) 
Measurements from current NASA’s WMAP satellite (five-years)  

Hinshaw et al 2009 
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Cosmic Microwave Background (CMB) 
Final WMAP (nine-years) measurements  

Bennett et al 2012 



January 5, 2013 Nordic Winter School, Gausdal 

Cosmic Microwave Background (CMB) 
Final WMAP (nine-years) measurements  

Red symbols (binned 
data) and line (best fit): 
Using the previous 
WMAP MASTER-based 
power spectrum 
 
Black symbols (binned 
data) and line (best fit): 
Using the new WMAP 
C-1-weighted power 
spectrum 
 
Up to 5% difference in 
the vicinity of l~50. This 
affects mainly ns. 
 
Overall, WMAP9 wrt 
WMAP7 improve the 
parameters an average 
of ~10%, with almost 
20% for Ωch2 and ΩΛ, 
with about 10% from the 
new power spectrum. 

Hinshaw et al 2012 
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Next: results from ESA’s Planck satellite are coming soon this year…  

Cosmic Microwave Background (CMB) 
Final WMAP (nine-years) measurements  

Black: WMAP9 
(Hinshaw et al 2012) 
 
Blue: SPT  
(Keisler et al 2011) 
 
Orange: ACT  
(Das et al 2011) 

Hinshaw et al 2012 
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Figure from the dark energy review of 
Frieman, Turner & Huterer, 2008, 
ARA&A., 46, 385 

   
Nobel Prize Award in Physics 2011: 
Saul Perlmutter (SCP) 
Brian Schmidt & Adam Riess (HZT) 

-High-Z SN Search Team (HZT):  
Riess et al 1998                                                                                      
-Supernova Cosmology Project (SCP): 
Perlmutter et al et al. 1999 

Discovery of cosmic acceleration 
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Sloan Digital Sky Survey  
(from the SDSS website) 
 
Slice of a 3D map of galaxies 
 
Galaxies are colored according 
to the ages of their stars: the 
redder, the more strongly cluster 
since are made of older starts. 
 
Outer circle: about two billion 
light years old 
 
>930000 galaxies 

Large scale distribution of galaxies 
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Cluster cosmology 
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X-ray Optical Millimeter (SZ) 
-  Images of galaxy cluster Abell 1835 in different wavelength 
-  Cosmology with galaxy clusters using X-ray observations: 

-  Gas mass fraction 
-  Abundance of clusters and their observable-mass relations  

Figure from Allen, Evrard & Mantz 11 (credits X-ray/Mantz; Optical/von der Linden et al; SZ/Marrone)  

Cluster cosmology review: Allen, Evrard & Mantz, 2011, ARA&A, 49, 409  
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X-ray galaxy cluster 

  

Galaxy cluster Abell 2029: 
Thousands of galaxies optical (right panel)  

Hot (multimillion Kelvin degrees) gas (left panel).  
Dark matter (only gravitational interaction) >1015 solar masses. 

In 1933 Fritz Zwicky proposed “missing matter” (dark matter) in clusters of galaxies 
 (Note: Central enormous elliptically shaped galaxy) 
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Basic cosmology 

Peebles; Luchin & Mataresse; Peacock; 
Dodelson; Weinberg ; Mukhanov; etc. 
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4 Frieman, Turner & Huterer

