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Cluster abundance and scaling relations  

e.g. Mantz et al 08, 10a, 10b; Vikhlinin et al 09; 
Rapetti et al. 09, 10; Schmidt et al 09  
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Basic initial idea: 
Light yellow:   Data 
Dark yellow:   Model 
Blue:              Analysis 
Orange:         Product 

X-ray Cluster  
Surveys; data: fluxes, z 

   X-ray Luminosity  
as proxy  

for Mass; data L, M 

Cosmological  
constraints 

MCMC  
analysis 

Theory/Simulations  
(Cosmology/Mass function) 
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Cole et al 2005 

-  Simulated cosmologies to model 
the non-linear growth of structure. 

-  Even looking so apparently different 
can be conveniently related with the 
linear growth calculations through a 
fitting formula. (See e.g. Jenkins et 
al 2001, Tinker et al 2008, etc.) 
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Cluster abundance as a function of 
mass and redshift 

N-body simulations 

Non-linear structure formation 
 
Big clusters steep mass function; 
sensitive to the cosmological 
model; quintessence, self-
interacting, early, clustering dark 
energy as well as modified gravity 
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Cluster abundance as a function of 
mass and redshift 

Linear theory 

Sensitive to the cosmological 
model: quintessence, self-
interacting, early, clustering dark 
energy as well as modified gravity 
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Cluster surveys 
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Cluster survey data 
Low redshift (z<0.3)‏ 
Ø  BCS (Ebeling et al 98, 00)‏ 
     F > 4.4 x 10-12 erg s-1 cm-2 

     ~33% sky coverage 
Ø  REFLEX (Böhringer et al 04) 
     F > 3.0 x 10-12 erg s-1 cm-2 

     ~33% sky coverage 
 
Intermediate redshifts (0.3<z<0.5)‏ 
Ø  Bright MACS (Ebeling et al 01, 10)‏ 
     F > 2.0 x 10-12 erg s-1 cm-2 

        ~55% sky coverage 

L > 2.55x1044 h70
-2 erg s-1 (dashed line).  

Cuts leave 78+126+34=238 massive clusters 

 
All based on RASS detections. Continuous and all 100% redshift complete. 
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Scaling relations data: X-ray follow-up for 94 clusters   

Best fit for all the data (survey+follow-up+other data). Both, power law, self-similar, constant log-normal scatter. 

Mantz et al 10b 

* Crucial: self-consistent and simultaneous analysis of survey+follow-up data, accounting for 
selection biases, degeneracies, covariances, and systematic uncertainties.   
* Data does not require additional evolution beyond self-similar (see tests in Mantz et al 10b).  
* Important cluster astrophysics conclusions (see Mantz et al 10b). 
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Gas mass fraction: calibration data 
 Total mass proxy 

ΛCDM (Ωm=0.3, ΩΛ=0.7) 
 
Only the 6 lowest-z clusters 
 
Hot kT>5keV 
 
z<0.15 
 
Scatter <~10% in fgas 
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-  To properly account for selection biases [in a previous analysis of the mass 
function, Mantz et al 08 (M08), using an external data set to constrain the 
luminosity-mass relation, we restrict the data set of Reiprich & Bohringer 02 to 
low redshift and high fluxes to minimize the effects of selection bias]. 

-  M08, Vikhlinin et al 09a,b binned their detected clusters in redshift and mass 
with infinitesimally small bins taking the previous approach to its logical limit, 
but there was still no self-consistent fit for both scaling relations and 
cosmology. 

-  Generalization of M08 to allow a simultaneous and self-consistent fit using 
follow-up observations of flux-selected clusters over the whole redshift range 
of the data accounting for both Malmquist and Eddington biases. 

-  Likelihood can be derived from first principles beginning from a Bayesian 
regression model. 

-  General problem: counting sources as a function of their properties 

New likelihood approach: simultaneous and self-consistent 
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New likelihood approach: simultaneous and self-consistent 

-  A population function: <dN/dx> theoretical prediction of the distribution (i.e. 
number) of sources as a function of their properties. 

-  Population variables x (properties). 

-  Response variables y obeying a stochastic scaling relation as a function of x. 

-  Stochastic scaling relation P(y|x): probability distribution of y given x. 

-  Observed values    and   (note that not all x and y need to be measured, 
except for those determining if a source belongs to the sample, i.e. if it is 
detected). 

-  Sampling distributions for the observations as a function of the population and 
response variables                     . 

-  A selection function                         , where I represents the inclusion in the 
sample, i.e. detection. 

x̂ ŷ

P(x̂, ŷ | x, y)

P(I | x, y, x̂, ŷ)
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New likelihood approach: simultaneous and self-consistent 

-  For our large sky coverage surveys of massive clusters we assume that the 
clustering of the sources is not important compared with the purely Poisson 
probability distribution of their occurrence (Hu & Kravtsov 03; Holder 06). 

-  Binning derivation: We divide the observed space          into infinitesimal bins 
which contain at a maximum one detected source and the population function 
and scaling relations are assumed to be constant in each bin. 

(x̂, ŷ)

Expected number of detected sources 

Likelihood (product of Poisson likelihoods) 

Cluster growth: methods and cosmology 1765

(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 406, 1759–1772

Cluster growth: methods and cosmology 1765

(ii) Population variables, x, on which the population function
depends.

(iii) Response variables, y, which obey a stochastic scaling rela-
tion as a function of x.

(iv) The stochastic scaling relation, P(y|x).
(v) Observed values, x̂ and ŷ. Note that all of the x and y need

not actually be measured, the exception being those which deter-
mine whether a source is included in the sample (detected; see also
Section 4.1.3).

(vi) Sampling distributions for the observations as a function of
population and response variables, P (x̂, ŷ|x, y).

(vii) A selection function, P (I |x, y, x̂, ŷ). I represents the in-
clusion of a source in the sample. In full generality, the selection
function could be a function of true variables as well as observa-
tions; for example, if it is calibrated using reliable simulations.

Throughout the following, we make the approximation that the
clustering of sources is unimportant compared with the pure Poisson
nature of their occurrence, which is justified for current all-sky
surveys of very massive clusters (i.e. where the survey dimensions
are large compared with the correlation length), as in this study
(Hu & Kravtsov 2003; Holder 2006). Provided this assumption
remains valid, the approach described here can be applied equally
well to cluster studies based on optical or Sunyaev–Zel’dovich (SZ)
surveys. We note that this is only a simplifying assumption; in
principle, the approach detailed below can be straightforwardly
generalized to include the spatial correlation of sources.

4.1.1 Binning derivation

Divide the space (x̂, ŷ) into bins (indexed by j) of very small vol-
ume !x̂j!ŷj , such that no bin contains more than one detected
source, and both the population function and scaling relation are
approximately constant over the bin volume. The expected number
of detected sources in bin j, located at (x̂j , ŷj ), is

〈Ndet,j 〉 = (!x̂j!ŷj )
∫

dx

∫
dy

〈
dN

dx

〉
P (y|x)

× P (x̂j , ŷj |x, y)P (I |x, y, x̂j , ŷj ). (19)

The likelihood,L, is a product of independent Poisson likelihoods
for each bin,

L({Nj }) =
∏

j

〈Ndet,j 〉Nj e−〈Ndet ,j 〉

Nj !

= e−〈Ndet〉
∏

j :Nj =1

〈Ndet,j 〉, (20)

where Nj is the actual number of clusters detected in bin j, 〈Ndet〉
is the predicted total number of detected sources (summed over all
bins) and the second equality follows from the fact that Nj ∈ {0, 1}
by construction.

Since the binning scheme must be invariant under changes to the
values of the model parameters, the derivative of the log-likelihood
is independent of the bin volumes, !x̂j!ŷj . Defining 〈ñdet,j 〉 =
〈Ndet,j 〉/(!x̂j!ŷj ), we can write

L({Nj }) ∝ e−〈Ndet〉
∏

j :Nj =1

〈ñdet,j 〉 (21)

and ignore the constant of proportionality for the purposes of max-
imizing L.

4.1.2 Regression derivation

In the regression of truncated data (where some sources are not
detected and the total number of sources is thus unknown), the total

number of detected plus undetected sources, N, becomes a parame-
ter of the model and must be marginalized over (for background, see
Gelman et al. 2004; Kelly 2007). We define 〈N〉, 〈Ndet〉 and 〈Nmis〉
to be respectively the predictions for the total number of sources,
number of detected sources and number of undetected (missed)
sources as follows:

〈N〉 =
∫

dx

〈
dN

dx

〉
,

〈Ndet〉 =
∫

dx

〈
dN

dx

〉 ∫
dy P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (I |x, y, x̂, ŷ),

〈Nmis〉 = 〈N〉 − 〈Ndet〉. (22)

The joint likelihood of the observations and N is

L(x̂, ŷ, N) =
[ 〈N〉N e−〈N〉

N !

] [
N !

Ndet!Nmis!

]

×
Ndet∏

i=1

Pdet(x̂i , ŷi , I )
Nmis∏

j=1

Pmis(Ī ). (23)

The first term is a Poisson likelihood for the model parameter N, the
total number of sources. The second factor is a binomial coefficient
enumerating the number of ways of selecting Ndet detected sources
from N. This term is necessary because, in the Bayesian treatment,
the true source properties (x, y) are random variables; as such,
sources are distinguishable only in terms of their detection (I) or
non-detection (Ī ). The probability that the Ndet detected sources
have measurements (x̂, ŷ) is accounted for by the product over
detected objects. The second product accounts for the likelihood
of not detecting an additional Nmis sources whose properties are
distributed according to the population function and scaling relation.

Noting that the marginal probability for a source to have proper-
ties x is

P (x) =
〈dN/dx〉

〈N〉 , (24)

the functions Pdet and Pmis can be related to quantities defined
previously (cf. equations 19 and 22):

Pdet(x̂i , ŷi , I ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×P (x̂i , ŷi |x, y)P (I |x, y, x̂i , ŷi)

= 〈ñdet,i〉
〈N〉

(25)

and

Pmis(Ī ) =
∫

dx

∫
dy

〈dN/dx〉
〈N〉 P (y|x)

×
∫

dx̂

∫
dŷ P (x̂, ŷ|x, y)P (Ī |x, y, x̂, ŷ)

=
〈Nmis〉
〈N〉 . (26)

Substituting these expressions, the likelihood simplifies to

L(x̂, ŷ, N) =
[ 〈N〉N

〈N〉Ndet 〈N〉Nmis

] [
1

Ndet!

]

×
[ 〈Nmis〉Nmis e−〈Nmis〉

Nmis!

]

× e−〈Ndet〉
Ndet∏

i=1

〈ñdet,i〉. (27)
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Substituting these expressions we have  
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scatter (~40%), which leads to Malmquist 
bias: brighter cluster are easier to find.  
 
* The shape of the mass function leads to 
Eddington bias: much more low-mass 
clusters. 
 
* For illustration purposes: fitting by eye 
(green line) only these data is wrong. 
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For illustration purposes: Exponential 
distribution of simulated data and fictitious 
luminosity-mass relation (red line). 
 
* The luminosity-mass relation has intrinsic 
scatter (~40%), which leads to Malmquist 
bias: brighter cluster are easier to find.  
 
* The shape of the mass function leads to 
Eddington bias: much more low-mass 
clusters 
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X-ray luminosity-mass relation   
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"l(m)# = $0
lm + $1

lmm

Fitted with simple power law model, self-
similar evolution and constant log-normal 

scatter σlm  
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Using the definitions 

Current data do not require (i.e. acceptable 
fit) neither additional evolution beyond self-
similar and constant scatter or asymmetric 
scatter (see details in Mantz et al 10b). 
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X-ray luminosity-mass relation   
For bolometric luminosities, the best fit using 
all the data (survey+follow-up+other 
cosmological data sets): 

! 

"0
lm =1.23± 0.12

"1
lm =1.63± 0.06

# lm = 0.185 ± 0.019 (~ 40%)

norm. 
slope 
scatter 

Slope steeper than the simple virial 
prediction: 

! 

"1
lm =1.33

Consistent with excess heating 
Energy injection heats (e.g. AGN) the gas 
raising the temperature, decreasing the 
density and therefore the luminosity, being 
more important for less massive systems.   
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Temperature-mass relation   

! 

"0
tm = 0.89 ± 0.03

"1
tm = 0.49 ± 0.04

# tm = 0.055 ± 0.008 (~ 15%)

norm. 
slope 
scatter 

Again, simple power law, self-similar, constant 
log-normal scatter. Best fit for all the data: 

Slope shallower than the simple virial 
prediction: 

! 

"1
tm = 0.67

Consistent with excess heating 
Energy injection heats (e.g. AGN) the gas 
raising the temperature, decreasing the 
density and therefore the luminosity, being 
more important for less massive systems.   
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Core-excised r<0.15r500.  
Scatter undetected <5%.  
 

 

X-ray luminosity-mass relation   

! 

"1
lm =1.30 ± 0.05 Consistent with the virial th. 

Core-included: scatter ~40% 

Excess heating limited to the centers / effective mass-limited cluster sample could be possible 

Data consistent with self-similar evolution suggesting 
that excess heating occurred at z>0.5  
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Sampling model:  
follow-up observations 

ng logarithmic slope of the gas 
mass profiles at large radius; fit to 
the entire sample from 0.7-1.3r500 

Masses, luminosities and 
temperatures measured at r500 
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3.3 Scaling relations

To perform the cosmological analysis, we need to relate cluster mass
to the observable that determines cluster detection, in this case X-
ray flux. Given a redshift, z, a cluster’s unabsorbed, soft X-ray flux,
F, is determined by its intrinsic X-ray luminosity, L, temperature,
kT , and metallicity, Z, as

F (z, L, kT , Z) = L

4πd2
L(z)K(z, kT , Z)

, (7)

where dL(z) is the luminosity distance to the cluster, and K(z, kT , Z)
is the required K-correction. For intracluster medium temperatures
kT > 3 keV and luminosities and fluxes in the soft (ROSAT) X-ray
band (0.1–2.4 keV), K has only a weak dependence on temperature
and negligible dependence on metallicity; we hereafter fix Z to the
typical value of 0.3 times the solar value.

As discussed in Paper II, a simple prescription for how L and
kT are related to the total mass, M, is given by the self-similar
model (Kaiser 1986). We define nominal luminosity–mass and
temperature–mass relations at r500 of the form

〈!(m)〉 = β!m
0 + β!m

1 m,

〈t(m)〉 = β tm
0 + β tm

1 m, (8)

where
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)
, (9)

and E(z) is the normalized Hubble parameter, H(z)/H0. The fac-
tors of E(z) appearing explicitly in equation (9) follow from the
definition of cluster radius using a fixed overdensity with respect
to the critical density (Bryan & Norman 1998). To describe the
intrinsic scatter in ! and t given m about the nominal relations, we
adopt a simple, bivariate normal distribution parametrized by the
marginal luminosity–mass and temperature–mass lognormal scat-
ters, σ !m and σ tm, and a coefficient of correlation, ρ!tm.

There are various ways of adding complexity to this scaling
relation model, including departures from self-similar evolution in
the normalization of the nominal relations, evolution in the scatter,
and asymmetry in the scatter. In Paper II, we show that the data
are consistent with the simple model defined above, and do not
require or prefer any such additions, even when the cosmological
parameters are extremely restricted by external data. We therefore
adopt the simple model above in this work.

Motivated by the results of Evrard et al. (2008), we have defined
the scaling relations for quantities within r500, which also corre-
sponds to our measurements of mass, luminosity and temperature
from follow-up observations (Paper II). To convert the mass defini-
tion used by the mass function, % = 300&m(z), to % = 500, we use
the procedure of Hu & Kravtsov (2003), assuming a Navarro, Frenk
& White (1997, hereafter NFW) mass distribution with concentra-
tion parameter c = 4. This conversion is negligibly sensitive to the
assumed concentration parameter, since both r500 and r300&m(z) are
well beyond the NFW scale radius for reasonable values (c > 3;
Zhao et al. 2003, 2009; Gao et al. 2008).

in Section 6.2, uncertainty on the mass function at this level has negligible
impact on our results, in any case.

3.4 Sampling model: follow-up observations

The next component of the model connects quantities predicted from
the cosmology, mass function and scaling relations to quantities
measured from the follow-up X-ray observations. Because some of
our measurements are made with respect to a reference cosmology
(see Paper II), this procedure is not entirely trivial.

In particular, the mass, luminosity and temperature determined
from the follow-up X-ray observations are measured within r500,
itself determined via the implicit equation

M(r500) = Mgas(r500)
fgas(r500)

= 4π

3
(500)ρcr(z)r3

500, (10)

which can be rewritten as

Mgas(r) ∝ ρcr(z)r3fgas(r) ∝ rηg , (11)

where ηg is the logarithmic slope of the gas mass profile at large
radius. Using that ρcr(z) ∝ H2(z), the expression

r500 ∝
[
fgas(r500)H 2(z)

]1/(ηg−3)
(12)

relates the ‘true’ value of r500 predicted by a set of model parameters
to the value of r500 that we would have inferred assuming our
reference cosmology and reference fgas value. The gas mass profiles
measured in Paper II are self-similar, consistent with a constant
value of ηg; for simplicity, we therefore adopt ηg = 1.092 ± 0.006,
determined from a fit to the entire sample from 0.7–1.3r500, and
marginalize over the uncertainty.

To see how the measurements of total cluster mass depend on
model parameters, we first write

M ref (r)
M(r)

=
M ref

gas(r)/f ref
gas (r)

Mgas(r)/fgas(r)
RNFW

= d ref
A (z)2.5fgas

dA(z)2.5f ref
gas

RNFW, (13)

where Mref is the prediction for what mass would be measured for
a cluster of true mass M using our assumed reference parameter
values, and dA(z) is the angular diameter distance to redshift z.
dref

A (z) and f ref
gas are not predictions for measured values, but they

depend directly on the reference cosmology and fgas value. The first
term in this expression accounts for the dependence of the mass
measured within a fixed angular aperture on distance and fgas, given
that the mass is estimated via the gas mass and gas mass fraction,
and where we have used the scaling Mgas ∝ dA(z)2.5. The dependence
on the angular size corresponding to physical radius r is handled by
RNFW, which we evaluate assuming that the shape of the total mass
distribution near r500 is well approximated by the NFW profile; in
this case the scaling factor is straightforward to compute using the
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ln(1 + c500) − c500/(1 + c500)

, (14)

where x = rref
500/r500. To evaluate this factor, we assume a concen-

tration parameter c = 4,6 although we note that RNFW is extremely
insensitive to this assumption provided that c > 3 (i.e. provided r500

is well beyond the scale radius).
Similarly, we can write the scaling of the luminosity as

L500(r) ∝ d2
L(z)

(
r500

dA(z)

)ηL

, (15)

6Note that, by convention, c without a subscript refers to c200, defined as
r200 in units of the NFW scale radius; c = 4 corresponds to c500 ≈ 2.6.
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3.3 Scaling relations

To perform the cosmological analysis, we need to relate cluster mass
to the observable that determines cluster detection, in this case X-
ray flux. Given a redshift, z, a cluster’s unabsorbed, soft X-ray flux,
F, is determined by its intrinsic X-ray luminosity, L, temperature,
kT , and metallicity, Z, as

F (z, L, kT , Z) = L
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where dL(z) is the luminosity distance to the cluster, and K(z, kT , Z)
is the required K-correction. For intracluster medium temperatures
kT > 3 keV and luminosities and fluxes in the soft (ROSAT) X-ray
band (0.1–2.4 keV), K has only a weak dependence on temperature
and negligible dependence on metallicity; we hereafter fix Z to the
typical value of 0.3 times the solar value.

As discussed in Paper II, a simple prescription for how L and
kT are related to the total mass, M, is given by the self-similar
model (Kaiser 1986). We define nominal luminosity–mass and
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and E(z) is the normalized Hubble parameter, H(z)/H0. The fac-
tors of E(z) appearing explicitly in equation (9) follow from the
definition of cluster radius using a fixed overdensity with respect
to the critical density (Bryan & Norman 1998). To describe the
intrinsic scatter in ! and t given m about the nominal relations, we
adopt a simple, bivariate normal distribution parametrized by the
marginal luminosity–mass and temperature–mass lognormal scat-
ters, σ !m and σ tm, and a coefficient of correlation, ρ!tm.

There are various ways of adding complexity to this scaling
relation model, including departures from self-similar evolution in
the normalization of the nominal relations, evolution in the scatter,
and asymmetry in the scatter. In Paper II, we show that the data
are consistent with the simple model defined above, and do not
require or prefer any such additions, even when the cosmological
parameters are extremely restricted by external data. We therefore
adopt the simple model above in this work.

Motivated by the results of Evrard et al. (2008), we have defined
the scaling relations for quantities within r500, which also corre-
sponds to our measurements of mass, luminosity and temperature
from follow-up observations (Paper II). To convert the mass defini-
tion used by the mass function, % = 300&m(z), to % = 500, we use
the procedure of Hu & Kravtsov (2003), assuming a Navarro, Frenk
& White (1997, hereafter NFW) mass distribution with concentra-
tion parameter c = 4. This conversion is negligibly sensitive to the
assumed concentration parameter, since both r500 and r300&m(z) are
well beyond the NFW scale radius for reasonable values (c > 3;
Zhao et al. 2003, 2009; Gao et al. 2008).

in Section 6.2, uncertainty on the mass function at this level has negligible
impact on our results, in any case.

3.4 Sampling model: follow-up observations

The next component of the model connects quantities predicted from
the cosmology, mass function and scaling relations to quantities
measured from the follow-up X-ray observations. Because some of
our measurements are made with respect to a reference cosmology
(see Paper II), this procedure is not entirely trivial.

In particular, the mass, luminosity and temperature determined
from the follow-up X-ray observations are measured within r500,
itself determined via the implicit equation
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which can be rewritten as
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where ηg is the logarithmic slope of the gas mass profile at large
radius. Using that ρcr(z) ∝ H2(z), the expression
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]1/(ηg−3)
(12)

relates the ‘true’ value of r500 predicted by a set of model parameters
to the value of r500 that we would have inferred assuming our
reference cosmology and reference fgas value. The gas mass profiles
measured in Paper II are self-similar, consistent with a constant
value of ηg; for simplicity, we therefore adopt ηg = 1.092 ± 0.006,
determined from a fit to the entire sample from 0.7–1.3r500, and
marginalize over the uncertainty.

To see how the measurements of total cluster mass depend on
model parameters, we first write
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M(r)

=
M ref

gas(r)/f ref
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Mgas(r)/fgas(r)
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where Mref is the prediction for what mass would be measured for
a cluster of true mass M using our assumed reference parameter
values, and dA(z) is the angular diameter distance to redshift z.
dref

A (z) and f ref
gas are not predictions for measured values, but they

depend directly on the reference cosmology and fgas value. The first
term in this expression accounts for the dependence of the mass
measured within a fixed angular aperture on distance and fgas, given
that the mass is estimated via the gas mass and gas mass fraction,
and where we have used the scaling Mgas ∝ dA(z)2.5. The dependence
on the angular size corresponding to physical radius r is handled by
RNFW, which we evaluate assuming that the shape of the total mass
distribution near r500 is well approximated by the NFW profile; in
this case the scaling factor is straightforward to compute using the
scaling of r500 given in equation (12):

RNFW = ln(1 + xc500) − xc500/(1 + xc500)
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where x = rref
500/r500. To evaluate this factor, we assume a concen-
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insensitive to this assumption provided that c > 3 (i.e. provided r500
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6Note that, by convention, c without a subscript refers to c200, defined as
r200 in units of the NFW scale radius; c = 4 corresponds to c500 ≈ 2.6.
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To perform the cosmological analysis, we need to relate cluster mass
to the observable that determines cluster detection, in this case X-
ray flux. Given a redshift, z, a cluster’s unabsorbed, soft X-ray flux,
F, is determined by its intrinsic X-ray luminosity, L, temperature,
kT , and metallicity, Z, as

F (z, L, kT , Z) = L

4πd2
L(z)K(z, kT , Z)

, (7)

where dL(z) is the luminosity distance to the cluster, and K(z, kT , Z)
is the required K-correction. For intracluster medium temperatures
kT > 3 keV and luminosities and fluxes in the soft (ROSAT) X-ray
band (0.1–2.4 keV), K has only a weak dependence on temperature
and negligible dependence on metallicity; we hereafter fix Z to the
typical value of 0.3 times the solar value.

As discussed in Paper II, a simple prescription for how L and
kT are related to the total mass, M, is given by the self-similar
model (Kaiser 1986). We define nominal luminosity–mass and
temperature–mass relations at r500 of the form
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and E(z) is the normalized Hubble parameter, H(z)/H0. The fac-
tors of E(z) appearing explicitly in equation (9) follow from the
definition of cluster radius using a fixed overdensity with respect
to the critical density (Bryan & Norman 1998). To describe the
intrinsic scatter in ! and t given m about the nominal relations, we
adopt a simple, bivariate normal distribution parametrized by the
marginal luminosity–mass and temperature–mass lognormal scat-
ters, σ !m and σ tm, and a coefficient of correlation, ρ!tm.

There are various ways of adding complexity to this scaling
relation model, including departures from self-similar evolution in
the normalization of the nominal relations, evolution in the scatter,
and asymmetry in the scatter. In Paper II, we show that the data
are consistent with the simple model defined above, and do not
require or prefer any such additions, even when the cosmological
parameters are extremely restricted by external data. We therefore
adopt the simple model above in this work.

Motivated by the results of Evrard et al. (2008), we have defined
the scaling relations for quantities within r500, which also corre-
sponds to our measurements of mass, luminosity and temperature
from follow-up observations (Paper II). To convert the mass defini-
tion used by the mass function, % = 300&m(z), to % = 500, we use
the procedure of Hu & Kravtsov (2003), assuming a Navarro, Frenk
& White (1997, hereafter NFW) mass distribution with concentra-
tion parameter c = 4. This conversion is negligibly sensitive to the
assumed concentration parameter, since both r500 and r300&m(z) are
well beyond the NFW scale radius for reasonable values (c > 3;
Zhao et al. 2003, 2009; Gao et al. 2008).

in Section 6.2, uncertainty on the mass function at this level has negligible
impact on our results, in any case.

3.4 Sampling model: follow-up observations

The next component of the model connects quantities predicted from
the cosmology, mass function and scaling relations to quantities
measured from the follow-up X-ray observations. Because some of
our measurements are made with respect to a reference cosmology
(see Paper II), this procedure is not entirely trivial.

In particular, the mass, luminosity and temperature determined
from the follow-up X-ray observations are measured within r500,
itself determined via the implicit equation

M(r500) = Mgas(r500)
fgas(r500)

= 4π

3
(500)ρcr(z)r3

500, (10)

which can be rewritten as

Mgas(r) ∝ ρcr(z)r3fgas(r) ∝ rηg , (11)

where ηg is the logarithmic slope of the gas mass profile at large
radius. Using that ρcr(z) ∝ H2(z), the expression

r500 ∝
[
fgas(r500)H 2(z)

]1/(ηg−3)
(12)

relates the ‘true’ value of r500 predicted by a set of model parameters
to the value of r500 that we would have inferred assuming our
reference cosmology and reference fgas value. The gas mass profiles
measured in Paper II are self-similar, consistent with a constant
value of ηg; for simplicity, we therefore adopt ηg = 1.092 ± 0.006,
determined from a fit to the entire sample from 0.7–1.3r500, and
marginalize over the uncertainty.

To see how the measurements of total cluster mass depend on
model parameters, we first write

M ref (r)
M(r)

=
M ref

gas(r)/f ref
gas (r)

Mgas(r)/fgas(r)
RNFW

= d ref
A (z)2.5fgas
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RNFW, (13)

where Mref is the prediction for what mass would be measured for
a cluster of true mass M using our assumed reference parameter
values, and dA(z) is the angular diameter distance to redshift z.
dref

A (z) and f ref
gas are not predictions for measured values, but they

depend directly on the reference cosmology and fgas value. The first
term in this expression accounts for the dependence of the mass
measured within a fixed angular aperture on distance and fgas, given
that the mass is estimated via the gas mass and gas mass fraction,
and where we have used the scaling Mgas ∝ dA(z)2.5. The dependence
on the angular size corresponding to physical radius r is handled by
RNFW, which we evaluate assuming that the shape of the total mass
distribution near r500 is well approximated by the NFW profile; in
this case the scaling factor is straightforward to compute using the
scaling of r500 given in equation (12):

RNFW = ln(1 + xc500) − xc500/(1 + xc500)
ln(1 + c500) − c500/(1 + c500)

, (14)

where x = rref
500/r500. To evaluate this factor, we assume a concen-

tration parameter c = 4,6 although we note that RNFW is extremely
insensitive to this assumption provided that c > 3 (i.e. provided r500

is well beyond the scale radius).
Similarly, we can write the scaling of the luminosity as
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6Note that, by convention, c without a subscript refers to c200, defined as
r200 in units of the NFW scale radius; c = 4 corresponds to c500 ≈ 2.6.
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3.3 Scaling relations

To perform the cosmological analysis, we need to relate cluster mass
to the observable that determines cluster detection, in this case X-
ray flux. Given a redshift, z, a cluster’s unabsorbed, soft X-ray flux,
F, is determined by its intrinsic X-ray luminosity, L, temperature,
kT , and metallicity, Z, as

F (z, L, kT , Z) = L

4πd2
L(z)K(z, kT , Z)

, (7)

where dL(z) is the luminosity distance to the cluster, and K(z, kT , Z)
is the required K-correction. For intracluster medium temperatures
kT > 3 keV and luminosities and fluxes in the soft (ROSAT) X-ray
band (0.1–2.4 keV), K has only a weak dependence on temperature
and negligible dependence on metallicity; we hereafter fix Z to the
typical value of 0.3 times the solar value.

As discussed in Paper II, a simple prescription for how L and
kT are related to the total mass, M, is given by the self-similar
model (Kaiser 1986). We define nominal luminosity–mass and
temperature–mass relations at r500 of the form
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and E(z) is the normalized Hubble parameter, H(z)/H0. The fac-
tors of E(z) appearing explicitly in equation (9) follow from the
definition of cluster radius using a fixed overdensity with respect
to the critical density (Bryan & Norman 1998). To describe the
intrinsic scatter in ! and t given m about the nominal relations, we
adopt a simple, bivariate normal distribution parametrized by the
marginal luminosity–mass and temperature–mass lognormal scat-
ters, σ !m and σ tm, and a coefficient of correlation, ρ!tm.

There are various ways of adding complexity to this scaling
relation model, including departures from self-similar evolution in
the normalization of the nominal relations, evolution in the scatter,
and asymmetry in the scatter. In Paper II, we show that the data
are consistent with the simple model defined above, and do not
require or prefer any such additions, even when the cosmological
parameters are extremely restricted by external data. We therefore
adopt the simple model above in this work.

Motivated by the results of Evrard et al. (2008), we have defined
the scaling relations for quantities within r500, which also corre-
sponds to our measurements of mass, luminosity and temperature
from follow-up observations (Paper II). To convert the mass defini-
tion used by the mass function, % = 300&m(z), to % = 500, we use
the procedure of Hu & Kravtsov (2003), assuming a Navarro, Frenk
& White (1997, hereafter NFW) mass distribution with concentra-
tion parameter c = 4. This conversion is negligibly sensitive to the
assumed concentration parameter, since both r500 and r300&m(z) are
well beyond the NFW scale radius for reasonable values (c > 3;
Zhao et al. 2003, 2009; Gao et al. 2008).

in Section 6.2, uncertainty on the mass function at this level has negligible
impact on our results, in any case.

3.4 Sampling model: follow-up observations

The next component of the model connects quantities predicted from
the cosmology, mass function and scaling relations to quantities
measured from the follow-up X-ray observations. Because some of
our measurements are made with respect to a reference cosmology
(see Paper II), this procedure is not entirely trivial.

In particular, the mass, luminosity and temperature determined
from the follow-up X-ray observations are measured within r500,
itself determined via the implicit equation

M(r500) = Mgas(r500)
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= 4π

3
(500)ρcr(z)r3

500, (10)

which can be rewritten as

Mgas(r) ∝ ρcr(z)r3fgas(r) ∝ rηg , (11)

where ηg is the logarithmic slope of the gas mass profile at large
radius. Using that ρcr(z) ∝ H2(z), the expression

r500 ∝
[
fgas(r500)H 2(z)

]1/(ηg−3)
(12)

relates the ‘true’ value of r500 predicted by a set of model parameters
to the value of r500 that we would have inferred assuming our
reference cosmology and reference fgas value. The gas mass profiles
measured in Paper II are self-similar, consistent with a constant
value of ηg; for simplicity, we therefore adopt ηg = 1.092 ± 0.006,
determined from a fit to the entire sample from 0.7–1.3r500, and
marginalize over the uncertainty.

To see how the measurements of total cluster mass depend on
model parameters, we first write
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where Mref is the prediction for what mass would be measured for
a cluster of true mass M using our assumed reference parameter
values, and dA(z) is the angular diameter distance to redshift z.
dref

A (z) and f ref
gas are not predictions for measured values, but they

depend directly on the reference cosmology and fgas value. The first
term in this expression accounts for the dependence of the mass
measured within a fixed angular aperture on distance and fgas, given
that the mass is estimated via the gas mass and gas mass fraction,
and where we have used the scaling Mgas ∝ dA(z)2.5. The dependence
on the angular size corresponding to physical radius r is handled by
RNFW, which we evaluate assuming that the shape of the total mass
distribution near r500 is well approximated by the NFW profile; in
this case the scaling factor is straightforward to compute using the
scaling of r500 given in equation (12):
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500/r500. To evaluate this factor, we assume a concen-

tration parameter c = 4,6 although we note that RNFW is extremely
insensitive to this assumption provided that c > 3 (i.e. provided r500
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6Note that, by convention, c without a subscript refers to c200, defined as
r200 in units of the NFW scale radius; c = 4 corresponds to c500 ≈ 2.6.
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To perform the cosmological analysis, we need to relate cluster mass
to the observable that determines cluster detection, in this case X-
ray flux. Given a redshift, z, a cluster’s unabsorbed, soft X-ray flux,
F, is determined by its intrinsic X-ray luminosity, L, temperature,
kT , and metallicity, Z, as

F (z, L, kT , Z) = L
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L(z)K(z, kT , Z)

, (7)

where dL(z) is the luminosity distance to the cluster, and K(z, kT , Z)
is the required K-correction. For intracluster medium temperatures
kT > 3 keV and luminosities and fluxes in the soft (ROSAT) X-ray
band (0.1–2.4 keV), K has only a weak dependence on temperature
and negligible dependence on metallicity; we hereafter fix Z to the
typical value of 0.3 times the solar value.

As discussed in Paper II, a simple prescription for how L and
kT are related to the total mass, M, is given by the self-similar
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and E(z) is the normalized Hubble parameter, H(z)/H0. The fac-
tors of E(z) appearing explicitly in equation (9) follow from the
definition of cluster radius using a fixed overdensity with respect
to the critical density (Bryan & Norman 1998). To describe the
intrinsic scatter in ! and t given m about the nominal relations, we
adopt a simple, bivariate normal distribution parametrized by the
marginal luminosity–mass and temperature–mass lognormal scat-
ters, σ !m and σ tm, and a coefficient of correlation, ρ!tm.

There are various ways of adding complexity to this scaling
relation model, including departures from self-similar evolution in
the normalization of the nominal relations, evolution in the scatter,
and asymmetry in the scatter. In Paper II, we show that the data
are consistent with the simple model defined above, and do not
require or prefer any such additions, even when the cosmological
parameters are extremely restricted by external data. We therefore
adopt the simple model above in this work.

Motivated by the results of Evrard et al. (2008), we have defined
the scaling relations for quantities within r500, which also corre-
sponds to our measurements of mass, luminosity and temperature
from follow-up observations (Paper II). To convert the mass defini-
tion used by the mass function, % = 300&m(z), to % = 500, we use
the procedure of Hu & Kravtsov (2003), assuming a Navarro, Frenk
& White (1997, hereafter NFW) mass distribution with concentra-
tion parameter c = 4. This conversion is negligibly sensitive to the
assumed concentration parameter, since both r500 and r300&m(z) are
well beyond the NFW scale radius for reasonable values (c > 3;
Zhao et al. 2003, 2009; Gao et al. 2008).

in Section 6.2, uncertainty on the mass function at this level has negligible
impact on our results, in any case.

3.4 Sampling model: follow-up observations

The next component of the model connects quantities predicted from
the cosmology, mass function and scaling relations to quantities
measured from the follow-up X-ray observations. Because some of
our measurements are made with respect to a reference cosmology
(see Paper II), this procedure is not entirely trivial.

In particular, the mass, luminosity and temperature determined
from the follow-up X-ray observations are measured within r500,
itself determined via the implicit equation

M(r500) = Mgas(r500)
fgas(r500)

= 4π

3
(500)ρcr(z)r3

500, (10)

which can be rewritten as

Mgas(r) ∝ ρcr(z)r3fgas(r) ∝ rηg , (11)

where ηg is the logarithmic slope of the gas mass profile at large
radius. Using that ρcr(z) ∝ H2(z), the expression

r500 ∝
[
fgas(r500)H 2(z)

]1/(ηg−3)
(12)

relates the ‘true’ value of r500 predicted by a set of model parameters
to the value of r500 that we would have inferred assuming our
reference cosmology and reference fgas value. The gas mass profiles
measured in Paper II are self-similar, consistent with a constant
value of ηg; for simplicity, we therefore adopt ηg = 1.092 ± 0.006,
determined from a fit to the entire sample from 0.7–1.3r500, and
marginalize over the uncertainty.