This review is organized into three parts. The first part is devoted to Context:
in §2 we briefly review the Friedmann-Robertson-Walker (FRW) cosmology, the
framework for understanding how observational probes of dark energy work. §3
provides the historical context, from Einstein’s introduction of the cosmological
constant to the supernova discovery. Part Two covers Current Status: in §4,
we review the web of observational evidence that firmly establishes accelerated
expansion. §5 summarizes current theoretical approaches to accelerated expan-
sion and dark energy, including discussion of the cosmological constant problem,
models of dark energy, and modified gravity, while §6 focuses on different phe-
nomenological descriptions of dark energy and their relative merits. Part Three
addresses The Future: §7 discusses the observational techniques that will be used
to probe dark energy, primarily supernovae, weak lensing, large-scale structure,
and clusters. In §8, we discuss specific projects aimed at constraining dark energy
planned for the next fifteen years which have the potential to provide insights
into the origin of cosmic acceleration. The connection between the future of the
Universe and dark energy is the topic of §9. We summarize in §10, framing the
two big questions about cosmic acceleration where progress should be made in
the next fifteen years – Is dark energy something other than vacuum energy?
Does General Relativity self-consistently describe cosmic acceleration? – and
discussing what we believe are the most important open issues.

Our goal is to broadly review cosmic acceleration for the astronomy commu-
nity. A number of useful reviews target different aspects of the subject, includ-
ing: theory (Copeland, Sami & Tsujikawa 2006; Padmanabhan 2003); cosmology
(Peebles & Ratra 2003); the physics of cosmic acceleration (Uzan 2007); probes
of dark energy (Huterer & Turner 2001); dark energy reconstruction (Sahni &
Starobinsky 2006); dynamics of dark energy models (Linder 2007); the cosmolog-
ical constant (Carroll 2001; Carroll, Press & Turner 1992), and the cosmological
constant problem (Weinberg 1989).

2 BASIC COSMOLOGY

In this section, we provide a brief review of the elements of the FRW cosmolog-
ical model. This model provides the context for interpreting the observational
evidence for cosmic acceleration as well as the framework for understanding how
cosmological probes in the future will help uncover the cause of acceleration by
determining the history of the cosmic expansion with greater precision. For fur-
ther details on basic cosmology, see, e.g., the textbooks of Dodelson (2003), Kolb
& Turner (1990), Peacock (1999), and Peebles (1993). Note that we follow the
standard practice of using units in which the speed of light c = 1.

2.1 Friedmann-Robertson-Walker cosmology

From the large-scale distribution of galaxies and the near-uniformity of the CMB
temperature, we have good evidence that the Universe is nearly homogeneous
and isotropic. Under this assumption, the spacetime metric can be written in the
FRW form,

ds2 = dt2 − a2(t)
[

dr2/(1 − kr2) + r2dθ2 + r2 sin2 θdφ2
]

, (1)

where r, θ,φ are comoving spatial coordinates, t is time, and the expansion is
described by the cosmic scale factor, a(t) (by convention, a = 1 today). The

Friedmann-Lemaitre-Robertson-Walker (FLRW) metric: for an isotropic and 
homogenous space-time (current data indicate that at large scale these assumptions 
are nearly valid)  

Space-time metric of the Universe 

Closed universe: k>0 

Open universe: k<0 

Flat universe: k=0 

Expansion history a(t) 
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Gravity and energy density 

Gµ! +!gµ! =8" T µ!

c =G =1

Einstein’s equations 

Interaction between gravity and energy-matter 

Useful reference for perturbation theory: Ma & Bertschinger 1995, ApJ, 455, 7 

Gµ! = Rµ! !
1
2
Rgµ!

Rµν Ricci tensor  
R Ricci scalar 
Gµν metric tensor 

John Wheeler: Matter tells space 
how to curve and space tells 
matter how to move 
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Cosmic energy content and expansion 

Friedmann equations: key 
equations in cosmology; 
Einstein field equations for the 
FRWL metric 

Example of stress-energy tensor: 

T µ! =

" 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

!

"

#
#
#
#
#

$
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Dark energy review: Frieman, Turner & Huterer 2008, ARA&A., 46, 385 

Dark Energy 5

quantity k is the curvature of 3-dimensional space: k = 0 corresponds to a
spatially flat, Euclidean Universe, k > 0 to positive curvature (3-sphere), and
k < 0 to negative curvature (saddle).