To see how the measurements of total cluster mass depend on
model parameters, we first write

M ref (r)
M(r)

=
M ref

gas(r)/f ref
gas (r)

Mgas(r)/fgas(r)
RNFW

= d ref
A (z)2.5fgas

dA(z)2.5f ref
gas

RNFW, (13)

where Mref is the prediction for what mass would be measured for
a cluster of true mass M using our assumed reference parameter
values, and dA(z) is the angular diameter distance to redshift z.
dref

A (z) and f ref
gas are not predictions for measured values, but they

depend directly on the reference cosmology and fgas value. The first
term in this expression accounts for the dependence of the mass
measured within a fixed angular aperture on distance and fgas, given
that the mass is estimated via the gas mass and gas mass fraction,
and where we have used the scaling Mgas ∝ dA(z)2.5. The dependence
on the angular size corresponding to physical radius r is handled by
RNFW, which we evaluate assuming that the shape of the total mass
distribution near r500 is well approximated by the NFW profile; in
this case the scaling factor is straightforward to compute using the
scaling of r500 given in equation (12):

RNFW = ln(1 + xc500) − xc500/(1 + xc500)
ln(1 + c500) − c500/(1 + c500)

, (14)

where x = rref
500/r500. To evaluate this factor, we assume a concen-

tration parameter c = 4,6 although we note that RNFW is extremely
insensitive to this assumption provided that c > 3 (i.e. provided r500

is well beyond the scale radius).
Similarly, we can write the scaling of the luminosity as

L500(r) ∝ d2
L(z)

(
r500

dA(z)

)ηL

, (15)

6Note that, by convention, c without a subscript refers to c200, defined as
r200 in units of the NFW scale radius; c = 4 corresponds to c500 ≈ 2.6.
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3.3 Scaling relations

To perform the cosmological analysis, we need to relate cluster mass
to the observable that determines cluster detection, in this case X-
ray flux. Given a redshift, z, a cluster’s unabsorbed, soft X-ray flux,
F, is determined by its intrinsic X-ray luminosity, L, temperature,
kT , and metallicity, Z, as

F (z, L, kT , Z) = L

4πd2
L(z)K(z, kT , Z)

, (7)

where dL(z) is the luminosity distance to the cluster, and K(z, kT , Z)
is the required K-correction. For intracluster medium temperatures
kT > 3 keV and luminosities and fluxes in the soft (ROSAT) X-ray
band (0.1–2.4 keV), K has only a weak dependence on temperature
and negligible dependence on metallicity; we hereafter fix Z to the
typical value of 0.3 times the solar value.

As discussed in Paper II, a simple prescription for how L and
kT are related to the total mass, M, is given by the self-similar
model (Kaiser 1986). We define nominal luminosity–mass and
temperature–mass relations at r500 of the form

〈!(m)〉 = β!m
0 + β!m

1 m,

〈t(m)〉 = β tm
0 + β tm

1 m, (8)

where

! = log10

(
L500

E(z)1044 erg s−1

)
,

m = log10

(
E(z)M500

1015 M$

)
,

t = log10

(
kT500

keV

)
, (9)

and E(z) is the normalized Hubble parameter, H(z)/H0. The fac-
tors of E(z) appearing explicitly in equation (9) follow from the
definition of cluster radius using a fixed overdensity with respect
to the critical density (Bryan & Norman 1998). To describe the
intrinsic scatter in ! and t given m about the nominal relations, we
adopt a simple, bivariate normal distribution parametrized by the
marginal luminosity–mass and temperature–mass lognormal scat-
ters, σ !m and σ tm, and a coefficient of correlation, ρ!tm.

There are various ways of adding complexity to this scaling
relation model, including departures from self-similar evolution in
the normalization of the nominal relations, evolution in the scatter,
and asymmetry in the scatter. In Paper II, we show that the data
are consistent with the simple model defined above, and do not
require or prefer any such additions, even when the cosmological
parameters are extremely restricted by external data. We therefore
adopt the simple model above in this work.

Motivated by the results of Evrard et al. (2008), we have defined
the scaling relations for quantities within r500, which also corre-
sponds to our measurements of mass, luminosity and temperature
from follow-up observations (Paper II). To convert the mass defini-
tion used by the mass function, % = 300&m(z), to % = 500, we use
the procedure of Hu & Kravtsov (2003), assuming a Navarro, Frenk
& White (1997, hereafter NFW) mass distribution with concentra-
tion parameter c = 4. This conversion is negligibly sensitive to the
assumed concentration parameter, since both r500 and r300&m(z) are
well beyond the NFW scale radius for reasonable values (c > 3;
Zhao et al. 2003, 2009; Gao et al. 2008).
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density field at scales of 8 h−1 Mpc, defined explicitly in equa-
tion (4). Because the mass range of our data corresponds to a small
range in scale, we do not simultaneously fit for the spectral index of
scalar density perturbations, ns, but rather fix its value at 0.95 (e.g.
Komatsu et al. 2009), except when simultaneously fitting CMB data
(see Section 2 and Table 1). This assumption does not significantly
affect our results; see Section 5.1. We assume that the Universe is
spatially flat on large scales throughout.

We additionally consider models in which dark energy is a fluid
parametrized by a constant equation of state, w (constant w mod-
els). Unlike the cosmological constant scenario, such a fluid will
not in general have uniform density, and thus it contributes to some
degree to the evolution of density perturbations, in addition to in-
fluencing the expansion history of the Universe. Due to theoretical
uncertainties on the behaviour of the dark energy fluid on the non-
linear scales that determine the mass function, numerical simula-
tions of the mass function have to date been done only for models
in which dark energy is uniform, even when w "= −1. Our approach
is to straightforwardly propagate the influence of non-uniform dark
energy on linear scales but to leave the mass function unaltered,
while continuing to use our standard systematic allowances on the
mass function and its evolution (Section 3.2). We have verified
that the value of the dark energy sound speed (assumed to be con-
stant with time) has no effect on our results. Preliminary theoretical
work indicates that the effect of dark energy perturbations on the
mass function might be readily measurable (Abramo, Batista &
Rosenfeld 2009; Park et al. 2009; Alimi et al. 2010; Creminelli
et al. 2010), in which case our approach likely underestimates the
ability of the data to discriminate among these models.

Finally, we consider models in which the dark energy equation of
state is a function of time, according to two parametrizations. The
first is the commonly used model of Chevallier & Polarski (2001)
and Linder (2003),

w(a) = w0 + wa(1 − a), (1)

where a = 1/(1 + z) is the scalefactor, in which the equation of
state makes a smooth transition from value w0 at z = 0 to w0 + wa

at high redshift. A generalization due to Rapetti, Allen & Weller
(2005),

w(z) = wetz + w0zt

z + zt
, (2)

has the advantage that the transition redshift, zt, can be marginal-
ized over. (Equation 1 is a special case of equation 2 with zt = 1
and wa = wet − w0.) This model has greater applicability to cur-
rent data, which primarily constrain w at z < 1, resulting in more
commensurate constraints on the current and early-time equation of
state, w0 and wet. In practice, we marginalize over the scale factor
of the transition, at, within the range 0.5 < at < 0.95.

3.2 Mass function

Cosmological analyses of the kind presented here are enabled by
the fact that, to a good approximation, the expected number density
of dark matter haloes as a function of mass, M, can be expressed as
a relatively simple function of cosmological parameters,

dn(M, z)
dM

= ρ̄m

M

d ln σ−1

dM
f (σ ). (3)

Here ρ̄m is the mean comoving matter density and σ 2 is the variance
of the linearly evolved density field, smoothed by a spherical top-hat

window of comoving radius r, enclosing mass M = 4πρ̄mr3/3,

σ 2(M, z) = 1
2π2

∫ ∞

0
k2P (k, z)|WM (k)|2 dk, (4)

where P(k, z) is the linear power spectrum evolved to redshift z
and WM(k) is the Fourier transform of the window function. In the
formulation of equation (3), the mass function depends on cosmo-
logical parameters and redshift only through σ 2(M, z). The function
f (σ ) may be an analytic or semi-analytic approximation (Press &
Schechter 1974; Bond et al. 1991; Sheth & Tormen 1999) or a fit to
cosmological N-body simulations.

The applicability of this ‘universal’ form of the mass function
was first demonstrated in numerical dark matter simulations of flat
#CDM and open ($# = 0) cosmologies by Jenkins et al. (2001)
and confirmed by Evrard et al. (2002). It has since been verified that
the fitting function provided by Jenkins is approximately accurate
(within ∼20 per cent) among models with constant w "= −1 and
some evolving w models (Klypin et al. 2003; Linder & Jenkins
2003; Łokas et al. 2004; Kuhlen et al. 2005).4 Other authors have
studied the dependence of f (σ ) on redshift beyond that implicit in
σ 2(M, z) (Lukić et al. 2007; Reed et al. 2007; Cohn & White 2008),
replacing f (σ ) with f (σ , z). The most recent and relevant work is
that of Tinker et al. (2008), which we adopt here.

The Tinker fitting function has the form

f (σ, z) = A

[(σ

b

)−a

+ 1
]

e−c/σ 2
, (5)

where each of the fitted parameters has a redshift dependence of the
form

x(z) = x0(1 + z)εαx , x ∈ {A, a, b, c}. (6)

The various parameters x0 and αx are given in Tinker et al. (2008) as
a function of the spherical overdensity, ', used to define the cluster
radius. Unlike the z = 0 mass function, this additional redshift de-
pendence has not been tested in simulations of cosmologies beyond
the simple, flat #CDM model. We therefore introduce the parame-
ter ε, which controls the overall strength of the evolution given by
the αx, in order to marginalize over the remaining uncertainties in
the redshift dependence of the mass function in exotic cosmologies.
We also choose to work with the ' = 300$m(z) fit to f (σ , z) (a
relatively large cluster radius) because the evolution parametrized
by the αx becomes more pronounced with increasing overdensity
(smaller radius).

To address the uncertainty in the normalization and shape of
f (σ , z = 0), we marginalized over each of the fitted parameters in
equation (5) using the covariance matrix of the fit (Jeremy Tinker,
private communication). The statistical error of this fit is <5 per
cent; however, this figure does not reflect systematic uncertainties
due to the presence of baryons (e.g. Stanek, Rudd & Evrard 2009),
evolving dark energy, etc. We therefore scaled the covariance matrix
when defining this prior on the mass function parameters such that
the marginal uncertainty at fixed log10(σ−1) = 0.2 (M ∼ 1015 M&
in the concordance model) is a conservative 10 per cent.5

4We reiterate that these works include the effects of dark energy on the
mass function through the cosmic expansion rate, but not the effects of dark
energy density perturbations (Section 3.1).
5There is no reason, a priori, that the systematic uncertainty in the mass
function should have a similar form to the statistical covariance. At mini-
mum, however, this procedure provides a straightforward way to marginalize
over a family of functions that are similar to the mass function, while still
allowing differences in the shape as well as the normalization. As we show
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ter ε, which controls the overall strength of the evolution given by
the αx, in order to marginalize over the remaining uncertainties in
the redshift dependence of the mass function in exotic cosmologies.
We also choose to work with the ' = 300$m(z) fit to f (σ , z) (a
relatively large cluster radius) because the evolution parametrized
by the αx becomes more pronounced with increasing overdensity
(smaller radius).

To address the uncertainty in the normalization and shape of
f (σ , z = 0), we marginalized over each of the fitted parameters in
equation (5) using the covariance matrix of the fit (Jeremy Tinker,
private communication). The statistical error of this fit is <5 per
cent; however, this figure does not reflect systematic uncertainties
due to the presence of baryons (e.g. Stanek, Rudd & Evrard 2009),
evolving dark energy, etc. We therefore scaled the covariance matrix
when defining this prior on the mass function parameters such that
the marginal uncertainty at fixed log10(σ−1) = 0.2 (M ∼ 1015 M&
in the concordance model) is a conservative 10 per cent.5

4We reiterate that these works include the effects of dark energy on the
mass function through the cosmic expansion rate, but not the effects of dark
energy density perturbations (Section 3.1).
5There is no reason, a priori, that the systematic uncertainty in the mass
function should have a similar form to the statistical covariance. At mini-
mum, however, this procedure provides a straightforward way to marginalize
over a family of functions that are similar to the mass function, while still
allowing differences in the shape as well as the normalization. As we show
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density field at scales of 8 h−1 Mpc, defined explicitly in equa-
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at high redshift. A generalization due to Rapetti, Allen & Weller
(2005),

w(z) = wetz + w0zt

z + zt
, (2)
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dn(M, z)
dM

= ρ̄m

M

d ln σ−1

dM
f (σ ). (3)

Here ρ̄m is the mean comoving matter density and σ 2 is the variance
of the linearly evolved density field, smoothed by a spherical top-hat

window of comoving radius r, enclosing mass M = 4πρ̄mr3/3,

σ 2(M, z) = 1
2π2

∫ ∞

0
k2P (k, z)|WM (k)|2 dk, (4)
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b

)−a

+ 1
]

e−c/σ 2
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the simple, flat #CDM model. We therefore introduce the parame-
ter ε, which controls the overall strength of the evolution given by
the αx, in order to marginalize over the remaining uncertainties in
the redshift dependence of the mass function in exotic cosmologies.
We also choose to work with the ' = 300$m(z) fit to f (σ , z) (a
relatively large cluster radius) because the evolution parametrized
by the αx becomes more pronounced with increasing overdensity
(smaller radius).

To address the uncertainty in the normalization and shape of
f (σ , z = 0), we marginalized over each of the fitted parameters in
equation (5) using the covariance matrix of the fit (Jeremy Tinker,
private communication). The statistical error of this fit is <5 per
cent; however, this figure does not reflect systematic uncertainties
due to the presence of baryons (e.g. Stanek, Rudd & Evrard 2009),
evolving dark energy, etc. We therefore scaled the covariance matrix
when defining this prior on the mass function parameters such that
the marginal uncertainty at fixed log10(σ−1) = 0.2 (M ∼ 1015 M&
in the concordance model) is a conservative 10 per cent.5

4We reiterate that these works include the effects of dark energy on the
mass function through the cosmic expansion rate, but not the effects of dark
energy density perturbations (Section 3.1).
5There is no reason, a priori, that the systematic uncertainty in the mass
function should have a similar form to the statistical covariance. At mini-
mum, however, this procedure provides a straightforward way to marginalize
over a family of functions that are similar to the mass function, while still
allowing differences in the shape as well as the normalization. As we show
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GR has been thoroughly tested from laboratory to Solar system
scales. However, GR has only just begun to be tested on cosmo-
logical scales. Several authors have recently investigated a sim-
ple parametrization of the growth rate, !m(z)γ (first introduced by
Peebles 1980), to test for time-dependent modifications to GR (see
e.g. Linder 2005; Sapone & Amendola 2007; Polarski & Gannouji
2008; Acquaviva et al. 2008; Ballesteros & Riotto 2008; Gannouji
& Polarski 2008; Mortonson, Hu & Huterer 2009; Thomas,
Abdalla & Weller 2009). For a growth index, γ , of approximately
0.55, this parametrization accurately models the growth rate of GR.
Some authors (Di Porto & Amendola 2008; Gong 2008; Nesseris
& Perivolaropoulos 2008; Wei 2008) have recently estimated con-
straints on γ by combining results from measurements of redshift
space distortions and evolution in the galaxy power spectrum, as
well as measurements of the normalization of the matter power spec-
trum, σ 8(z), from Lyman α forest data. Using current cosmic shear
and galaxy clustering data at low redshift, Dore et al. (2007) placed
constraints on scale-dependent modifications to GR. These authors
constrained two phenomenological, although physically motivated,
modifications of the Poisson equation on megaparsec scales (from
0.04 to 10 Mpc).

In this paper, we use the XLF experiment developed by M08, and
data from the ROSAT brightest cluster sample (BCS; Ebeling et al.
1998), the ROSAT–ESO (European Southern Observatory) flux-
limited X-ray cluster sample (REFLEX; Böhringer et al. 2004), the
MAssive Cluster Survey (MACS; Ebeling, Edge & Henry 2001)
and the 400 square degree ROSAT Position Sensitive Proportional
Counter cluster survey (400sd; Burenin et al. 2007), to constrain de-
partures from GR on scales of tens of megaparsecs over the redshift
range z < 0.9. We use CMB (Komatsu et al. 2009), SNIa (Kowalski
et al. 2008) and cluster f gas data (Allen et al. 2008) to simultaneously
constrain the background evolution of the Universe. We examine
three background models: flat % cold dark matter (%CDM), flat
wCDM and non-flat %CDM. We employ a Markov Chain Monte
Carlo (MCMC) analysis, accounting for systematic uncertainties
in the experiments. Our results represent the first constraints on γ

from the observed growth of cosmic structure in galaxy clusters.

2 PA R A M E T R I Z I N G TH E G ROW T H
O F C O S M I C S T RU C T U R E

In GR, the evolution of the linear matter density contrast δ ≡
δρm/ρm, where ρm is the mean comoving matter density and δρm

a matter density fluctuation, can be calculated in the synchronous
gauge by solving the scale-independent equation

δ̈ + 2
ȧ

a
δ̇ = 4Gπρmδ , (1)

where ‘dot’ represents a derivative with respect to time and a is the
cosmic scalefactor.

Following Lahav et al. (1991) and Wang & Steinhardt (1998),
several authors (see e.g. Huterer & Linder 2007; Linder & Cahn
2007) have parametrized the evolution of the growth rate as
f (a) ≡ d ln δ/d ln a = !m(a)γ . Recasting this expression, we have
the differential equation

dδ

da
= !m(a)γ

a
δ , (2)

where γ is the growth index and !m(a) = !m a−3/E(a)2. Here,
E(a) = H (a)/H 0 is the evolution parameter, H(a) the Hubble
parameter and H0 its present-day value. It has been shown (see
e.g. Linder & Cahn 2007) that for γ ∼ 0.55 equation (2) accurately

reproduces the evolution of δ obtained from equation (1). Using
the Einstein–Boltzmann code CAMB1 (Lewis, Challinor & Lasenby
2000), we find that the linear growth δ(a) obtained from equation (2)
with γ ∼ 0.55 is accurate to better than 0.1 per cent for the relevant
scales, redshifts and values of cosmological parameters. Therefore,
we adopt γ ∼ 0.55 as a reference, from which to determine depar-
tures from GR.

Equation (2) provides a phenomenological model for the growth
of density perturbations that allows us to test departures from GR
without adopting a particular, fully covariant modified gravity the-
ory. In the absence of such an alternative gravity theory, we per-
form consistency tests using convenient parametrizations of the
background expansion, within GR. We investigate three expansion
models that are well tested with current data: flat %CDM, a constant
dark energy equation of state wCDM2, and non-flat %CDM. We can
write a general evolution parameter for these models as3

E(a) =
[
!m a−3 + !de a−3(1+w) + !k a−2

]1/2
, (3)

where w = −1 for the %CDM models, !de is the cosmological
constant/dark energy density and !k is the curvature energy density,
which is 0 for flat models.

The growth rate !m(a)γ conveniently tends to 1 in the matter-
dominated era (high z), thereby matching GR for any value of γ .
Thus, we naturally match the initial value of δ in equation (2) at
high z with that of GR (see Section 3).

3 A NA LY S I S O F TH E X - R AY L U M I N O S I T Y
F U N C T I O N

We have incorporated the growth index parametrization into the
code developed by M08. Briefly, in the XLF analysis, we compare
X-ray flux–redshift data from the cluster samples to theoretical
predictions. The relation between cluster mass and observed X-ray
luminosity is calibrated using deeper pointed X-ray observations
(Reiprich & Böhringer 2002).

3.1 Linear theory

The variance of the linearly evolved density field, smoothed by a
spherical top-hat window of comoving radius R, enclosing a mass
M = 4πρmR3/3, is

σ 2(M, z) = 1
2π2

∫ ∞

0
k2P (k, z)|WM(k)|2 dk , (4)

where WM(k) is the Fourier transform of the window function and
P (k, z) ∝ knsT 2(k, zt) D(z)2 is the linear matter power spectrum
as a function of the wavenumber, k, and redshift, z. Here, ns is
the scalar spectral index of the primordial fluctuations, T (k, zt) is
the matter transfer function at redshift zt and D(z) ≡ δ(z)/δ(zt) =
σ (M , z)/σ (M , zt) is the growth factor of linear perturbations, nor-
malized to unity at redshift zt. We choose zt = 30, well within the
matter-dominated era (Bertschinger & Zukin 2008). Using CAMB,
we calculate T (k, zt) assuming that GR is valid at early times

1 http://www.camb.info/
2 This model is only used as a expansion model, and does not assume the
presence of dark energy. Therefore, we do not include dark energy density
perturbations. The evolution of the density perturbations, due only to matter,
are modelled using γ .
3 Although massless neutrinos and photons are included in the analysis, they
are negligible at late times.
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2008; Acquaviva et al. 2008; Ballesteros & Riotto 2008; Gannouji
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0.55, this parametrization accurately models the growth rate of GR.
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& Perivolaropoulos 2008; Wei 2008) have recently estimated con-
straints on γ by combining results from measurements of redshift
space distortions and evolution in the galaxy power spectrum, as
well as measurements of the normalization of the matter power spec-
trum, σ 8(z), from Lyman α forest data. Using current cosmic shear
and galaxy clustering data at low redshift, Dore et al. (2007) placed
constraints on scale-dependent modifications to GR. These authors
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In GR, the evolution of the linear matter density contrast δ ≡
δρm/ρm, where ρm is the mean comoving matter density and δρm

a matter density fluctuation, can be calculated in the synchronous
gauge by solving the scale-independent equation

δ̈ + 2
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δ̇ = 4Gπρmδ , (1)

where ‘dot’ represents a derivative with respect to time and a is the
cosmic scalefactor.

Following Lahav et al. (1991) and Wang & Steinhardt (1998),
several authors (see e.g. Huterer & Linder 2007; Linder & Cahn
2007) have parametrized the evolution of the growth rate as
f (a) ≡ d ln δ/d ln a = !m(a)γ . Recasting this expression, we have
the differential equation

dδ
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δ , (2)

where γ is the growth index and !m(a) = !m a−3/E(a)2. Here,
E(a) = H (a)/H 0 is the evolution parameter, H(a) the Hubble
parameter and H0 its present-day value. It has been shown (see
e.g. Linder & Cahn 2007) that for γ ∼ 0.55 equation (2) accurately

reproduces the evolution of δ obtained from equation (1). Using
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2000), we find that the linear growth δ(a) obtained from equation (2)
with γ ∼ 0.55 is accurate to better than 0.1 per cent for the relevant
scales, redshifts and values of cosmological parameters. Therefore,
we adopt γ ∼ 0.55 as a reference, from which to determine depar-
tures from GR.

Equation (2) provides a phenomenological model for the growth
of density perturbations that allows us to test departures from GR
without adopting a particular, fully covariant modified gravity the-
ory. In the absence of such an alternative gravity theory, we per-
form consistency tests using convenient parametrizations of the
background expansion, within GR. We investigate three expansion
models that are well tested with current data: flat %CDM, a constant
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E(a) =
[
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, (3)

where w = −1 for the %CDM models, !de is the cosmological
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which is 0 for flat models.
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σ (M , z)/σ (M , zt) is the growth factor of linear perturbations, nor-
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that the mean matter density of the Universe is low, !m ∼ 0.25
(see e.g. White et al. 1993), have directly confirmed the effects
of cosmic acceleration, at comparable significance to that seen in
SNIa data (see e.g. Allen et al. 2004; Allen et al. 2008). Mea-
surements of baryon acoustic oscillations (BAO) in galaxy surveys
(see e.g. Eisenstein et al. 2005; Percival et al. 2007; Percival et al.
2010), the correlation of the low multipoles of the CMB with large-
scale structure observations from various surveys (see e.g. Fosalba,
Gaztanaga & Castander 2003; Scranton et al. 2003; Cabre et al.
2006; Giannantonio et al. 2008; Ho et al. 2008) and weak gravita-
tional lensing by large-scale structure (Schrabback et al. 2010) have
also shown evidence for cosmic acceleration. The combination of
subsets and/or all of these data has led to the establishment of the "

cold dark matter ("CDM) paradigm, in which the energy density of
the Universe is currently composed of ∼5 per cent baryons, ∼20 per
cent CDM and ∼75 per cent dark energy, the last of which drives
cosmic acceleration and has identical characteristics to Einstein’s
cosmological constant, ".

Together, the above experiments robustly show that the Uni-
verse is accelerating. However, the ability of such data to probe the
underlying cause of this acceleration is limited. All of the above
constraints on dark energy are primarily driven by its effects on the
background geometry. Such data alone cannot distinguish acceler-
ation due to a true dark energy component with negative pressure
from modifications to the standard theory of gravity, i.e. Einstein’s
general relativity (GR). Recently, however, Mantz et al. 2008; Mantz
et al. (2010a, hereafter Paper I) and Vikhlinin et al. (2009) have pre-
sented new constraints on dark energy from measurements of the
growth of cosmic structure, as evidenced in X-ray flux-selected
cluster samples. These experiments are sensitive not only to the
evolution of the mean energy density background, but also to the
evolution of the density perturbations with respect to this back-
ground. This work has provided clear, independent confirmation of
the effects of dark energy in slowing the growth of X-ray luminous
galaxy clusters.

The observed evolution of density perturbations provides a sen-
sitive probe of the underlying theory of gravity and the clustering1

properties of dark energy. Rapetti et al. (2009, hereafter R09) ex-
ploited this sensitivity to constrain departures from the predicted
cosmic growth rate for GR using the convenient parametrization
!m(z)γ , for which GR has γ ∼ 0.55 (Peebles 1980; Wang &
Steinhardt 1998; Linder 2005; Huterer & Linder 2007; Linder &
Cahn 2007; Sapone & Amendola 2007; Di Porto & Amendola 2008;
Gannouji & Polarski 2008; Nesseris & Perivolaropoulos 2008; Wei
2008). Using the growth of structure analysis of Mantz et al. (2008),
R09 found no evidence for deviations from either GR or "CDM.
Recent results from the combination of other cosmological data sets
are also consistent with GR (Daniel et al. 2010; Reyes et al. 2010;
Zhao et al. 2010).

This is the third of a series of papers in which, for the first
time, we employ a fully self-consistent analysis of the growth of
massive clusters that combines current X-ray cluster surveys and
deep, pointed, follow-up observations to simultaneously constrain
both cosmological parameters and observable–mass (luminosity–
mass and temperature–mass) scaling relations. Importantly, the im-

1 Note that for models other than the cosmological constant, dark energy
is expected to couple with gravity, i.e. cluster (see e.g. Hu 2005; Mota
et al. 2007). For specific dark energy and modified gravity models, see the
reviews of Copeland, Sami & Tsujikawa (2006) and Frieman, Turner &
Huterer (2008).

proved method, which is described in Paper I, properly accounts for
all selection biases, covariances and parameter degeneracies and
models fully the impact of systematic uncertainties. Here, we uti-
lize this improved method [X-ray luminosity function (XLF), as
defined in Paper I] to re-investigate the simultaneous constraints
that can be placed on γ and the background evolution (expan-
sion history). For the background, we use two reference expansion
models: flat "CDM, parametrized by the mean matter density !m,
and flat wCDM, parametrized by !m and a constant dark energy
equation of state w. Our constraints on γ arise primarily from
the XLF experiment, which uses the cluster samples of Ebeling
et al. (1998; ROSAT Brightest Cluster Sample, BCS), Böhringer
et al. (2004; ROSAT–ESO Flux Limited X-ray sample, REFLEX),
Ebeling, Edge & Henry (2001) and Ebeling et al. (2010; Bright
MAssive Cluster Survey, Bright MACS), plus extensive X-ray
follow-up data from the Chandra X-ray Observatory and ROSAT
(for details see Mantz et al. 2010b, hereafter Paper II), although
we also utilize the (currently) small additional constraining power
available from measurements of the integrated Sachs–Wolfe (ISW)
effect at low multipoles in the CMB.

We emphasize that the models used for the evolution of the back-
ground and density perturbations are purely phenomenological, en-
compassing both modified gravity and clustering dark energy as
possible sources for cosmic acceleration. Our analysis allows for
a simple but elegant test for departures from the standard GR and
"CDM paradigms. Using the combination of XLF, fgas, SNIa, BAO
and CMB, we demonstrate good agreement with the standard GR +
"CDM model and provide tight constraints on the model parame-
ters. We show that our results are robust against reasonable assump-
tions regarding the evolution of galaxy cluster scaling relations. We
stress that in order to obtain robust results from current and future
XLF studies, it is essential to employ a consistent analysis method,
such as the one used here (see details in Paper I), in order to properly
account for selection biases, covariances, parameter degeneracies
and systematic uncertainties. Otherwise, spuriously tight constraints
may be obtained.

2 C O S M O L O G I C A L M O D E L

2.1 Linear growth rate

Galaxy clusters are the largest and rarest virialized objects in the
Universe. Their abundance as a function of redshift provides an
extremely sensitive probe of the underlying cosmology. To predict
the cumulative number density of galaxy clusters, n(M, z), at a
given mass, M, and redshift, z, we calculate the evolution of density
fluctuations using linear perturbation theory, accounting for non-
linear effects using results from N-body simulations.

The cumulative mass function of dark matter haloes can be cal-
culated as

n(M, z) =
∫ M

0
f (σ )

ρ̄m

M ′
d ln σ−1

dM ′ dM ′ , (1)

where ρ̄m is the mean comoving matter density, σ 2 is the variance
of the linearly evolved density field (as defined in equation 5) and
f (σ ) is a fitting formula obtained from theory or N-body simula-
tions (Press & Schechter 1974; Bond et al. 1991; Sheth & Tormen
1999; Jenkins et al. 2001; Evrard et al. 2002). Remarkably, f (σ )
encompasses linear and non-linear effects in such a way that its
form is approximately independent of the cosmology assumed (see
Section 2.3).

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 406, 1796–1804



January 6, 2013 Nordic Winter School, Gausdal 
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Flat ΛCDM   
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From Weinberg et al 12 

Agreement between cluster experiments 
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Hinshaw et al 12 

Compilation of very different experiments: 
cluster counts (optical, X-ray, SZ), N-point statistics in SZ maps, peculiar 

velocities, optical shear, CMB lensing 

a)  Tinker et al 2012 
b)  Zu et al 2012 
c)  Vikhlinin et  al 

2009b 
d)  Benson et al 2011 
e)  Semboloni et al 

2011 
f)  Lin et al 2012 
g)  WMAP only 
h)  WMAP+eCMB

+BAO+H0 
i)  Hudson & Turnbull 

2012 
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Constraints on dark energy 
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All data sets 

 2.  SNIa, fgas, XLF, CMB, BAO to measure the cosmic expansion of the 
background density. We use three expansion histories well fitted by 
these data sets. 

1.  Abundance of massive clusters (X-ray Luminosity Function, XLF) to 
measure cosmic expansion and growth of matter fluctuations with 
respect to the mean density. 

i) flat ΛCDM          w=-1, Ωk=0  
ii) flat wCDM          w constant, Ωk=0 
iii) non-flat ΛCDM  w=-1, Ωk constant  
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XLF(survey+follow-up data): BCS
+REFLEX+MACS (z<0.5) 238 
clusters (Mantz et al 10a). Including 
systematics. 
 

Mantz et al 10a 

Ωm  =  0.23 +-  0.04   
σ8   =  0.82 +-  0.05 
w    =  -1.01 +- 0.20 

Dark Energy results: flat wCDM   
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Green: SNIa (Kowalski et al 08, Union) 
Blue: CMB (WMAP5) 
Red: cluster fgas (Allen et al 08) 
Brown: BAO (Percival et al 07) 

XLF(survey+follow-up data): BCS
+REFLEX+MACS (z<0.5) 238 
clusters (Mantz et al 10a). Including 
systematics 
 

Mantz et al 10a 

Ωm  =  0.23 +-  0.04   
σ8   =  0.82 +-  0.05 
w    =  -1.01 +- 0.20 

Dark Energy results: flat wCDM   



January 6, 2013 Nordic Winter School, Gausdal 

Dark Energy results: flat wCDM   

Green: SNIa (Kowalski et al 08, Union) 
Blue: CMB (WMAP5) 
Red: cluster fgas (Allen et al 08) 
Brown: BAO (Percival et al 07) 
Gold: XLF+fgas+WMAP5+SNIa+BAO 

XLF(survey+follow-up data): BCS
+REFLEX+MACS (z<0.5) 238 
clusters (Mantz et al 10a). Including 
systematics 
 

Mantz et al 10a 

Ωm  =  0.23 +-  0.04   
σ8   =  0.82 +-  0.05 
w    =  -1.01 +- 0.20 

Good mass proxy at all z 
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Grey: XLF+WMAP5 
Blue: CMB (WMAP5) 
Gold: XLF+fgas+WMAP5+SNIa+BAO 
 
       Ωm  =  0.272 +-  0.016   
       σ8   =  0.79 +-  0.03 
       w    =  -0.96 +- 0.06 
  XLF(survey+follow-up data): BCS
+REFLEX+MACS (z<0.5) 238 
clusters (Mantz et al 10a). Including 
systematics 
 

Mantz et al 10a 

Ωm  =  0.23 +-  0.04   
σ8   =  0.82 +-  0.05 
w    =  -1.01 +- 0.20 

Dark Energy results: flat wCDM   
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Red: cluster fgas (Allen et al 08) 
 
 XLF(survey+follow-up data): BCS
+REFLEX+MACS (z<0.5) 238 
clusters (Mantz et al 10a). Including 
systematics 
 

Allen, Evrard & Mantz 11 

Ωm  =  0.23 +-  0.04   
σ8   =  0.82 +-  0.05 
w    =  -1.01 +- 0.20 

Both cluster experiments combined 

Dark Energy results: flat wCDM   
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Dark Energy results: flat wCDM   

Green: BAO 
Blue: CMB (WMAP) 
Red: Clusters 
Gold: SNIa 

Vikhlinin et al 10 

Ωm  =  0.26 +-  0.08   
σ8   =  0.81 +-  0.04 
w    =  -1.14 +- 0.21 
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Beyond ΛCDM: Neutrino properties 
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-  Neutrino flavor oscillation experiments (solar, atmospheric, reactors) have 
conclusively shown that the neutrino mass eigenstates are non-degenerate 
(e.g. Fukuda et al 98, Ahn et al 03, 06, Sanchez et al 03, Aharmim et al 05, 
Beringer et al 12, etc.). However, measuring the absolute mass scale is still 
challenging.  

-  Three ‘normal’ neutrino species: νe, νµ, ντ. There are though some hints for 
possible additional, sterile neutrinos from oscillation data (Kopp et al 11, 
Huber 11, etc.). Relatively recent, CMB observations have also seemed to 
favor the presence of additional radiation at the time of decoupling over that 
from photons and the three ‘normal’ neutrino species. 

-  Recent constraints from laboratory experiments: lower bound on Mν=Σimi (sum 
of the masses of the different species) of ~0.056 (0.095)eV/c2 for the normal 
(inverted) hierarchy; and an upper bound of ~6eV/c2 (from hereon c=1). The 
Heidelberg-Moscow experiment has limited the mass of the electron neutrino 
to <0.35eV (Klapdor-Kleingrothaus & Krivosheina 06). 

Neutrinos and Cosmology 
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-  Neutrinos play an important role in the early universe and therefore affect 
cosmological observations (review: Lesgourges & Pastor 06). 

-  The primary cosmological effect of non-zero neutrino mass is to suppress the 
formation of cosmic structure on intermediate and small scales. CMB contains 
information on LSS at early times. The combination with probes today give 
good constraints on the absolute neutrino mass scale. 

-  Interference with dark energy and inflation physics. Combining experiments 
helps. 

-  Combined cosmological observations: Σimi<~0.3-0.6eV. 

-  Neutrino oscillation experiments favor a large mass for sterile neutrinos 
yielding a lower limit on their mass of 1eV which is incompatible with 
cosmological observations. This can be alleviated with for example initial 
lepton asymmetry (Hannestad et al 12). 

Neutrinos and Cosmology 



January 6, 2013 Nordic Winter School, Gausdal 

Robust constraints on neutrino properties 

Mantz et al 10c 

Σmν<0.33eV (95.4%) Σmν<0.7eV (95.4%)   Neff=3.7+-0.7 (68.3%) 

Even more useful when allowing Neff, 
Ωk, r, nt (tensors) to be free 

ΛCDM+Σmν: Breaking the degeneracy 
in the Σmν, σ8 plane  

Note differences in scale between panels 
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Mantz et al 10c 

Robust constraints on neutrino properties 
Basic: ΛCDM+Σmν	



CMB+fgas+SNIa+BAO CMB+fgas+SNIa+BAO+XLF 
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Mantz et al 10c 

Robust constraints on neutrino properties 
ΛCDM+Neff	

 ΛCDM+Neff+Mν +Ωk+r+nt	



CMB+fgas+SNIa+BAO 
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Mantz et al 10c 

Breaking degeneracies with other data sets 
Neff is free 
 
Green contours: CMB+fgas
+SNIa+BAO (strong 
degeneracy). 
 
Blue contours: adding H0 at 
the 5% level helps significantly 
with this degeneracy. 
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Other cosmological constraints on neutrinos 
Dotted orange: WMAP7 
 
Solid orange: WiggleZ
+WMAP7 
 
Dotted black: WMAP7+BAO
+H0 
 
Solid black: WiggleZ
+WMAP7+BAO+H0 
 
Dashed grey: lower limit, 
oscillation experiments 
 
Other vertical lines: 95% 
confidence upper limits 

Riemer-Sørensen et al 12 
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Effects of neutrinos on the CMB power spectrum 

Hinshaw et al 12 
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Recent cosmological constraints on neutrinos 

Hinshaw et al 12 
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The small-scale anisotropy is enhanced by a factor of 5(1 + 4fν/15)−1 due to the decay of the gravitational
potential at the horizon crossing during the radiation era. Since the anisotropic stress alters the gravitational
potential (via the field equations), it also alters the degree to which the small-scale anisotropy is enhanced
relative to the large-scale anisotropy. Therefore, the effect of anisotropic stress can be removed by multiplying
C

TT
l (l � 130) by (1 + 4fν/15)2. In the bottom-left panel of Figure 8, we have multiplied C

TT
l at all l by

[1 + 4fν(7)/15]2/[1 + 4fν(3.04)/15]2, where fν(7) = 0.6139 and fν(3.04) = 0.4084. The two models now agree
well, but the Neff = 7 model is greater than the standard model at l � 130 because the anisotropic stress term
does not affect these multipoles.

4. Enhanced damping tail - While the increased expansion rate reduces the sound horizon, rs, it also reduces
the diffusion length, rd, that photons travel by random walk. The mean free path of a photon is λC = 1/(σTne).
Over the age of the universe, t, photons diffuse a distance rd ≈

�
3ct/λC λC ∝

�
λC/H, and fluctuations

within rd are exponentially suppressed (Silk damping, Silk 1968). Now, while the sound horizon is proportional
to 1/H, the diffusion length is proportional to 1/

√
H, due to the random walk nature of the diffusion, thus,

rd/rs ∝
√
H. As a result, increasing the expansion rate increases the diffusion length relative to the sound

horizon, which enhances the Silk damping of the small-scale anisotropy (Bashinsky & Seljak 2004). Note that
rd/rs also depends on the mean free path of the photon, rd/rs ∝

√
HλC ∝

�
H/ne, thus one can compensate

for the increased expansion rate by increasing the number density of free electrons. One way to achieve this is
to reduce the helium abundance, Yp (Bashinsky & Seljak 2004; Hou et al. 2011): since helium recombines earlier
than the epoch of photon decoupling, the number density of free electrons at the decoupling epoch is given by
ne = (1 − Yp)nb, where nb is the number density of baryons (Hu et al. 1995, see also Section 4.8 of Komatsu
et al. 2011). In the bottom-right panel of Figure 8, we show C

TT
l for the Neff = 7 model after reducing Yp

from 0.24 to 0.08308, which preserves the ratio rd/rs. The solid and dashed model curves now agree completely
(except for l � 130 where our compensation for anisotropic stress was ad hoc).