The wavelengths λ of photons moving through the Universe scale with a(t),
and the redshift of light emitted from a distant source at time tem, 1 + z =
λobs/λem = 1/a(tem), directly reveals the relative size of the Universe at that
time. This means that time intervals are related to redshift intervals by dt =
−dz/H(z)(1 + z), where H ≡ ȧ/a is the Hubble parameter, and an overdot
denotes a time derivative. The present value of the Hubble parameter is conven-
tionally expressed as H0 = 100 h km/sec/Mpc, where h ≈ 0.7 is the dimensionless
Hubble parameter. Here and below, a subscript “0” on a parameter denotes its
value at the present epoch.

The key equations of cosmology are the Friedmann equations, the field equa-
tions of GR applied to the FRW metric,

H2 =

(

ȧ

a

)2

=
8πGρ

3
−

k

a2
+

Λ

3
(2)

ä

a
= −

4πG

3
(ρ + 3p) +

Λ

3
(3)

where ρ is the total energy density of the Universe (sum of matter, radiation,
dark energy), and p is the total pressure (sum of pressures of each component).
For historical reasons we display the cosmological constant Λ here; hereafter, we
shall always represent it as vacuum energy and subsume it into the density and
pressure terms; the correspondence is: Λ = 8πGρVAC = −8πGpVAC.

For each component, the conservation of energy is expressed by d(a3ρi) =
−pida3, the expanding Universe analogue of the first law of thermodynamics,
dE = −pdV . Thus, the evolution of energy density is controlled by the ratio of
the pressure to the energy density, the equation-of-state parameter, wi ≡ pi/ρi. 1

For the general case, this ratio varies with time, and the evolution of the energy
density in a given component is given by

ρi ∝ exp

[

3

∫ z

0
[1 + wi(z

′)]d ln(1 + z′)

]

. (4)

In the case of constant wi,

wi ≡
pi

ρi
= constant , ρi ∝ (1 + z)3(1+wi) . (5)

For non-relativistic matter, which includes both dark matter and baryons, wM = 0
to very good approximation, and ρM ∝ (1 + z)3; for radiation, i.e., relativistic
particles, wR = 1/3, and ρR ∝ (1 + z)4. For vacuum energy, as noted above
pVAC = −ρVAC = −Λ/8πG = constant, i.e., wVAC = −1. For other models of

1A perfect fluid is fully characterized by its isotropic pressure p and energy density ρ, where
p is a function of density and other state variables (e.g., temperature). The equation-of-state
parameter w = p/ρ determines the evolution of the energy density ρ; e.g., ρ ∝ V 1+w for
constant w, where V is the volume occupied by the fluid. Vacuum energy or a homogeneous
scalar field are spatially uniform and they too can be fully characterized by w. The evolution
of an inhomogeneous, imperfect fluid is in general complicated and not fully described by w.
Nonetheless, in the FRW cosmology, spatial homogeneity and isotropy require the stress-energy
to take the perfect fluid form; thus, w determines the evolution of the energy density.

Fluid in a thermodynamic equilibrium 

Dark Energy 5

quantity k is the curvature of 3-dimensional space: k = 0 corresponds to a
spatially flat, Euclidean Universe, k > 0 to positive curvature (3-sphere), and
k < 0 to negative curvature (saddle).

The wavelengths λ of photons moving through the Universe scale with a(t),
and the redshift of light emitted from a distant source at time tem, 1 + z =
λobs/λem = 1/a(tem), directly reveals the relative size of the Universe at that
time. This means that time intervals are related to redshift intervals by dt =
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1A perfect fluid is fully characterized by its isotropic pressure p and energy density ρ, where
p is a function of density and other state variables (e.g., temperature). The equation-of-state
parameter w = p/ρ determines the evolution of the energy density ρ; e.g., ρ ∝ V 1+w for
constant w, where V is the volume occupied by the fluid. Vacuum energy or a homogeneous
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to take the perfect fluid form; thus, w determines the evolution of the energy density.