4.3.2. Measurements of Neff and YHe: testing Big Bang nucleosynthesis

Using the five-year WMAP data alone, Dunkley et al. (2009) measured the effect of anisotropic stress on the power
spectrum and set a lower bound on Neff . However, BAO and H0 data were still required to set an upper bound due to
a degeneracy with the matter-radiation equality redshift (Komatsu et al. 2009). This was unchanged for the seven-year
analysis (Komatsu et al. 2011). Now, with much improved measurements of the enhanced damping tail from SPT
and ACT (§2.2.1), CMB data alone are able to determine Neff (Dunkley et al. 2011; Keisler et al. 2011). Using the
nine-year WMAP data combined with SPT and ACT, we find

Neff = 3.89± 0.67 (68% CL) WMAP+eCMB; YHe fixed.

The inclusion of lensing in the eCMB likelihood helps this constraint because the primary CMB fluctuations are still
relatively insensitive to a combination of Neff and Ωmh

2, as described above. CMB lensing data help constrain Ωmh
2

by constraining σ8. The measurement is further improved by including the BAO and H0 data, which reduces the
degeneracy with the matter-radiation equality redshift. We find

Neff = 3.26± 0.35 (68% CL) WMAP+eCMB+BAO+H0; YHe fixed,

which is consistent with the standard model value of Neff = 3.04. We thus find no evidence for the existence of extra
radiation species.
As noted above, this measurement of Neff relies on the damping tail measured by ACT and SPT, which is also

affected by the primordial helium abundance, YHe. Figure 9 shows the joint, marginalized constraints on Neff and YHe

using the above two data combinations. As expected, these two parameters are anti-correlated when fit to CMB data
alone (black contours). When BAO and H0 measurements are included, we find

Neff = 2.83± 0.38

YHe = 0.308+0.032
−0.031

(68% CL) WMAP+eCMB+BAO+H0.

When combined with our measurement of the baryon density, both of these values are within the 95% CL region of
the standard Big Bang nucleosynthesis (BBN) prediction (Steigman 2008), shown by the green curve in Figure 9. Our
measurement provides strong support for the standard BBN scenario. Table 7 summarizes the nine-year measurements
of Neff and YHe.

4.4. Neutrino Mass

The mean energy of a relativistic neutrino at the epoch of recombination is �E� = 0.58 eV. In order for the CMB
power spectrum to be sensitive to a non-zero neutrino mass, at least one species of neutrino must have a mass in excess
of this mean energy. If one assumes that there are Neff = 3.04 neutrino species with degenerate mass eigenstates, this
would suggest that the lowest total mass that could be detected with CMB data is

�
mν ∼ 1.8 eV. Using a refined

argument, Ichikawa et al. (2005) argue that one could reach ∼1.5 eV. When we add
�

mν as a parameter to the
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The inclusion of lensing in the eCMB likelihood helps this constraint because the primary CMB fluctuations are still
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by constraining σ8. The measurement is further improved by including the BAO and H0 data, which reduces the
degeneracy with the matter-radiation equality redshift. We find

Neff = 3.26± 0.35 (68% CL) WMAP+eCMB+BAO+H0; YHe fixed,

which is consistent with the standard model value of Neff = 3.04. We thus find no evidence for the existence of extra
radiation species.
As noted above, this measurement of Neff relies on the damping tail measured by ACT and SPT, which is also

affected by the primordial helium abundance, YHe. Figure 9 shows the joint, marginalized constraints on Neff and YHe
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the standard Big Bang nucleosynthesis (BBN) prediction (Steigman 2008), shown by the green curve in Figure 9. Our
measurement provides strong support for the standard BBN scenario. Table 7 summarizes the nine-year measurements
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The mean energy of a relativistic neutrino at the epoch of recombination is �E� = 0.58 eV. In order for the CMB
power spectrum to be sensitive to a non-zero neutrino mass, at least one species of neutrino must have a mass in excess
of this mean energy. If one assumes that there are Neff = 3.04 neutrino species with degenerate mass eigenstates, this
would suggest that the lowest total mass that could be detected with CMB data is
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argument, Ichikawa et al. (2005) argue that one could reach ∼1.5 eV. When we add
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TABLE 11
Estimatesa and the corresponding 68% intervals of the
primordial non-Gaussianity parameters (f local

NL , fequil
NL ,

forthog
NL ) and the point source bispectrum amplitude, bsrc (in

units of 10−5 µK3 sr2), from the WMAP 7-year temperature
maps

Band Foregroundb f local
NL fequil

NL forthog
NL bsrc

V+W Raw 59 ± 21 33 ± 140 −199 ± 104 N/A
V+W Clean 42 ± 21 29 ± 140 −198 ± 104 N/A
V+W Marg.c 32 ± 21 26 ± 140 −202 ± 104 −0.08 ± 0.12
V Marg. 43 ± 24 64 ± 150 −98 ± 115 0.32 ± 0.23
W Marg. 39 ± 24 36 ± 154 −257 ± 117 −0.13 ± 0.19

a The values quoted for “V+W” and “Marg.” are our best
estimates from the WMAP 7-year data. In all cases, the full-
resolution temperature maps at HEALPix Nside = 1024 are
used.
b In all cases, the KQ75y7 mask is used.
c “Marg.” means that the foreground templates (synchrotron,
free-free, and dust) have been marginalized over. When the fore-
ground templates are marginalized over, the raw and clean maps
yield the same fNL values.

found that, using the “effective field theory of in-
flation” approach (Cheung et al. 2008), a certain
linear combination of similarly equilateral shapes
can yield a distinct shape which is orthogonal to
both the local and equilateral forms.

Note that these are not the most general forms one
can write down, and there are other forms which
would probe different aspects of the physics of in-
flation (Moss & Xiong 2007; Moss & Graham 2007;
Chen et al. 2007; Holman & Tolley 2008; Chen & Wang
2010; Chen & Wang 2010).
Of these forms, the local form bispectrum has special

significance. Creminelli & Zaldarriaga (2004) showed
that not only models with the canonical kinetic term,
but all single-inflation models predict the bispectrum
in the squeezed limit given by Eq. (62), regardless of
the form of potential, kinetic term, slow-roll, or initial
vacuum state (also see Seery & Lidsey 2005; Chen et al.
2007; Cheung et al. 2008). This means that a convincing
detection of f local

NL would rule out all single-field inflation
models.

6.2. Analysis Method and Results

The first limit on f local
NL was obtained from the COBE

4-year data (Bennett et al. 1996) by Komatsu et al.
(2002), using the angular bispectrum. The limit
was improved by an order of magnitude when the
WMAP first year data were used to constrain f local

NL
(Komatsu et al. 2003). Since then the limits have
improved steadily as WMAP collect more years of
data and the bispectrum method for estimating f local

NL
has improved (Komatsu et al. 2005; Creminelli et al.
2006, 2007; Spergel et al. 2007; Yadav & Wandelt 2008;
Komatsu et al. 2009a; Smith et al. 2009).35

35 For references to other methods for estimating f local
NL , which do

not use the bispectrum directly, see Section 3.5 of Komatsu et al.
(2009a). Recently, the “skewness power spectrum” has been pro-
posed as a new way to measure f local

NL and other non-Gaussian
components such as the secondary anisotropies and point sources
(Munshi & Heavens 2010; Smidt et al. 2009; Munshi et al. 2009;
Calabrese et al. 2010). In the limit that noise is uniform, their
estimator is equivalent to that of Komatsu et al. (2005), which
also allows for simultaneous estimations of multiple sources of non-

In this paper, we shall adopt the optimal estimator
(developed by Babich 2005; Creminelli et al. 2006, 2007;
Smith & Zaldarriaga 2006; Yadav et al. 2008), which
builds on and significantly improves the original bispec-
trum estimator proposed by Komatsu et al. (2005), es-
pecially when the spatial distribution of instrumental
noise is not uniform. For details of the method, see Ap-
pendix A of Smith et al. (2009) for f local

NL , and Section 4.1

of Senatore et al. (2010) for f equil
NL and forthog

NL . To con-
struct the optimal estimators, we need to specify the cos-
mological parameters. We use the 5-year ΛCDM param-
eters from WMAP+BAO+SN, for which ns = 0.96.
We also constrain the bispectrum due to residual (un-

resolved) point sources, bsrc. The optimal estimator for
bsrc is constructed by replacing alm/Cl in equation (A24)
of Komatsu et al. (2009a) with (C−1a)lm, and using their
equations (A17) and (A5). The C−1 matrix is computed
by the multigrid-based algorithm of Smith et al. (2007).
We use the V- and W-band maps at the HEALPix res-

olution Nside = 1024. As the optimal estimator weights
the data optimally at all multipoles, we no longer need
to choose the maximum multipole used in the analysis,
i.e., we use all the data. We use both the raw maps (be-
fore cleaning foreground) and foreground-reduced (clean)
maps to quantify the foreground contamination of fNL
parameters. For all cases, we find the best limits on
fNL parameters by combining the V- and W-band maps,
and marginalizing over the synchrotron, free-free, and
dust foreground templates (Gold et al. 2010). As for
the mask, we always use the KQ75y7 mask (Gold et al.
2010).
In Table 11, we summarize our results:

1. Local form results. The 7-year best estimate of
f local
NL is

f local
NL = 32± 21 (68% CL).

The 95% limit is −10 < f local
NL < 74. When

the raw maps are used, we find f local
NL = 59 ±

21 (68% CL). When the clean maps are used, but
foreground templates are not marginalized over,
we find f local

NL = 42 ± 21 (68% CL). These results
(in particular the clean-map versus the foreground
marginalized) indicate that the foreground emis-
sion makes a difference at the level of ∆f local

NL ∼
10.36 We find that the V+W result is lower than
the V-band or W-band results. This is possible,
as the V+W result contains contributions from the
cross-correlations of V and W such as 〈VVW〉 and
〈VWW〉.

2. Equilateral form results. The 7-year best esti-
mate of f equil

NL is

f equil
NL = 26± 140 (68% CL).

Gaussianity (see Appendix A of Komatsu et al. 2009a). The skew-
ness power spectrum method provides a means to visualize the
shape of various bispectra as a function of multipoles.

36 The effect of the foreground marginalization depends on
an estimator. Using the needlet bispectrum, Cabella et al.
Cabella et al. (2009) found f local

NL = 35± 42 and 38± 47 (68% CL)
with and without the foreground marginalization, respectively.
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The 95% limit is −214 < f equil
NL < 266. For f equil

NL ,
the foreground marginalization does not shift the
central values very much, ∆f equil

NL = −3. This
makes sense, as the equilateral bispectrum does not
couple small-scale modes to very large-scale modes
l ! 10, which are sensitive to the foreground emis-
sion. On the other hand, the local form bispectrum
is dominated by the squeezed triangles, which do
couple large and small scales modes.

3. Orthogonal form results. The 7-year best esti-
mate of forthog

NL is

forthog
NL = −202± 104 (68% CL).

The 95% limit is −410 < forthog
NL < 6. The fore-

ground marginalization has little effect, ∆forthog
NL =

−4.

As for the point-source bispectrum, we do not detect
bsrc in V, W, or V+W. In Komatsu et al. (2009a), we
estimated that the residual sources could bias f local

NL by
a small positive amount, and applied corrections using
Monte Carlo simulations. In this paper, we do not at-
tempt to make such corrections, but we note that sources
could give ∆f local

NL ∼ 2 (note that the simulations used by
Komatsu et al. (2009a) likely overestimated the effect of
sources by a factor of two). As the estimator has changed
from that used by Komatsu et al. (2009a), extrapolating
the previous results is not trivial. Source corrections to
f equil
NL and forthog

NL could be larger (Komatsu et al. 2009a),
but we have not estimated the magnitude of the effect
for the 7-year data.
We used the linear perturbation theory to calculate

the angular bispectrum of primordial non-Gaussianity
(Komatsu & Spergel 2001). Second-order effects
(Pyne & Carroll 1996; Mollerach & Matarrese 1997;
Bartolo et al. 2006, 2007; Pitrou 2009a,b) are expected
to give f local

NL ∼ 1 (Nitta et al. 2009; Senatore et al.
2009a,b; Khatri & Wandelt 2009a,b; Boubekeur et al.
2009; Pitrou et al. 2008) and are negligible given the
noise level of the WMAP 7-year data.
Among various sources of secondary non-Gaussianities

which might contaminate measurements of primor-
dial non-Gaussianity (in particular f local

NL ), a coupling
between the ISW effect and the weak gravitational
lensing is the most dominant source of confusion
for f local

NL (Goldberg & Spergel 1999; Verde & Spergel
2002; Smith & Zaldarriaga 2006; Serra & Cooray 2008;
Hanson et al. 2009; Mangilli & Verde 2009). While this
contribution is expected to be detectable and bias the
measurement of f local

NL for Planck, it is expected to be
negligible for WMAP: using the method of Hanson et al.
(2009), we estimate that the expected signal-to-noise ra-
tio of this term in the WMAP 7-year data is about 0.8.
We also estimate that this term can give f local

NL a po-
tential positive bias of ∆f local

NL ∼ 2.7. Calabrese et al.
(2010) used the skewness power spectrum method of
Munshi et al. (2009) to search for this term in the
WMAP 5-year data and found a null result. If we sub-
tract ∆f local

NL estimated above (for the residual source
and the ISW-lensing coupling) from the measured value,
∆f local

NL becomes more consistent with zero.

From these results, we conclude that the WMAP 7-
year data are consistent with Gaussian primordial fluc-
tuations to within 95% CL. When combined with the
limit on f local

NL from SDSS, −29 < f local
NL < 70 (95% CL

Slosar et al. 2008), we find −5 < f local
NL < 59 (95% CL).

7. SUNYAEV–ZEL’DOVICH EFFECT

We review the basics of the SZ effect in Section 7.1.
In Section 7.2, we shall test our optimal estimator for
extracting the SZ signal from the WMAP data using the
brightest SZ source on the sky: the Coma cluster. We
also present an improved measurement of the SZ effect
toward the Coma cluster (3.6σ).
The most significant result from Section 7.3 is the dis-

covery of the thermal/dynamical effect of clusters on
the SZ effect. We shall present the measurements of
the SZ effects toward nearby (z ≤ 0.09) galaxy clus-
ters in Vikhlinin et al.’s sample (Vikhlinin et al. 2009a),
which were used to infer the cosmological parameters
(Vikhlinin et al. 2009b). We then compare the measured
SZ flux to the expected flux from the X-ray data on the
individual clusters, finding a good agreement. Signifi-
cance of detection (from merely 11 clusters, excluding
Coma) is 6.5σ. By dividing the sample into cooling-flow
and non-cooling-flow clusters (or relaxed and non-relaxed
clusters), we find a significant difference in the SZ effect
between these sub-samples.
In Section 7.4, we shall report a significant (∼ 8σ) sta-

tistical detection of the SZ effect at hundreds of positions
of the known clusters. We then compare the measured
SZ flux to theoretical models as well as to an X-ray-
calibrated empirical model, and discuss implications of
our measurement, especially a recent measurement of the
lower-than-theoretically-expected SZ power spectrum by
the SPT collaboration.
Note that the analyses presented in Section 7.3 and

7.4 are similar but different in one important aspect:
the former uses a handful (29) of clusters with well-
measured Chandra X-ray data, while the latter uses hun-
dreds of clusters without detailed X-ray data. Therefore,
while the latter results have smaller statistical errors (and
much larger systematic errors), the former results have
much smaller systematic errors (and larger statistical er-
rors).

7.1. Motivation and Background

When CMB photons encounter hot electrons in clus-
ters of galaxies, the temperature of CMB changes
due to the inverse Compton scattering by these elec-
trons. This effect, known as the thermal SZ ef-
fect (Zel’dovich & Sunyaev 1969; Sunyaev & Zel’dovich
1972), is a source of significant additional (secondary)
anisotropies in the microwave sky (see Rephaeli 1995;
Birkinshaw 1999; Carlstrom et al. 2002, for reviews).
The temperature change due to the SZ effect in units

of thermodynamic temperature, ∆TSZ, depends on fre-
quency, ν, and is given by (for a spherically symmetric
distribution of gas):

∆TSZ(θ)

Tcmb
= gν

σT

mec2

∫ lout

−lout

dl Pe

(

√

l2 + θ2D2
A

)

, (65)

where θ is the angular distance from the center of a clus-
ter of galaxies on the sky, DA the proper (not comoving)
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dial non-Gaussianity (in particular f local

NL ), a coupling
between the ISW effect and the weak gravitational
lensing is the most dominant source of confusion
for f local

NL (Goldberg & Spergel 1999; Verde & Spergel
2002; Smith & Zaldarriaga 2006; Serra & Cooray 2008;
Hanson et al. 2009; Mangilli & Verde 2009). While this
contribution is expected to be detectable and bias the
measurement of f local

NL for Planck, it is expected to be
negligible for WMAP: using the method of Hanson et al.
(2009), we estimate that the expected signal-to-noise ra-
tio of this term in the WMAP 7-year data is about 0.8.
We also estimate that this term can give f local

NL a po-
tential positive bias of ∆f local

NL ∼ 2.7. Calabrese et al.
(2010) used the skewness power spectrum method of
Munshi et al. (2009) to search for this term in the
WMAP 5-year data and found a null result. If we sub-
tract ∆f local

NL estimated above (for the residual source
and the ISW-lensing coupling) from the measured value,
∆f local

NL becomes more consistent with zero.

From these results, we conclude that the WMAP 7-
year data are consistent with Gaussian primordial fluc-
tuations to within 95% CL. When combined with the
limit on f local

NL from SDSS, −29 < f local
NL < 70 (95% CL

Slosar et al. 2008), we find −5 < f local
NL < 59 (95% CL).

7. SUNYAEV–ZEL’DOVICH EFFECT

We review the basics of the SZ effect in Section 7.1.
In Section 7.2, we shall test our optimal estimator for
extracting the SZ signal from the WMAP data using the
brightest SZ source on the sky: the Coma cluster. We
also present an improved measurement of the SZ effect
toward the Coma cluster (3.6σ).
The most significant result from Section 7.3 is the dis-

covery of the thermal/dynamical effect of clusters on
the SZ effect. We shall present the measurements of
the SZ effects toward nearby (z ≤ 0.09) galaxy clus-
ters in Vikhlinin et al.’s sample (Vikhlinin et al. 2009a),
which were used to infer the cosmological parameters
(Vikhlinin et al. 2009b). We then compare the measured
SZ flux to the expected flux from the X-ray data on the
individual clusters, finding a good agreement. Signifi-
cance of detection (from merely 11 clusters, excluding
Coma) is 6.5σ. By dividing the sample into cooling-flow
and non-cooling-flow clusters (or relaxed and non-relaxed
clusters), we find a significant difference in the SZ effect
between these sub-samples.
In Section 7.4, we shall report a significant (∼ 8σ) sta-

tistical detection of the SZ effect at hundreds of positions
of the known clusters. We then compare the measured
SZ flux to theoretical models as well as to an X-ray-
calibrated empirical model, and discuss implications of
our measurement, especially a recent measurement of the
lower-than-theoretically-expected SZ power spectrum by
the SPT collaboration.
Note that the analyses presented in Section 7.3 and

7.4 are similar but different in one important aspect:
the former uses a handful (29) of clusters with well-
measured Chandra X-ray data, while the latter uses hun-
dreds of clusters without detailed X-ray data. Therefore,
while the latter results have smaller statistical errors (and
much larger systematic errors), the former results have
much smaller systematic errors (and larger statistical er-
rors).