Energy density of the vacuum 
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H 2 =
8!G
3

" !
k
a2

Friedmann equation 
ρ sum of the energy densities of matter, 
dark energy, radiation 

i) flat ΛCDM          w=-1, Ωk=0  
ii) flat wCDM          w constant, Ωk=0 
iii) non-flat ΛCDM  w=-1, Ωk constant  

w = pde
!de20
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MN
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700 D. Rapetti et al.

GR has been thoroughly tested from laboratory to Solar system
scales. However, GR has only just begun to be tested on cosmo-
logical scales. Several authors have recently investigated a sim-
ple parametrization of the growth rate, !m(z)γ (first introduced by
Peebles 1980), to test for time-dependent modifications to GR (see
e.g. Linder 2005; Sapone & Amendola 2007; Polarski & Gannouji
2008; Acquaviva et al. 2008; Ballesteros & Riotto 2008; Gannouji
& Polarski 2008; Mortonson, Hu & Huterer 2009; Thomas,
Abdalla & Weller 2009). For a growth index, γ , of approximately
0.55, this parametrization accurately models the growth rate of GR.
Some authors (Di Porto & Amendola 2008; Gong 2008; Nesseris
& Perivolaropoulos 2008; Wei 2008) have recently estimated con-
straints on γ by combining results from measurements of redshift
space distortions and evolution in the galaxy power spectrum, as
well as measurements of the normalization of the matter power spec-
trum, σ 8(z), from Lyman α forest data. Using current cosmic shear
and galaxy clustering data at low redshift, Dore et al. (2007) placed
constraints on scale-dependent modifications to GR. These authors
constrained two phenomenological, although physically motivated,
modifications of the Poisson equation on megaparsec scales (from
0.04 to 10 Mpc).

In this paper, we use the XLF experiment developed by M08, and
data from the ROSAT brightest cluster sample (BCS; Ebeling et al.
1998), the ROSAT–ESO (European Southern Observatory) flux-
limited X-ray cluster sample (REFLEX; Böhringer et al. 2004), the
MAssive Cluster Survey (MACS; Ebeling, Edge & Henry 2001)
and the 400 square degree ROSAT Position Sensitive Proportional
Counter cluster survey (400sd; Burenin et al. 2007), to constrain de-
partures from GR on scales of tens of megaparsecs over the redshift
range z < 0.9. We use CMB (Komatsu et al. 2009), SNIa (Kowalski
et al. 2008) and cluster f gas data (Allen et al. 2008) to simultaneously
constrain the background evolution of the Universe. We examine
three background models: flat % cold dark matter (%CDM), flat
wCDM and non-flat %CDM. We employ a Markov Chain Monte
Carlo (MCMC) analysis, accounting for systematic uncertainties
in the experiments. Our results represent the first constraints on γ

from the observed growth of cosmic structure in galaxy clusters.

2 PA R A M E T R I Z I N G TH E G ROW T H
O F C O S M I C S T RU C T U R E

In GR, the evolution of the linear matter density contrast δ ≡
δρm/ρm, where ρm is the mean comoving matter density and δρm

a matter density fluctuation, can be calculated in the synchronous
gauge by solving the scale-independent equation

δ̈ + 2
ȧ

a
δ̇ = 4Gπρmδ , (1)

where ‘dot’ represents a derivative with respect to time and a is the
cosmic scalefactor.

Following Lahav et al. (1991) and Wang & Steinhardt (1998),
several authors (see e.g. Huterer & Linder 2007; Linder & Cahn
2007) have parametrized the evolution of the growth rate as
f (a) ≡ d ln δ/d ln a = !m(a)γ . Recasting this expression, we have
the differential equation

dδ

da
= !m(a)γ

a
δ , (2)

where γ is the growth index and !m(a) = !m a−3/E(a)2. Here,
E(a) = H (a)/H 0 is the evolution parameter, H(a) the Hubble
parameter and H0 its present-day value. It has been shown (see
e.g. Linder & Cahn 2007) that for γ ∼ 0.55 equation (2) accurately

reproduces the evolution of δ obtained from equation (1). Using
the Einstein–Boltzmann code CAMB1 (Lewis, Challinor & Lasenby
2000), we find that the linear growth δ(a) obtained from equation (2)
with γ ∼ 0.55 is accurate to better than 0.1 per cent for the relevant
scales, redshifts and values of cosmological parameters. Therefore,
we adopt γ ∼ 0.55 as a reference, from which to determine depar-
tures from GR.

Equation (2) provides a phenomenological model for the growth
of density perturbations that allows us to test departures from GR
without adopting a particular, fully covariant modified gravity the-
ory. In the absence of such an alternative gravity theory, we per-
form consistency tests using convenient parametrizations of the
background expansion, within GR. We investigate three expansion
models that are well tested with current data: flat %CDM, a constant
dark energy equation of state wCDM2, and non-flat %CDM. We can
write a general evolution parameter for these models as3

E(a) =
[
!m a−3 + !de a−3(1+w) + !k a−2

]1/2
, (3)

where w = −1 for the %CDM models, !de is the cosmological
constant/dark energy density and !k is the curvature energy density,
which is 0 for flat models.

The growth rate !m(a)γ conveniently tends to 1 in the matter-
dominated era (high z), thereby matching GR for any value of γ .
Thus, we naturally match the initial value of δ in equation (2) at
high z with that of GR (see Section 3).

3 A NA LY S I S O F TH E X - R AY L U M I N O S I T Y
F U N C T I O N

We have incorporated the growth index parametrization into the
code developed by M08. Briefly, in the XLF analysis, we compare
X-ray flux–redshift data from the cluster samples to theoretical
predictions. The relation between cluster mass and observed X-ray
luminosity is calibrated using deeper pointed X-ray observations
(Reiprich & Böhringer 2002).

3.1 Linear theory

The variance of the linearly evolved density field, smoothed by a
spherical top-hat window of comoving radius R, enclosing a mass
M = 4πρmR3/3, is

σ 2(M, z) = 1
2π2

∫ ∞

0
k2P (k, z)|WM(k)|2 dk , (4)

where WM(k) is the Fourier transform of the window function and
P (k, z) ∝ knsT 2(k, zt) D(z)2 is the linear matter power spectrum
as a function of the wavenumber, k, and redshift, z. Here, ns is
the scalar spectral index of the primordial fluctuations, T (k, zt) is
the matter transfer function at redshift zt and D(z) ≡ δ(z)/δ(zt) =
σ (M , z)/σ (M , zt) is the growth factor of linear perturbations, nor-
malized to unity at redshift zt. We choose zt = 30, well within the
matter-dominated era (Bertschinger & Zukin 2008). Using CAMB,
we calculate T (k, zt) assuming that GR is valid at early times

1 http://www.camb.info/
2 This model is only used as a expansion model, and does not assume the
presence of dark energy. Therefore, we do not include dark energy density
perturbations. The evolution of the density perturbations, due only to matter,
are modelled using γ .
3 Although massless neutrinos and photons are included in the analysis, they
are negligible at late times.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 400, 699–704

Dark energy 
equation of state 

Evolution parameter 
E(a)=H(a)/H0 

a(t) = 1
1+ z

a(t) scale factor 
z redshift 

Cosmic energy content and expansion 
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The fgas(z) experiment  

e.g. Allen et al 02, 04, 08; Ettori et al 03, 09; 
Rapetti et al. 05, 07, 08; LaRoque et al 06  
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Chandra X-ray Observatory 
Cluster cosmology revolutionized 
 
First opportunity to carry out:  
->Detailed spatially-resolved and  
->X-ray spectroscopy of galaxy 
clusters. 
 