7.1. Motivation and Background

When CMB photons encounter hot electrons in clus-
ters of galaxies, the temperature of CMB changes
due to the inverse Compton scattering by these elec-
trons. This effect, known as the thermal SZ ef-
fect (Zel’dovich & Sunyaev 1969; Sunyaev & Zel’dovich
1972), is a source of significant additional (secondary)
anisotropies in the microwave sky (see Rephaeli 1995;
Birkinshaw 1999; Carlstrom et al. 2002, for reviews).
The temperature change due to the SZ effect in units

of thermodynamic temperature, ∆TSZ, depends on fre-
quency, ν, and is given by (for a spherically symmetric
distribution of gas):

∆TSZ(θ)

Tcmb
= gν

σT

mec2

∫ lout

−lout

dl Pe

(

√

l2 + θ2D2
A

)

, (65)

where θ is the angular distance from the center of a clus-
ter of galaxies on the sky, DA the proper (not comoving)
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The 95% limit is −214 < f equil
NL < 266. For f equil

NL ,
the foreground marginalization does not shift the
central values very much, ∆f equil

NL = −3. This
makes sense, as the equilateral bispectrum does not
couple small-scale modes to very large-scale modes
l ! 10, which are sensitive to the foreground emis-
sion. On the other hand, the local form bispectrum
is dominated by the squeezed triangles, which do
couple large and small scales modes.

3. Orthogonal form results. The 7-year best esti-
mate of forthog

NL is

forthog
NL = −202± 104 (68% CL).

The 95% limit is −410 < forthog
NL < 6. The fore-

ground marginalization has little effect, ∆forthog
NL =

−4.
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NL could be larger (Komatsu et al. 2009a),
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We used the linear perturbation theory to calculate
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also present an improved measurement of the SZ effect
toward the Coma cluster (3.6σ).
The most significant result from Section 7.3 is the dis-

covery of the thermal/dynamical effect of clusters on
the SZ effect. We shall present the measurements of
the SZ effects toward nearby (z ≤ 0.09) galaxy clus-
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which were used to infer the cosmological parameters
(Vikhlinin et al. 2009b). We then compare the measured
SZ flux to the expected flux from the X-ray data on the
individual clusters, finding a good agreement. Signifi-
cance of detection (from merely 11 clusters, excluding
Coma) is 6.5σ. By dividing the sample into cooling-flow
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clusters), we find a significant difference in the SZ effect
between these sub-samples.
In Section 7.4, we shall report a significant (∼ 8σ) sta-

tistical detection of the SZ effect at hundreds of positions
of the known clusters. We then compare the measured
SZ flux to theoretical models as well as to an X-ray-
calibrated empirical model, and discuss implications of
our measurement, especially a recent measurement of the
lower-than-theoretically-expected SZ power spectrum by
the SPT collaboration.
Note that the analyses presented in Section 7.3 and

7.4 are similar but different in one important aspect:
the former uses a handful (29) of clusters with well-
measured Chandra X-ray data, while the latter uses hun-
dreds of clusters without detailed X-ray data. Therefore,
while the latter results have smaller statistical errors (and
much larger systematic errors), the former results have
much smaller systematic errors (and larger statistical er-
rors).

7.1. Motivation and Background

When CMB photons encounter hot electrons in clus-
ters of galaxies, the temperature of CMB changes
due to the inverse Compton scattering by these elec-
trons. This effect, known as the thermal SZ ef-
fect (Zel’dovich & Sunyaev 1969; Sunyaev & Zel’dovich
1972), is a source of significant additional (secondary)
anisotropies in the microwave sky (see Rephaeli 1995;
Birkinshaw 1999; Carlstrom et al. 2002, for reviews).
The temperature change due to the SZ effect in units
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TABLE 11
Estimatesa and the corresponding 68% intervals of the
primordial non-Gaussianity parameters (f local

NL , fequil
NL ,

forthog
NL ) and the point source bispectrum amplitude, bsrc (in

units of 10−5 µK3 sr2), from the WMAP 7-year temperature
maps

Band Foregroundb f local
NL fequil

NL forthog
NL bsrc

V+W Raw 59 ± 21 33 ± 140 −199 ± 104 N/A
V+W Clean 42 ± 21 29 ± 140 −198 ± 104 N/A
V+W Marg.c 32 ± 21 26 ± 140 −202 ± 104 −0.08 ± 0.12
V Marg. 43 ± 24 64 ± 150 −98 ± 115 0.32 ± 0.23
W Marg. 39 ± 24 36 ± 154 −257 ± 117 −0.13 ± 0.19

a The values quoted for “V+W” and “Marg.” are our best
estimates from the WMAP 7-year data. In all cases, the full-
resolution temperature maps at HEALPix Nside = 1024 are
used.
b In all cases, the KQ75y7 mask is used.
c “Marg.” means that the foreground templates (synchrotron,
free-free, and dust) have been marginalized over. When the fore-
ground templates are marginalized over, the raw and clean maps
yield the same fNL values.

found that, using the “effective field theory of in-
flation” approach (Cheung et al. 2008), a certain
linear combination of similarly equilateral shapes
can yield a distinct shape which is orthogonal to
both the local and equilateral forms.

Note that these are not the most general forms one
can write down, and there are other forms which
would probe different aspects of the physics of in-
flation (Moss & Xiong 2007; Moss & Graham 2007;
Chen et al. 2007; Holman & Tolley 2008; Chen & Wang
2010; Chen & Wang 2010).
Of these forms, the local form bispectrum has special

significance. Creminelli & Zaldarriaga (2004) showed
that not only models with the canonical kinetic term,
but all single-inflation models predict the bispectrum
in the squeezed limit given by Eq. (62), regardless of
the form of potential, kinetic term, slow-roll, or initial
vacuum state (also see Seery & Lidsey 2005; Chen et al.
2007; Cheung et al. 2008). This means that a convincing
detection of f local

NL would rule out all single-field inflation
models.

6.2. Analysis Method and Results

The first limit on f local
NL was obtained from the COBE

4-year data (Bennett et al. 1996) by Komatsu et al.
(2002), using the angular bispectrum. The limit
was improved by an order of magnitude when the
WMAP first year data were used to constrain f local

NL
(Komatsu et al. 2003). Since then the limits have
improved steadily as WMAP collect more years of
data and the bispectrum method for estimating f local

NL
has improved (Komatsu et al. 2005; Creminelli et al.
2006, 2007; Spergel et al. 2007; Yadav & Wandelt 2008;
Komatsu et al. 2009a; Smith et al. 2009).35

35 For references to other methods for estimating f local
NL , which do

not use the bispectrum directly, see Section 3.5 of Komatsu et al.
(2009a). Recently, the “skewness power spectrum” has been pro-
posed as a new way to measure f local

NL and other non-Gaussian
components such as the secondary anisotropies and point sources
(Munshi & Heavens 2010; Smidt et al. 2009; Munshi et al. 2009;
Calabrese et al. 2010). In the limit that noise is uniform, their
estimator is equivalent to that of Komatsu et al. (2005), which
also allows for simultaneous estimations of multiple sources of non-

In this paper, we shall adopt the optimal estimator
(developed by Babich 2005; Creminelli et al. 2006, 2007;
Smith & Zaldarriaga 2006; Yadav et al. 2008), which
builds on and significantly improves the original bispec-
trum estimator proposed by Komatsu et al. (2005), es-
pecially when the spatial distribution of instrumental
noise is not uniform. For details of the method, see Ap-
pendix A of Smith et al. (2009) for f local

NL , and Section 4.1

of Senatore et al. (2010) for f equil
NL and forthog

NL . To con-
struct the optimal estimators, we need to specify the cos-
mological parameters. We use the 5-year ΛCDM param-
eters from WMAP+BAO+SN, for which ns = 0.96.
We also constrain the bispectrum due to residual (un-

resolved) point sources, bsrc. The optimal estimator for
bsrc is constructed by replacing alm/Cl in equation (A24)
of Komatsu et al. (2009a) with (C−1a)lm, and using their
equations (A17) and (A5). The C−1 matrix is computed
by the multigrid-based algorithm of Smith et al. (2007).
We use the V- and W-band maps at the HEALPix res-

olution Nside = 1024. As the optimal estimator weights
the data optimally at all multipoles, we no longer need
to choose the maximum multipole used in the analysis,
i.e., we use all the data. We use both the raw maps (be-
fore cleaning foreground) and foreground-reduced (clean)
maps to quantify the foreground contamination of fNL
parameters. For all cases, we find the best limits on
fNL parameters by combining the V- and W-band maps,
and marginalizing over the synchrotron, free-free, and
dust foreground templates (Gold et al. 2010). As for
the mask, we always use the KQ75y7 mask (Gold et al.
2010).
In Table 11, we summarize our results:

1. Local form results. The 7-year best estimate of
f local
NL is

f local
NL = 32± 21 (68% CL).

The 95% limit is −10 < f local
NL < 74. When

the raw maps are used, we find f local
NL = 59 ±

21 (68% CL). When the clean maps are used, but
foreground templates are not marginalized over,
we find f local

NL = 42 ± 21 (68% CL). These results
(in particular the clean-map versus the foreground
marginalized) indicate that the foreground emis-
sion makes a difference at the level of ∆f local

NL ∼
10.36 We find that the V+W result is lower than
the V-band or W-band results. This is possible,
as the V+W result contains contributions from the
cross-correlations of V and W such as 〈VVW〉 and
〈VWW〉.

2. Equilateral form results. The 7-year best esti-
mate of f equil

NL is

f equil
NL = 26± 140 (68% CL).

Gaussianity (see Appendix A of Komatsu et al. 2009a). The skew-
ness power spectrum method provides a means to visualize the
shape of various bispectra as a function of multipoles.

36 The effect of the foreground marginalization depends on
an estimator. Using the needlet bispectrum, Cabella et al.
Cabella et al. (2009) found f local

NL = 35± 42 and 38± 47 (68% CL)
with and without the foreground marginalization, respectively.
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Estimatesa and the corresponding 68% intervals of the
primordial non-Gaussianity parameters (f local
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NL ) and the point source bispectrum amplitude, bsrc (in
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flation” approach (Cheung et al. 2008), a certain
linear combination of similarly equilateral shapes
can yield a distinct shape which is orthogonal to
both the local and equilateral forms.

Note that these are not the most general forms one
can write down, and there are other forms which
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that not only models with the canonical kinetic term,
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in the squeezed limit given by Eq. (62), regardless of
the form of potential, kinetic term, slow-roll, or initial
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detection of f local

NL would rule out all single-field inflation
models.

6.2. Analysis Method and Results

The first limit on f local
NL was obtained from the COBE
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(2002), using the angular bispectrum. The limit
was improved by an order of magnitude when the
WMAP first year data were used to constrain f local
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(Komatsu et al. 2003). Since then the limits have
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data and the bispectrum method for estimating f local
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NL is
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the raw maps are used, we find f local
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21 (68% CL). When the clean maps are used, but
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NL = 42 ± 21 (68% CL). These results
(in particular the clean-map versus the foreground
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10.36 We find that the V+W result is lower than
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The 95% limit is −214 < f equil
NL < 266. For f equil

NL ,
the foreground marginalization does not shift the
central values very much, ∆f equil

NL = −3. This
makes sense, as the equilateral bispectrum does not
couple small-scale modes to very large-scale modes
l ! 10, which are sensitive to the foreground emis-
sion. On the other hand, the local form bispectrum
is dominated by the squeezed triangles, which do
couple large and small scales modes.

3. Orthogonal form results. The 7-year best esti-
mate of forthog

NL is

forthog
NL = −202± 104 (68% CL).

The 95% limit is −410 < forthog
NL < 6. The fore-

ground marginalization has little effect, ∆forthog
NL =

−4.

As for the point-source bispectrum, we do not detect
bsrc in V, W, or V+W. In Komatsu et al. (2009a), we
estimated that the residual sources could bias f local

NL by
a small positive amount, and applied corrections using
Monte Carlo simulations. In this paper, we do not at-
tempt to make such corrections, but we note that sources
could give ∆f local

NL ∼ 2 (note that the simulations used by
Komatsu et al. (2009a) likely overestimated the effect of
sources by a factor of two). As the estimator has changed
from that used by Komatsu et al. (2009a), extrapolating
the previous results is not trivial. Source corrections to
f equil
NL and forthog

NL could be larger (Komatsu et al. 2009a),
but we have not estimated the magnitude of the effect
for the 7-year data.
We used the linear perturbation theory to calculate

the angular bispectrum of primordial non-Gaussianity
(Komatsu & Spergel 2001). Second-order effects
(Pyne & Carroll 1996; Mollerach & Matarrese 1997;
Bartolo et al. 2006, 2007; Pitrou 2009a,b) are expected
to give f local

NL ∼ 1 (Nitta et al. 2009; Senatore et al.
2009a,b; Khatri & Wandelt 2009a,b; Boubekeur et al.
2009; Pitrou et al. 2008) and are negligible given the
noise level of the WMAP 7-year data.
Among various sources of secondary non-Gaussianities

which might contaminate measurements of primor-
dial non-Gaussianity (in particular f local

NL ), a coupling
between the ISW effect and the weak gravitational
lensing is the most dominant source of confusion
for f local

NL (Goldberg & Spergel 1999; Verde & Spergel
2002; Smith & Zaldarriaga 2006; Serra & Cooray 2008;
Hanson et al. 2009; Mangilli & Verde 2009). While this
contribution is expected to be detectable and bias the
measurement of f local

NL for Planck, it is expected to be
negligible for WMAP: using the method of Hanson et al.
(2009), we estimate that the expected signal-to-noise ra-
tio of this term in the WMAP 7-year data is about 0.8.
We also estimate that this term can give f local

NL a po-
tential positive bias of ∆f local

NL ∼ 2.7. Calabrese et al.
(2010) used the skewness power spectrum method of
Munshi et al. (2009) to search for this term in the
WMAP 5-year data and found a null result. If we sub-
tract ∆f local

NL estimated above (for the residual source
and the ISW-lensing coupling) from the measured value,
∆f local

NL becomes more consistent with zero.

From these results, we conclude that the WMAP 7-
year data are consistent with Gaussian primordial fluc-
tuations to within 95% CL. When combined with the
limit on f local

NL from SDSS, −29 < f local
NL < 70 (95% CL

Slosar et al. 2008), we find −5 < f local
NL < 59 (95% CL).

7. SUNYAEV–ZEL’DOVICH EFFECT

We review the basics of the SZ effect in Section 7.1.
In Section 7.2, we shall test our optimal estimator for
extracting the SZ signal from the WMAP data using the
brightest SZ source on the sky: the Coma cluster. We
also present an improved measurement of the SZ effect
toward the Coma cluster (3.6σ).
The most significant result from Section 7.3 is the dis-

covery of the thermal/dynamical effect of clusters on
the SZ effect. We shall present the measurements of
the SZ effects toward nearby (z ≤ 0.09) galaxy clus-
ters in Vikhlinin et al.’s sample (Vikhlinin et al. 2009a),
which were used to infer the cosmological parameters
(Vikhlinin et al. 2009b). We then compare the measured
SZ flux to the expected flux from the X-ray data on the
individual clusters, finding a good agreement. Signifi-
cance of detection (from merely 11 clusters, excluding
Coma) is 6.5σ. By dividing the sample into cooling-flow
and non-cooling-flow clusters (or relaxed and non-relaxed
clusters), we find a significant difference in the SZ effect
between these sub-samples.
In Section 7.4, we shall report a significant (∼ 8σ) sta-

tistical detection of the SZ effect at hundreds of positions
of the known clusters. We then compare the measured
SZ flux to theoretical models as well as to an X-ray-
calibrated empirical model, and discuss implications of
our measurement, especially a recent measurement of the
lower-than-theoretically-expected SZ power spectrum by
the SPT collaboration.
Note that the analyses presented in Section 7.3 and

7.4 are similar but different in one important aspect:
the former uses a handful (29) of clusters with well-
measured Chandra X-ray data, while the latter uses hun-
dreds of clusters without detailed X-ray data. Therefore,
while the latter results have smaller statistical errors (and
much larger systematic errors), the former results have
much smaller systematic errors (and larger statistical er-
rors).

7.1. Motivation and Background

When CMB photons encounter hot electrons in clus-
ters of galaxies, the temperature of CMB changes
due to the inverse Compton scattering by these elec-
trons. This effect, known as the thermal SZ ef-
fect (Zel’dovich & Sunyaev 1969; Sunyaev & Zel’dovich
1972), is a source of significant additional (secondary)
anisotropies in the microwave sky (see Rephaeli 1995;
Birkinshaw 1999; Carlstrom et al. 2002, for reviews).
The temperature change due to the SZ effect in units

of thermodynamic temperature, ∆TSZ, depends on fre-
quency, ν, and is given by (for a spherically symmetric
distribution of gas):
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where θ is the angular distance from the center of a clus-
ter of galaxies on the sky, DA the proper (not comoving)
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The 95% limit is −214 < f equil
NL < 266. For f equil

NL ,
the foreground marginalization does not shift the
central values very much, ∆f equil

NL = −3. This
makes sense, as the equilateral bispectrum does not
couple small-scale modes to very large-scale modes
l ! 10, which are sensitive to the foreground emis-
sion. On the other hand, the local form bispectrum
is dominated by the squeezed triangles, which do
couple large and small scales modes.

3. Orthogonal form results. The 7-year best esti-
mate of forthog

NL is

forthog
NL = −202± 104 (68% CL).

The 95% limit is −410 < forthog
NL < 6. The fore-

ground marginalization has little effect, ∆forthog
NL =

−4.