 
Technical details for ACIS instrument 
(X-ray CCDs):   
 
•  Field of view 16x16 arcmin2  
•  Good spectral resolution ~100eV 
over 0.5-8 keV range. 
•  Exquisite spatial resolution (0.5 
arcsec FWHM).  
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Measuring comic matter content using the gas mass 
fraction of X-ray luminous galaxy clusters 

Consider a spherical region of observed angular radius θ within which the gas mass 
fraction is measured 

R =! dA R physical size 

Lx = 4! dL
2Fx

Lx X-ray Luminosity of the region 
Fx detected flux 

dL =dA (1+ z)
2

Since the X-ray emission is mainly due to collisional processes (bremsstrahlung and 
emission line) and is optically thin 

Lx !n
2V

dL luminosity distance 
dA angular diameter distance 

n mean matter density of colliding gas particles 
V volume of the emitting region: V = 4! ("dA )

3 / 3
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Measuring comic matter content using the gas mass 
fraction of X-ray luminous galaxy clusters 

Mgas gas mass               ∝ dA(z)2.5  (X-ray Luminosity) 
Mtot  total cluster mass   ∝ dA(z)    (primarily X-ray Temperature)    

Mtot ! dA

n! dL
dA
3/2 Mgas !nV ! dLdA

3/2 Mgas observed gas mass within the 
measurement radius 

Mtot total mass determined by X-ray data assuming hydrostatic 
equilibrium (see below) 

fgas =
Mgas

Mtot

! dLdA
1/2 fgas gas mass fraction 
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Measuring comic matter content using the gas mass 
fraction of X-ray luminous galaxy clusters 

fgas =
Mgas

Mtot

! dA (z)
1.5

Lin & Mohr 04, Fukugita et al 98, White et al 93  

s = fstars fgas = (0.16± 0.05)h70
0.5

fbaryon = fstars + fgas = fgas (1+ s)

Baryonic mass fraction in stars 

Baryon mass fraction 
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! 

"m =
b"b

fgas(1+ s)
+HST+BBNS priors when clusters alone or +CMB data 

Measuring comic matter content using the gas mass 
fraction of X-ray luminous galaxy clusters 

The matter content of rich clusters of galaxies is expected to provide an 
almost fair sample of the matter content of the Universe (White & Frenk 91, 
White et al. 93, Eke et al. 98).  

! 

fbaryon = b"b

"m

b, the bias factor accounts for the relatively small amount of gas expelled 
when clusters form. 
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Measuring cosmic acceleration using the gas mass 
fraction of X-ray luminous galaxy clusters 

fgas
ref (z) = b(z)!K

1+ s(z)
!b

!m

"

#
$

%

&
'"(# )

dA
ref (z)

dA
mod (z;# )

(

)
*

+

,
-

3/2

Apparent evolution of the gas mass fraction 

!(" ) = H mod (z;" )dA
mod (z;" )

Href (z)dA
ref (z)

!

"
#

$

%
&

#

! = 0.214± 0.022 Measured from the data profiles 

Small angular correction 
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Measuring cosmic acceleration using the gas mass 
fraction of X-ray luminous galaxy clusters 

!(" ) = "2500
ref

"2500
mod

!

"
#

$

%
&

#

Small angular correction that accounts for the angle subtended at the measurement 
radius r2500 as the underlying cosmology varies 

For each cluster the measured fgas value at r2500 corresponds to a fixed angle         
for the reference cosmology that is slightly different from that         for the test 
cosmology. 

!2500
ref

!2500
mod

M2500 ! 4!r2500
3 "crit / 3

ρcrit critical density !crit = 3H (z)
2 / 8"G

Mass at the measurement radius r2500, for which 
the density is 2500 the critical density 
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Measuring cosmic acceleration using the gas mass 
fraction of X-ray luminous galaxy clusters 

M (r) = ! rkT (r)
Gµmp

d lnn
d ln r

+
d lnT
d ln r

"

#$
%

&'

Assuming hydrostatic equilibrium (HSE) in the intracluster medium (ICM) and 
spherical symmetry we can calculate the mass within a given radius using the 
following expression (Sarasin 1988)  

n(r) is the gas density 
T(r) ICM temperature 
k Boltzmann constant 
µmp mean molecular weight 

Given that the temperature, and temperature and density gradients, in the region 
of θ2500 are likely to be constant, we have 

M2500 ! r2500

Measuring cluster masses is one of the cornerstones of cluster cosmology. Under 
those assumptions we can measure the total mass from density n(r) and 
temperature T(r) profiles obtained from X-ray data. Note also that M(r) depends 
more strongly on T(r) than n(r). 
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Measuring cosmic acceleration using the gas mass 
fraction of X-ray luminous galaxy clusters 

!(" ) ! !(" )
mod

!(" )ref
=
"2500
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#

(
H mod (z;" )dA
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Href (z)dA

ref (z)
)

*
+

,
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#

Angle spanned by r2500 at redshift z  

r2500 !H (z)
"1 !2500 = r2500 / dA ![H (z)dA ]

"1

M2500 ! 4!r2500
3 "crit / 3

M2500 ! r2500
r2500 !H (z)

"1

!crit = 3H (z)
2 / 8"G



January 5, 2013 Nordic Winter School, Gausdal 

X-ray galaxy cluster cosmology: 
How well can we measure cluster mass?  
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Hydro dynamical simulations 
of X-ray galaxy clusters 

Very good news for X-ray galaxy cluster cosmology from the recent 
simulations: systematics are relatively small and can be quantified. 

Nagai, Kravtsov, Vikhlinin 06 

relaxed unrelaxed 
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How accurately can we measure the mass? 
Nagai, Kravtsov, Vikhlinin 06 

    

Largest, relaxed clusters (filled points) 
inside red circles. 

For the largest, hottest (kT>5keV), relaxed 
clusters (selection based on X-ray 
morphology) we currently expect to measure: 
 
a) X-ray gas mass to ~1% accuracy. 

        

b) Total mass to few % accuracy (both bias 
and scatter). 
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X-ray galaxy cluster data 
It is crucial to use only dynamically relaxed clusters:  

 
       Regular X-ray morphology, low ellipticities, minimal centroid variation, sharp central 

brightness peaks centered on their dominant elliptical galaxies. 
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Measuring cosmic acceleration using the gas mass 
fraction of X-ray luminous galaxy clusters 

F(dA
mod ) ! dA

mod (z;! )3/2

"(! )mod
=
b(z)#K
1+ s(z)

"b

"m

#

$
%

&

'
(
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+
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,
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Angular diameter distance measurement for the fgas experiment 

µ th (z) = 5log10 dL (z;! )+µ0 dL (z;! ) =
c(1+ z)
H0

dz
E(z;! )0

z

!
Apparent magnitude 

Compare to supernova measurements used as standard candles: 

Luminosity distance 
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Gas mass: simulations 
Low scatter total mass proxy 

ΛCDM cosmology 
Simulations indicate low cluster-to-
cluster scatter 
 
Gas-mass low-scatter total-mass 
proxy through fgas  

Simulations indicate that the 
baryon mass fraction in clusters is 
slightly lower than the mean value 
for the Universe as a whole. Some 
gas is lifted beyond the virial radius 
by shocks (e.g. Evrard et al 90, 
Thomas & Couchman 92, Navarro 
& White 93; NFW 95 etc, Kay et al 
04, Ettori et al 06, Crain et al 06, 
Nagai et al 07). 
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Gas mass: data 
Low scatter total mass proxy 

ΛCDM (Ωm=0.3, ΩΛ=0.7) 

Undetected systematic 
scatter when weighted mean 
scatter is ~5% in distance 
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Fitting a constant value at r2500 : 

fgas(r2500)=(0.1104±0.0016)h70
-1.5 

 

Assuming hydrostatical equilibrium and spherical symmetry (only relaxed clusters). 