As for the point-source bispectrum, we do not detect
bsrc in V, W, or V+W. In Komatsu et al. (2009a), we
estimated that the residual sources could bias f local

NL by
a small positive amount, and applied corrections using
Monte Carlo simulations. In this paper, we do not at-
tempt to make such corrections, but we note that sources
could give ∆f local

NL ∼ 2 (note that the simulations used by
Komatsu et al. (2009a) likely overestimated the effect of
sources by a factor of two). As the estimator has changed
from that used by Komatsu et al. (2009a), extrapolating
the previous results is not trivial. Source corrections to
f equil
NL and forthog

NL could be larger (Komatsu et al. 2009a),
but we have not estimated the magnitude of the effect
for the 7-year data.
We used the linear perturbation theory to calculate

the angular bispectrum of primordial non-Gaussianity
(Komatsu & Spergel 2001). Second-order effects
(Pyne & Carroll 1996; Mollerach & Matarrese 1997;
Bartolo et al. 2006, 2007; Pitrou 2009a,b) are expected
to give f local

NL ∼ 1 (Nitta et al. 2009; Senatore et al.
2009a,b; Khatri & Wandelt 2009a,b; Boubekeur et al.
2009; Pitrou et al. 2008) and are negligible given the
noise level of the WMAP 7-year data.
Among various sources of secondary non-Gaussianities

which might contaminate measurements of primor-
dial non-Gaussianity (in particular f local

NL ), a coupling
between the ISW effect and the weak gravitational
lensing is the most dominant source of confusion
for f local

NL (Goldberg & Spergel 1999; Verde & Spergel
2002; Smith & Zaldarriaga 2006; Serra & Cooray 2008;
Hanson et al. 2009; Mangilli & Verde 2009). While this
contribution is expected to be detectable and bias the
measurement of f local

NL for Planck, it is expected to be
negligible for WMAP: using the method of Hanson et al.
(2009), we estimate that the expected signal-to-noise ra-
tio of this term in the WMAP 7-year data is about 0.8.
We also estimate that this term can give f local

NL a po-
tential positive bias of ∆f local

NL ∼ 2.7. Calabrese et al.
(2010) used the skewness power spectrum method of
Munshi et al. (2009) to search for this term in the
WMAP 5-year data and found a null result. If we sub-
tract ∆f local

NL estimated above (for the residual source
and the ISW-lensing coupling) from the measured value,
∆f local

NL becomes more consistent with zero.

From these results, we conclude that the WMAP 7-
year data are consistent with Gaussian primordial fluc-
tuations to within 95% CL. When combined with the
limit on f local

NL from SDSS, −29 < f local
NL < 70 (95% CL

Slosar et al. 2008), we find −5 < f local
NL < 59 (95% CL).

7. SUNYAEV–ZEL’DOVICH EFFECT

We review the basics of the SZ effect in Section 7.1.
In Section 7.2, we shall test our optimal estimator for
extracting the SZ signal from the WMAP data using the
brightest SZ source on the sky: the Coma cluster. We
also present an improved measurement of the SZ effect
toward the Coma cluster (3.6σ).
The most significant result from Section 7.3 is the dis-

covery of the thermal/dynamical effect of clusters on
the SZ effect. We shall present the measurements of
the SZ effects toward nearby (z ≤ 0.09) galaxy clus-
ters in Vikhlinin et al.’s sample (Vikhlinin et al. 2009a),
which were used to infer the cosmological parameters
(Vikhlinin et al. 2009b). We then compare the measured
SZ flux to the expected flux from the X-ray data on the
individual clusters, finding a good agreement. Signifi-
cance of detection (from merely 11 clusters, excluding
Coma) is 6.5σ. By dividing the sample into cooling-flow
and non-cooling-flow clusters (or relaxed and non-relaxed
clusters), we find a significant difference in the SZ effect
between these sub-samples.
In Section 7.4, we shall report a significant (∼ 8σ) sta-

tistical detection of the SZ effect at hundreds of positions
of the known clusters. We then compare the measured
SZ flux to theoretical models as well as to an X-ray-
calibrated empirical model, and discuss implications of
our measurement, especially a recent measurement of the
lower-than-theoretically-expected SZ power spectrum by
the SPT collaboration.
Note that the analyses presented in Section 7.3 and

7.4 are similar but different in one important aspect:
the former uses a handful (29) of clusters with well-
measured Chandra X-ray data, while the latter uses hun-
dreds of clusters without detailed X-ray data. Therefore,
while the latter results have smaller statistical errors (and
much larger systematic errors), the former results have
much smaller systematic errors (and larger statistical er-
rors).

7.1. Motivation and Background

When CMB photons encounter hot electrons in clus-
ters of galaxies, the temperature of CMB changes
due to the inverse Compton scattering by these elec-
trons. This effect, known as the thermal SZ ef-
fect (Zel’dovich & Sunyaev 1969; Sunyaev & Zel’dovich
1972), is a source of significant additional (secondary)
anisotropies in the microwave sky (see Rephaeli 1995;
Birkinshaw 1999; Carlstrom et al. 2002, for reviews).
The temperature change due to the SZ effect in units

of thermodynamic temperature, ∆TSZ, depends on fre-
quency, ν, and is given by (for a spherically symmetric
distribution of gas):
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where θ is the angular distance from the center of a clus-
ter of galaxies on the sky, DA the proper (not comoving)
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NL = −3. This
makes sense, as the equilateral bispectrum does not
couple small-scale modes to very large-scale modes
l ! 10, which are sensitive to the foreground emis-
sion. On the other hand, the local form bispectrum
is dominated by the squeezed triangles, which do
couple large and small scales modes.

3. Orthogonal form results. The 7-year best esti-
mate of forthog

NL is

forthog
NL = −202± 104 (68% CL).

The 95% limit is −410 < forthog
NL < 6. The fore-

ground marginalization has little effect, ∆forthog
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As for the point-source bispectrum, we do not detect
bsrc in V, W, or V+W. In Komatsu et al. (2009a), we
estimated that the residual sources could bias f local

NL by
a small positive amount, and applied corrections using
Monte Carlo simulations. In this paper, we do not at-
tempt to make such corrections, but we note that sources
could give ∆f local

NL ∼ 2 (note that the simulations used by
Komatsu et al. (2009a) likely overestimated the effect of
sources by a factor of two). As the estimator has changed
from that used by Komatsu et al. (2009a), extrapolating
the previous results is not trivial. Source corrections to
f equil
NL and forthog

NL could be larger (Komatsu et al. 2009a),
but we have not estimated the magnitude of the effect
for the 7-year data.
We used the linear perturbation theory to calculate

the angular bispectrum of primordial non-Gaussianity
(Komatsu & Spergel 2001). Second-order effects
(Pyne & Carroll 1996; Mollerach & Matarrese 1997;
Bartolo et al. 2006, 2007; Pitrou 2009a,b) are expected
to give f local

NL ∼ 1 (Nitta et al. 2009; Senatore et al.
2009a,b; Khatri & Wandelt 2009a,b; Boubekeur et al.
2009; Pitrou et al. 2008) and are negligible given the
noise level of the WMAP 7-year data.
Among various sources of secondary non-Gaussianities

which might contaminate measurements of primor-
dial non-Gaussianity (in particular f local

NL ), a coupling
between the ISW effect and the weak gravitational
lensing is the most dominant source of confusion
for f local
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contribution is expected to be detectable and bias the
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NL for Planck, it is expected to be
negligible for WMAP: using the method of Hanson et al.
(2009), we estimate that the expected signal-to-noise ra-
tio of this term in the WMAP 7-year data is about 0.8.
We also estimate that this term can give f local

NL a po-
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extracting the SZ signal from the WMAP data using the
brightest SZ source on the sky: the Coma cluster. We
also present an improved measurement of the SZ effect
toward the Coma cluster (3.6σ).
The most significant result from Section 7.3 is the dis-

covery of the thermal/dynamical effect of clusters on
the SZ effect. We shall present the measurements of
the SZ effects toward nearby (z ≤ 0.09) galaxy clus-
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which were used to infer the cosmological parameters
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SZ flux to the expected flux from the X-ray data on the
individual clusters, finding a good agreement. Signifi-
cance of detection (from merely 11 clusters, excluding
Coma) is 6.5σ. By dividing the sample into cooling-flow
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clusters), we find a significant difference in the SZ effect
between these sub-samples.
In Section 7.4, we shall report a significant (∼ 8σ) sta-
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calibrated empirical model, and discuss implications of
our measurement, especially a recent measurement of the
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the SPT collaboration.
Note that the analyses presented in Section 7.3 and
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the former uses a handful (29) of clusters with well-
measured Chandra X-ray data, while the latter uses hun-
dreds of clusters without detailed X-ray data. Therefore,
while the latter results have smaller statistical errors (and
much larger systematic errors), the former results have
much smaller systematic errors (and larger statistical er-
rors).
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ters of galaxies, the temperature of CMB changes
due to the inverse Compton scattering by these elec-
trons. This effect, known as the thermal SZ ef-
fect (Zel’dovich & Sunyaev 1969; Sunyaev & Zel’dovich
1972), is a source of significant additional (secondary)
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where θ is the angular distance from the center of a clus-
ter of galaxies on the sky, DA the proper (not comoving)

WMAP7+LSS data 
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Beyond ΛCDM: Evolving dark energy w(z) 
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Models and probes of cosmic acceleration 
§  Some recent dark energy reviews: 

 
-  Copeland, Sami, Tsujikawa, 06, Int. J. Mod Phys D 

-  Frieman, Turner, Huterer, 08, Ann. Rev. Astr. & Astrophys., 46, 385  

-  Weinberg, Mortonson, Eisenstein, Hirata, Riess, Rozo, 12, for Phys. Reports, 
arXiv:1201.2434 

 
§  Dark energy task forces and future dark energy missions: 

-  Albrecht, Bernstein, Cahn, Freedman, Hewitt, Hu, Huth, Kamionkowski, Kolb, 
Knox, Mather, Staggs, Suntzeff, 06, arXiv/0609591 

-  Albrecht, Amendola, Bernstein, Clowe, Eisenstein, Guzzo, Hirata, Huterer, 
Kirshner, Kolb, Nichol, 09, arXiv:0901.0721 

 
-  Amendola, et al (Euclid Satellite), 12, arXiv:1206.1225 
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Constraints on w0, wet marginalizing over zt 

Combined constraints (marginalized 68%) 
Ωm = 0.299 + 0.029 - 0.027  
w0 = -1.27 + 0.33 - 0.39 
wet = -0.66 + 0.44 - 0.62 
  
WMAP1+CBI+ACBAR 
SNIa: Riess et al 04 
fgas: Allen et al 04 
marginalized over 0.05<zt<1 

Rapetti et al. 05 

Two parameters: 
w=w0+w1(1-a) fix transition at zt=1 between 
w0 (present) and wet =w0+w1 (early times). 
Three parameters (R05): 
 free transition zt between w0 and wet: 
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Allen et al. 08 

Combined constraints (marginalized 68%) 
Ωm = 0.254 ± 0.022               
w0 = -1.05 + 0.31 - 0.26 
wet = -0.83 + 0.48 - 0.43 
 
WMAP3+CBI+Boomerang+ACBAR 
SNIa: Davis et al. 07 
fgas: Allen et al. 08 
marginalized over 0.05<zt<1 

Constraints on w0, wet marginalizing over zt 

Three parameters (R05): 
 free transition zt between w0 and wet: 
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Current constraints: evolving w 
Combined constraints (marginalized 68%) 
Ωm = 0.257 +- 0.016               
w0 = -0.88 + -0.21 
wet = -1.05 + 0.20 - 0.36 
 
WMAP5 
SNIa: Kowalski et al. 08   
fgas: Allen et al. 08 
BAO: Percival et al. 07 
XLF: Mantz et al. 09a  
marginalized over 0.05<zt<1 

Mantz et al. 10a 

Three parameters (R05): 
 free transition zt between w0 and wet: 
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Current constraints: evolving w 

Hinshaw et al. 12 

Two parameters: 
w=w0+wa(1-a) fix transition at 
zt=1 between w0 (present) and 
wet =w0+wa (early times). 
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Kinematical approaches to dark energy 
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Why kinematical approaches?  

v  Do not assume any particular gravity theory.  
      

 - Most of current cosmological analyses are dynamical, use the 
Friedmann equations (and General Relativity) employing Ωm and w as 
model parameters.  

 
 - Other dynamical approaches use modified gravity theories. 

 
v  Describe directly the expansion history of the Universe, a(t).  
  

 - We measure a late-time cosmic acceleration.  
 

 - It is important now to measure kinematically a transiton to a 
decelerating phase at earlier times. 
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Constraints on the deceleration parameter 
•  Using for example q(z)=q0+z(dq/dz) as 
in Riess et al 04. 
 
•  Clusters (green contours) ; SNLS SNIa 
(blue contours) ; Gold SNIa sample 
(dashed contours); all combined (orange 
contours)  

•  Shapiro & Turner 05 and Elgaroy & 
Multamaki 06 also used other q(z) 
parameterizations. 

•  However, the choice of a particular 
parameterization of q(z) is quite 
arbitrary. 

•  And in general does not have a direct 
meaningful physical interpretation. 

Rapetti et al 07 
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Our kinematical formalism: (q0,j) parameter space 
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For example, for constant j models we get 

! 

p " 1
2
1+ 8 j

! 

u " 2(q0 +1/4)

j(a)=1 corresponds to  
all ΛCDM models 
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Basic kinematical and dynamical models  
Constant j model 

q0 = -0.81 +- 0.14 
 j   =  2.16 +0.81- 0.75 

Constant w model 

Ωm = 0.306 +0.042- 0.040 
 w   = -1.15 +0.14- 0.18 

Rapetti et al 07 

Both models contain a simple representation of ΛCDM (w=-1, j=1) and are consistent with it at the 1σ 
level. This represents an additional support for the ΛCDM paradigm. 
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Hypothesis testing: How many model 
kinematical parameters are required? 

! 

E(M) " 1
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F-test Bayesian Information Criterion 

! 

BIC = "2lnL + k lnN

Bayesian Evidence 

! 

E(M) " P(D |M) =

d#P(D |#,M)P(# |M)$

Gold+SNLS+Clusters  [q0] model -> [q0,j] model   

! 

"# 2 =10.8
F $ test% 99.8%
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2 < "BIC < 6

! 

2.5 < lnB01 < 5



January 6, 2013 Nordic Winter School, Gausdal 

Recent results on the kinematical model 
for various combinations of data sets 

Blake et al, 12 
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Alcock-Paczynski test data from WiggleZ data 

Blake et al, 11 

Growth and expansion from clusters, the CMB and galaxies 3

2.2 Cosmic growth and cluster abundance

We model the growth history at late times by parameteriz-
ing the linear growth rate of density perturbations on large
scales, f(a), as a power law of the evolving mean matter
density, Ωm(a) = Ωma−3E(a)−2, such as (Peebles 1980;
Wang & Steinhardt 1998; Linder & Cahn 2007)

f(a) ≡
d ln δ
d ln a

= Ωm(a)γ , (2)

where γ is the growth index3, for which we recover GR when
γ " 0.55. δ ≡ δρm/ρm is the ratio of the comoving matter
density fluctuations, δρm, with respect to the cosmic mean,
ρm. While at early times we assume GR, for z < zt we
obtain δ(z) from equation 2 using as an initial condition
δ(zt) calculated within GR. Normalizing δ(z) to δ(zt), we
obtain the growth factor, D(z) ≡ δ(z)/δ(zt). Here we use
zt = 30, which is well within the dark matter dominated
era, when f(a) ∼ 1 for both the γ-model (equation 2) and
GR. We then calculate the matter power spectrum of such
fluctuations for a given wavenumber, k, as

P (k, z) ∝ knsT 2(k, zt)D(z)2 , (3)

where T (k, zt) is the matter transfer function of GR in the
synchronous gauge at redshift zt and ns the primordial scalar
spectral index.

The variance of the linearly evolved density field,
smoothed by a spherical top-hat window function of comov-
ing radius R enclosing mass M = 4πρmR3/3, is

σ2(M, z) =
1

2π2

∫ ∞

0

k2P (k, z)|WM(k)|2dk . (4)

HereWM(k) is the Fourier transform of the window function.
We use σ(M, z) to calculate the abundance of dark matter
halos as a function of mass and redshift

n(M, z) =

∫ M

0

F(σ, z)
ρm
M ′

d lnσ−1

dM ′
dM ′ , (5)

where F(σ, z) is a convenient fitting formula obtained
from large N-body simulations of dark matter particles
(Tinker et al. 2008),

F(σ, z) = A

[

(σ
b

)−a
+ 1

]

e−c/σ2

. (6)

The parameters of this formula have a generic redshift de-
pendence of the form x(z) = x0(1+ z)εαx , with x represent-
ing A, a, b or c. The values for each x0 and αx are given in
Tinker et al. (2008). As in M10a, we introduce an additional
parameter, ε, to account for residual systematic uncertain-
ties in the evolution of F(σ, z) due to non-ΛCDM scenar-
ios. Remarkably, F(σ, z) encapsulates the non-linear cosmic
growth history and appears to be almost universal for a wide
range of cosmologies (see R10 for more details).

We marginalize over the uncertainties in the parameters
of F(σ, z), accounting for their covariance and for additional
systematic uncertainties due to e.g. the presence of baryons
following the method described in M10a. Note, though, that

3 Many models of modified gravity predict a growth index that
varies with time and length scale, γ(a, k). Note again, though,
that here we do not use this parameter as a diagnostic of the true
theory of gravity, but rather as a consistency test for GR.

as shown in M10a the uncertainties in F(σ, z) are subdom-
inant in the analysis. R10 also verified that ε is essentially
uncorrelated with γ.

2.3 Integrated Sachs-Wolfe effect

In our CMB analysis we include the constraint on γ from the
Integrated Sachs-Wolfe (ISW) effect of the CMB using the
method and assumptions described by Rapetti et al. (2009,
2010). In brief, the low multipoles of the CMB are sensi-
tive to the growth of cosmic structure due to the effect of
the time-varying gravitational potentials of large scale struc-
tures on the CMB photons crossing them. We calculate the
contribution of these photons to the temperature anisotropy
power spectrum as (Weller & Lewis 2003)

∆ISW
l (k) = 2

∫

dt e−τ(t)φ′jl [k(t− t0)] , (7)

where t is the conformal time and t0 its present-day value,
τ the optical depth to reionization, jl(x) the spherical
Bessel function for the multipole l, and φ′ the confor-
mal time variation of the gravitational potential. Taking
the derivative of the Poisson equation with respect to t,
we calculate the latter quantity for the γ-model4 as φ′ =
4πGa2k−2 H δρm [1− Ωm(a)γ ], where H is the conformal
Hubble parameter. Since the ISW effect is only relevant for
z < 2, as an initial condition to solve this equation we match
∆ISW

l (k) to that of GR at zt = 2.5

Note, however, that the constraining power on γ from
the ISW effect is small compared to that of the cluster data
(Rapetti et al. 2009). For the current analysis, the primary
relevance of the CMB is its ability to tightly constrain the
combination of growth parameters σ8 and γ (see Section 4).

2.4 The Alcock-Paczynski effect and

redshift-space distortions

The Alcock-Paczynski test is a geometrical means of prob-
ing the cosmological model by a comparison of the ob-
served tangential and radial dimensions of objects which
are assumed to be isotropic in the correct choice of model.
It can be applied to the 2-point statistics of galaxy clus-
tering if the redshift space distortions, the principal addi-
tional source of anisotropy, can be successfully modelled
(Ballinger et al. 1996; Matsubara & Suto 1996; Matsubara
2000; Seo & Eisenstein 2003; Simpson & Peacock 2010). By
equating radial and tangential physical scales, the AP test
determines the observable F (z) = (1 + z)DA(z)H(z)/c,
where DA(z) is the physical angular diameter distance and
c is the speed of light.

In the model fit for F (z), the normalized growth rate,
fσ8(z), is determined simultaneously. Here f(z) is again the
logarithmic rate of change of the growth factor at redshift

4 Since here we are testing GR, we assume no contributions to
φ from the anisotropic stress and energy flux of the Weyl tensor
(Challinor & Lasenby 1999).
5 For our analysis, the difference from calculating δ(z) using zt
equals to 2 or 30 is negligible since both redshifts are well within
the dark matter dominated era, when f(a) tends to 1 for any γ.

c© 2011 RAS, MNRAS 000, 1–10

DA(z) : angular diameter distance and  
H(z)=H0E(z) : Hubble parameter 

SNe+AP effect 



January 6, 2013 Nordic Winter School, Gausdal 

Reconstruction of kinematical quantities 
Blake et al, 11 
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Non-parametric reconstruction of the cosmic expansion history 
Blake et al, 11 
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Beyond ΛCDM: Gravity at large scales  
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Testing GR on cosmic scales 
1.  From the evolution of the cluster abundance (XLF) we directly 

measure linear cosmic expansion and growth. 