Fitting a power law (0.7-1.2)r2500 : 

fgas(r2500)=(0.1105±0.0005)(r/r2500)0.214±0.022 

 

Chandra fgas(r) data:  
42 relaxed clusters with redshifts 0.06<z<1.07  
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Gas mass: simulations 
Low scatter total mass proxy 

Minimal evolution at r2500 
 
Gas-mass low-scatter total-
mass proxy through fgas  

Tens of simulated clusters, 
0<z<0.8, kT>5keV 
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Gas mass fraction: data 
Low scatter total mass proxy 

ΛCDM (Ωm=0.3, ΩΛ=0.7) 
 
42 dynamically relax clusters 
 
Hot kT>5keV 
 
0.06<z<1.07 
 
Scatter <~10% in fgas 

Undetected systematic scatter 
when weighted mean scatter 
is ~5% in distance 
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Gas mass fraction: data 
Low scatter total mass proxy 

SCDM (Ωm=1.0, ΩΛ=0.0) 
 
42 dynamically relax clusters 
 
Hot kT>5keV 
 
0.06<z<1.07 
 
Scatter <~10% in fgas 
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Allowances for systematic uncertainties 

1) Gas depletion (simulation 
physics) 

 
     b(z)=b0(1+αbz)     
 
     normalization:  
     20% uniform prior 
     0.65 < b0 < 1.0   
      
     evolution:  
     10% at z=1 uniform prior 
     -0.1 < αb < 0.1   
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Allowances for systematic uncertainties 

2) Instrument calibration and modelling (gas clumping, etc.) 
 
    1.0±0.1, 10% Gaussian prior on K 
 
3) Baryonic mass in stars 
 
    s(z)=s0(1+αsz)   
 
    normalization s0: 30% Gaussian uncertainty (observational) 
 
    evolution -0.2 < αs < 0.2: 20% at z=1 uniform prior (observational) 
 
4) Non-thermal pressure support in gas: (primarily due to bulk motions)  
 
     γ= Mtrue/MX-ray    
 
    1< γ <1.1 
    10% uniform (Nagai et al 07, Werner et al 09, Sanders et al 09) 
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Chandra fgas(kT) data 
   ΛCDM (Ωm=0.3, ΩΛ=0.7) 

Best fitting power law: 
α=0.005±0.058 (solid lines 2σ 
limits). 

fgas essentially independent of 
temperature for the massive, 
dynamically relaxed clusters in 
the analysis.   
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42 fgas clusters (Allen et al 08) 
including standard BBNS+HST priors 
and full systematic allowances. 
 
192 SNe Ia [Davis et al 07: Riess et al 
07 (Gold sample), Wood-Vasey et al 
07 (ESSENCE), Astier et al 06 (1rst 
year SNLS]. 
 
CMB data from WMAP3, CBI, 
Boomerang, ACBAR (prior 
0.2<h<2.0). 

Constraints on ΛCDM from three 
independent experiments 

Allen et al. 08 

Ωm  = 0.27±0.06  
ΩΛ  = 0.86±0.19 Combined constraints 

Ωm  = 0.275±0.033  
ΩΛ  = 0.735±0.023 
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42 fgas clusters (Allen et al 08) 
including standard BBNS+HST priors 
and full systematic allowances. 
 
192 SNe Ia [Davis et al 07: Riess et al 
07 (Gold sample), Wood-Vasey et al 
07 (ESSENCE), Astier et al 06 (1rst 
year SNLS]. 
 
CMB data from WMAP3, CBI, 
Boomerang, ACBAR (prior 
0.2<h<2.0). 

Constraints on wCDM from three 
independent experiments 

Allen et al. 08 

Combined constraints 
Ωm = 0.253 ± 0.021 
w0 = -0.98 ± 0.07 