2.  From a variety of measurements we find cosmic acceleration and 
face the cosmological constant problems. 

3.  We can either include a new energy component, dark energy, or 
modify the theory of gravity. 

 
4.  We test General Relativity (GR) for consistency. 

5.  GR has been very well tested from small to Solar system scales. 
Here we test modifications of GR at cosmological scales. 
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1. Cosmic expansion model / mean matter density (theory). 
 
2. Matter power spectrum / linear density perturbations (theory). 
 
3. Halo mass function / nonlinear structure formation (N-body 

simulations for f(R) or DGP: e.g. Schmidt et al 2009, Schmidt 2009a/
b, Chan & Scoccimarro 2009, Zhao, Li & Koyama 2011). 

 
4. Relation between the observed mass (e.g. “dynamical”) and the true 

mass (e.g. “lensing”) (Theory/N-body simulations: Schmidt 2010a). 
 

Ingredients to test a given theory of 
gravity with cluster abundance data 
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1. We use a phenomenological time-dependent parameterization of the 
growth rate and of the expansion history. 

 
2. We assume the same scale-dependence as GR. 
 
3. We test only for linear effects (not for non-linear effects). We use the 
“universal” dark matter halo mass function (Tinker et al 2008). Note 
that the relevant scales for the cluster abundance experiment are at 
the low end of the linear regime.  

 
4. We match GR at early times and small scales. 
 

Consistency test of the growth rate of 
General Relativity 
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GR γ~0.55 

Modeling linear, time-dependent 
departures from GR 

Linear power spectrum 

Variance of the 
density fluctuations 

General Relativity Phenomenological parameterization 

Growth rate Scale independent in the 
synchronous gauge 

Number density of 
galaxy clusters 
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Test of GR robust w.r.t evolution in the l-m relation    

! 

"l(m)# = $0
lm + $1

lmm + $2
lm log10(1+ z)

! 

" lm (z) =" lm (1+ # " lmz)

Rapetti et al 10 

Current data do not require (i.e. acceptable fit) additional evolution beyond self-
similar and constant scatter nor asymmetric scatter (Mantz et al 2010b). 
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Investigating luminosity-mass evolution   

23 clusters (z<0.2) from ROSAT 
71 clusters (z>0.2) from Chandra 

Within the 238 flux-selected clusters 
we used pointed observations for 

! 

"l(m)# = $0
lm + $1

lmm + $2
lm log10(1+ z)

! 

" lm (z) =" lm (1+ # " lmz)

Mass-luminosity and its intrinsic scatter 

! 

l = log10
L500

E(z)1044ergs"1
# 

$ 
% 

& 

' 
( ; m = log10

M500E(z)
1015Msolar

# 

$ 
% 

& 

' 
( 
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flat ΛCDM + growth index γ    

XLF: BCS+REFLEX+MACS (z<0.5) 

238 survey with 94 X-ray follow-up 

CMB (WMAP5) 
SNIa (Kowalski et al 2008, UNION) 
cluster fgas (Allen et al 2008) 

Gold: Self-similar evolution and 
constant scatter 
Blue: Marginalizing over βlm

2 and σ’lm  
(only ~20 weaker: robust result on γ). 

For General Relativity γ~0.55 

Remarkably these constraints are only a factor 
of ~3 weaker than those forecasted for JDEM/
WFIRST-type experiments (e.g. Thomas et al 
2008, Linder 2009). 

Rapetti et al 10 
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flat wCDM + growth index γ    
Rapetti et al 10 XLF: BCS+REFLEX+MACS (z<0.5) 

238 survey with 94 X-ray follow-up 

CMB (WMAP5) 
SNIa (Kowalski et al 2008, UNION) 
cluster fgas (Allen et al 2008) 

Gold: Self-similar evolution and 
constant scatter 

For General Relativity γ~0.55 

Simultaneous constraints on the 
expansion and growth histories of 
the Universe at late times: 
Consistent with GR+ΛCDM 
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Flat ΛCDM + growth index γ    
Rapetti et al 10 

XLF: BCS+REFLEX+MACS (z<0.5) 

238 survey with 94 X-ray follow-up 

CMB (WMAP5) 
SNIa (Kowalski et al 2008, UNION) 
cluster fgas (Allen et al 2008) 

Gold: Self-similar evolution and 
constant scatter 
Blue: Marginalizing over βlm

2 and σ’lm 

For General Relativity γ~0.55 

Tight correlation between σ8 and γ: 

! 

"
# 8

0.8
$ 

% 
& 

' 

( 
) 
6.8

= 0.55*0.10
+0.13

! 

" = #0.87
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Redshift space distortions and  
Alcock-Paczynski effect 

e.g. Blake et al 11; Beutler et al 
2012; Reid et al 12  
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f(z) is the linear growth rate and σ8(z) the variance in the 
density field at 8h-1Mpc 

Sources of anisotropy in the distribution of galaxies (2-point statistics) used 
to constrain the cosmological model:   

- Redshift space distortions: due to velocity patterns of galaxies 
infalling into gravitational potential wells 

- Alcock-Paczynski distortion: between the tangential and radial 
dimensions of objects or patterns when the correct cosmological model is 
assumed to be isotropic 

DA(z) is the angular diameter 
distance and H(z)=H0E(z) is the 
Hubble parameter 

Growth and expansion from clusters, the CMB and galaxies 3

2.2 Cosmic growth and cluster abundance

We model the growth history at late times by parameteriz-
ing the linear growth rate of density perturbations on large
scales, f(a), as a power law of the evolving mean matter
density, Ωm(a) = Ωma−3E(a)−2, such as (Peebles 1980;
Wang & Steinhardt 1998; Linder & Cahn 2007)

f(a) ≡
d ln δ
d ln a

= Ωm(a)γ , (2)

where γ is the growth index3, for which we recover GR when
γ " 0.55. δ ≡ δρm/ρm is the ratio of the comoving matter
density fluctuations, δρm, with respect to the cosmic mean,
ρm. While at early times we assume GR, for z < zt we
obtain δ(z) from equation 2 using as an initial condition
δ(zt) calculated within GR. Normalizing δ(z) to δ(zt), we
obtain the growth factor, D(z) ≡ δ(z)/δ(zt). Here we use
zt = 30, which is well within the dark matter dominated
era, when f(a) ∼ 1 for both the γ-model (equation 2) and
GR. We then calculate the matter power spectrum of such
fluctuations for a given wavenumber, k, as

P (k, z) ∝ knsT 2(k, zt)D(z)2 , (3)

where T (k, zt) is the matter transfer function of GR in the
synchronous gauge at redshift zt and ns the primordial scalar
spectral index.

The variance of the linearly evolved density field,
smoothed by a spherical top-hat window function of comov-
ing radius R enclosing mass M = 4πρmR3/3, is

σ2(M, z) =
1

2π2

∫ ∞

0

k2P (k, z)|WM(k)|2dk . (4)

HereWM(k) is the Fourier transform of the window function.
We use σ(M, z) to calculate the abundance of dark matter
halos as a function of mass and redshift

n(M, z) =

∫ M

0

F(σ, z)
ρm
M ′

d lnσ−1

dM ′
dM ′ , (5)

where F(σ, z) is a convenient fitting formula obtained
from large N-body simulations of dark matter particles
(Tinker et al. 2008),

F(σ, z) = A

[

(σ
b

)−a
+ 1

]

e−c/σ2

. (6)

The parameters of this formula have a generic redshift de-
pendence of the form x(z) = x0(1+ z)εαx , with x represent-
ing A, a, b or c. The values for each x0 and αx are given in
Tinker et al. (2008). As in M10a, we introduce an additional
parameter, ε, to account for residual systematic uncertain-
ties in the evolution of F(σ, z) due to non-ΛCDM scenar-
ios. Remarkably, F(σ, z) encapsulates the non-linear cosmic
growth history and appears to be almost universal for a wide
range of cosmologies (see R10 for more details).

We marginalize over the uncertainties in the parameters
of F(σ, z), accounting for their covariance and for additional
systematic uncertainties due to e.g. the presence of baryons
following the method described in M10a. Note, though, that

3 Many models of modified gravity predict a growth index that
varies with time and length scale, γ(a, k). Note again, though,
that here we do not use this parameter as a diagnostic of the true
theory of gravity, but rather as a consistency test for GR.

as shown in M10a the uncertainties in F(σ, z) are subdom-
inant in the analysis. R10 also verified that ε is essentially
uncorrelated with γ.

2.3 Integrated Sachs-Wolfe effect

In our CMB analysis we include the constraint on γ from the
Integrated Sachs-Wolfe (ISW) effect of the CMB using the
method and assumptions described by Rapetti et al. (2009,
2010). In brief, the low multipoles of the CMB are sensi-
tive to the growth of cosmic structure due to the effect of
the time-varying gravitational potentials of large scale struc-
tures on the CMB photons crossing them. We calculate the
contribution of these photons to the temperature anisotropy
power spectrum as (Weller & Lewis 2003)

∆ISW
l (k) = 2

∫

dt e−τ(t)φ′jl [k(t− t0)] , (7)

where t is the conformal time and t0 its present-day value,
τ the optical depth to reionization, jl(x) the spherical
Bessel function for the multipole l, and φ′ the confor-
mal time variation of the gravitational potential. Taking
the derivative of the Poisson equation with respect to t,
we calculate the latter quantity for the γ-model4 as φ′ =
4πGa2k−2 H δρm [1− Ωm(a)γ ], where H is the conformal
Hubble parameter. Since the ISW effect is only relevant for
z < 2, as an initial condition to solve this equation we match
∆ISW

l (k) to that of GR at zt = 2.5

Note, however, that the constraining power on γ from
the ISW effect is small compared to that of the cluster data
(Rapetti et al. 2009). For the current analysis, the primary
relevance of the CMB is its ability to tightly constrain the
combination of growth parameters σ8 and γ (see Section 4).

2.4 The Alcock-Paczynski effect and

redshift-space distortions

The Alcock-Paczynski test is a geometrical means of prob-
ing the cosmological model by a comparison of the ob-
served tangential and radial dimensions of objects which
are assumed to be isotropic in the correct choice of model.
It can be applied to the 2-point statistics of galaxy clus-
tering if the redshift space distortions, the principal addi-
tional source of anisotropy, can be successfully modelled
(Ballinger et al. 1996; Matsubara & Suto 1996; Matsubara
2000; Seo & Eisenstein 2003; Simpson & Peacock 2010). By
equating radial and tangential physical scales, the AP test
determines the observable F (z) = (1 + z)DA(z)H(z)/c,
where DA(z) is the physical angular diameter distance and
c is the speed of light.

In the model fit for F (z), the normalized growth rate,
fσ8(z), is determined simultaneously. Here f(z) is again the
logarithmic rate of change of the growth factor at redshift

4 Since here we are testing GR, we assume no contributions to
φ from the anisotropic stress and energy flux of the Weyl tensor
(Challinor & Lasenby 1999).
5 For our analysis, the difference from calculating δ(z) using zt
equals to 2 or 30 is negligible since both redshifts are well within
the dark matter dominated era, when f(a) tends to 1 for any γ.

c© 2011 RAS, MNRAS 000, 1–10
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HereWM(k) is the Fourier transform of the window function.
We use σ(M, z) to calculate the abundance of dark matter
halos as a function of mass and redshift
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F(σ, z)
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M ′
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from large N-body simulations of dark matter particles
(Tinker et al. 2008),
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The parameters of this formula have a generic redshift de-
pendence of the form x(z) = x0(1+ z)εαx , with x represent-
ing A, a, b or c. The values for each x0 and αx are given in
Tinker et al. (2008). As in M10a, we introduce an additional
parameter, ε, to account for residual systematic uncertain-
ties in the evolution of F(σ, z) due to non-ΛCDM scenar-
ios. Remarkably, F(σ, z) encapsulates the non-linear cosmic
growth history and appears to be almost universal for a wide
range of cosmologies (see R10 for more details).

We marginalize over the uncertainties in the parameters
of F(σ, z), accounting for their covariance and for additional
systematic uncertainties due to e.g. the presence of baryons
following the method described in M10a. Note, though, that

3 Many models of modified gravity predict a growth index that
varies with time and length scale, γ(a, k). Note again, though,
that here we do not use this parameter as a diagnostic of the true
theory of gravity, but rather as a consistency test for GR.

as shown in M10a the uncertainties in F(σ, z) are subdom-
inant in the analysis. R10 also verified that ε is essentially
uncorrelated with γ.

2.3 Integrated Sachs-Wolfe effect

In our CMB analysis we include the constraint on γ from the
Integrated Sachs-Wolfe (ISW) effect of the CMB using the
method and assumptions described by Rapetti et al. (2009,
2010). In brief, the low multipoles of the CMB are sensi-
tive to the growth of cosmic structure due to the effect of
the time-varying gravitational potentials of large scale struc-
tures on the CMB photons crossing them. We calculate the
contribution of these photons to the temperature anisotropy
power spectrum as (Weller & Lewis 2003)
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mal time variation of the gravitational potential. Taking
the derivative of the Poisson equation with respect to t,
we calculate the latter quantity for the γ-model4 as φ′ =
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Hubble parameter. Since the ISW effect is only relevant for
z < 2, as an initial condition to solve this equation we match
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Note, however, that the constraining power on γ from
the ISW effect is small compared to that of the cluster data
(Rapetti et al. 2009). For the current analysis, the primary
relevance of the CMB is its ability to tightly constrain the
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The Alcock-Paczynski test is a geometrical means of prob-
ing the cosmological model by a comparison of the ob-
served tangential and radial dimensions of objects which
are assumed to be isotropic in the correct choice of model.
It can be applied to the 2-point statistics of galaxy clus-
tering if the redshift space distortions, the principal addi-
tional source of anisotropy, can be successfully modelled
(Ballinger et al. 1996; Matsubara & Suto 1996; Matsubara
2000; Seo & Eisenstein 2003; Simpson & Peacock 2010). By
equating radial and tangential physical scales, the AP test
determines the observable F (z) = (1 + z)DA(z)H(z)/c,
where DA(z) is the physical angular diameter distance and
c is the speed of light.

In the model fit for F (z), the normalized growth rate,
fσ8(z), is determined simultaneously. Here f(z) is again the
logarithmic rate of change of the growth factor at redshift

4 Since here we are testing GR, we assume no contributions to
φ from the anisotropic stress and energy flux of the Weyl tensor
(Challinor & Lasenby 1999).
5 For our analysis, the difference from calculating δ(z) using zt
equals to 2 or 30 is negligible since both redshifts are well within
the dark matter dominated era, when f(a) tends to 1 for any γ.

c© 2011 RAS, MNRAS 000, 1–10
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Blake et al 11a 
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For WiggleZ (Blake et al 11): 
- We use a bivariate Gaussian likelihood on 
fσ8(z) and F(z) (good approximation): 
 
z = (0.22, 0.41, 0.60, 0.78) 
 
fσ8(z) = (0.53±0.14, 0.40±0.13, 0.37±0.08, 
0.49±0.12) 
 
F(z) = (0.28±0.04, 0.44±0.07, 0.68±0.06, 
0.97±0.12) 
 
r=(0.83, 0.94, 0.89, 0.84)  
 
For 6dFGS (Beutler et al 2012): 
- We use a Gaussian likelihood on fσ8(z) 
only (since at low-z the AP effect is 
negligible): 
 
fσ8(z=0.067) = 0.423±0.055 

Blake et al 11 
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For CMASS BOSS (Reid et al 2012): 
 
- We use either a bivariate (growth) or a 
trivariate (BAO) Gaussian likelihood on fσ8
(z), F(z) and A(z) (good approximation): 
 
fσ8(z=0.57) = 0.43±0.07 
F(z=0.57) = 0.68±0.04 
A(z=0.57) = 1.023±0.019 
 
rfσF = 0.87 
rfσA = -0.0086 
rFA = -0.080 

Reid et al 12 
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Percival et al 10, SDSS DR7 

WiggleZ CosmoMC module: http://smp.uq.edu.au/wigglez-data 

Parkinson et al 12, WiggleZ final release 
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Combined constraints on growth and 
expansion: breaking degeneracies 
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Modeling the abundance of clusters and 
their scaling relations 

x being A, a, b, or c 
(Tinker et al 2008) 

Fitting formulae from 
N-body simulations 

Number density of 
dark matter halos 

Luminosity-mass relation 

Scatter in the luminosity-mass relation  

(same expressions for the temperature-mass relation but changing l for t) 
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Flat ΛCDM + growth index γ    
Rapetti et al 12 

clusters (XLF+fgas): BCS+REFLEX
+MACS  
CMB (ISW): WMAP 
galaxies (RSD+AP): WiggleZ
+6dFGS+BOSS 
Gold: clusters+CMB+galaxies 
 
       (+BAO+SNIa+SH0ES) 
 
 

! = 0.576!0.059
+0.058

" 8 = 0.789± 0.019
"m = 0.255± 0.011
H0 = 72.1±1.0
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Green, dotted line:  
CMB alone 
 
Magenta, dotted-dashed line: 
galaxies 
 
Red, dashed line:  
clusters 
 
Blue, solid line:  
clusters+CMB(ISW)+galaxies 

Flat ΛCDM + growth index γ    
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Rapetti et al 12 

For General Relativity γ~0.55 
 
Magenta: clusters+galaxies  
Purple: clusters+CMB 
Turquoise: CMB+galaxies 
Gold: clusters+CMB+galaxies 
 
Platinum: clusters+CMB+galaxies
+BAO (Reid et al 12; Percival et al 
10)+SNIa (Suzuki et al 12) 
+SH0ES (Riess et al 11) 

Flat wCDM + growth index γ: growth plane    
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Rapetti et al 12 

Flat wCDM + growth index γ: expansion planes    

Platinum: clusters + CMB + galaxies + BAO (Reid et al 12; Percival et al 10) 
+ SNIa (Suzuki et al 12) + SH0ES (Riess et al 11) 
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Rapetti et al 12 

Flat wCDM + growth index γ: growth+expansion    

For General Relativity γ~0.55 
For ΛCDM w=-1 
 
Gold: clusters+CMB+galaxies 
Platinum: clusters+CMB+galaxies
+BAO+SNIa+SH0ES 

! = 0.546!0.072
+0.071

" 8 = 0.783!0.019
+0.020

w = !0.968± 0.049
"m = 0.256± 0.011
H0 = 71.5±1.3
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flat+ΛCDM expansion history, f(R) gravity model   

Schmidt, Vikhlinin & Hu et al 10 
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Schmidt, Vikhlinin & Hu et al 10 

flat+ΛCDM expansion history, f(R) gravity model   
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Cluster mass profiles in DGP and f(R) 
Schmidt 10 
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Schmidt 10 

Cluster mass profiles in DGP and f(R) 
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-  Deep understanding of astrophysical processes and objects 

-  Careful design of observations 

-  Justify and continuously revised assumptions 

-  Account properly for covariances between parameters, 
instrumental and astrophysical systematic uncertainties and 
biases 

-  Simultaneous fits of all the relevant astrophysical and 
cosmological parameters 

 


