Finite temperature field theory and heavy ion collisions

Nordic Winter School on Particle Physics and Cosmology 2013, Skeikampen, Norway

Lecture 2: real-time quantum field theory

Simon Caron-Huot (NBIA Copenhagen & IAS Princeton)

Linear response theory

- To compute microscopic quantities in QFT, we must formulate questions as correlation functions
- At T=0 we learn to deal with time-ordered ones.:

$$\langle 0|T\phi(x_1)\phi(x_2)|0\rangle$$

 At finite T these are neither natural, nor meaningful, nor useful, nor even nice

- A typical question:
 if we have e.g. an overdensity
 somewhere; how will the energy density
 evolve?
- Such questions can be answered as follows:

measurement

by source; the source

creates the overdensity

 $\langle \epsilon(y) \rangle_{\text{perturbed}} = \text{Tr} \underbrace{e^{-\beta H}} e^{-i\int_{-\infty}^{y^0} (H+\delta H)} \epsilon(y) e^{i\int_{-\infty}^{y^0} (H+\delta H)}$ unperturbed initial density matrix evolution perturbed

Linear response theory

$$\langle \epsilon(y) \rangle_{\text{perturbed}} = \text{Tr } e^{-\beta H} e^{-i \int_{-\infty}^{y^0} (H + \delta H)} \epsilon(y) e^{i \int_{-\infty}^{y^0} (H + \delta H)}$$

 To linear order in the perturbation, given by retarded two-point function :

$$= -i \int d^4x \operatorname{Tr} e^{-\beta H} [\delta H(x), \epsilon(y)] \theta(y^0 - x^0)$$

:= $-i \int d^4x G_R(x, y)$

Retarded boundary conditions appear naturally

[Challenge: find one physical observable given by a Tordered product!]

Path integrals

It is useful to represent correlators as path integrals:

$$\langle 0|T[\phi(x_1)\phi(x_2)]|0\rangle = \frac{1}{Z} \int [D\phi(x)]\phi(x_1)\phi(x_2)e^{iS[\phi]}$$

- Useful for perturbative expansion (write S=S₀+S_{int})
- Useful for nonperturbative analysis (lattice,...)

To get started and study QFT at finite T, we should find a path integral which computes retarded functions

First, let's answer two questions at T=0.

$$\langle 0|T|\phi(x_1)\phi(x_2)]|0\rangle = \frac{1}{Z}\int [D\phi(x)]\phi(x_1)\phi(x_2)e^{iS[\phi]}$$

Q:Why does RHS give the time-ordered product?

A: Each segment gives time evolution from one point to the next

The Schwinger-Keldysh contour

We need to compute:

$$\langle \phi(x_1) \cdots \rangle_{\beta} := \frac{1}{Z} \operatorname{Tr} \left[e^{-\beta H} \phi(x_1) \cdots \right]$$
 ($\beta = I/T$)

Schwinger-Keldysh contour:

Notes.

- We have two real branches; that's the minimum we can have (if we want some real-time correlator)
- That's enough to define a retarded correlator!
 organize everything around it

The Keldysh formalism

Define average and difference fields:

$$\phi_r = \frac{\phi_1 + \phi_2}{2}, \quad \phi_a = \phi_1 - \phi_2$$

- a-fields vanish when they have the largest time argument
- \bullet $G_{aa}=0$
- $G_{ra}(x_1, x_2) = \langle [\phi(x_1), \phi(x_2)] \rangle \theta(t_1 t_2)$ $:= G_R(x_1, x_2)$

Fluctuation dissipation, l

(aka KMS relation, Kubo-Martin-Schwinger)

 Wightman functions (un-ordered) are related to each other, in momentum space

•
$$G^{>}(p) := \frac{1}{Z} \operatorname{Tr} \left[e^{-\beta H} \phi(p) \phi(x=0) \right]$$

$$= \frac{1}{Z} \operatorname{Tr} \left[\phi(p) e^{-\beta H} \phi(x=0) \right] e^{\beta p^{0}}$$

$$= \frac{1}{Z} \operatorname{Tr} \left[e^{-\beta H} \phi(x=0) \phi(p) \right] e^{\beta p^{0}}$$

$$= e^{\beta p^{0}} G^{<}(p)$$

FLuctuation dissipation, 2

• From retarded functions, we can get the commutator (spectral) function:

$$G_R(x_1, x_2) - G_A(x_1, x_2) := \text{Disc } G_R(x_1, x_2)$$

= $\langle [\phi(x_1), \phi(x_2)] \rangle_T$

• Using that this is $G^> - G^<$ the previous slide, we get:

$$G^{<}(p) = \operatorname{Disc} \ G_R \frac{1}{e^{\beta p^0} - 1}$$
Fluctuation

Dissipation

We now have all two-point functions:

$$\begin{pmatrix} G_{rr} & G_{ra} \\ G_{ar} & G_{aa} \end{pmatrix} = \begin{pmatrix} G_{rr} & G_R \\ G_A & 0 \end{pmatrix}$$

$$G_{rr}(p) = \text{Disc } G_R(p) \left(\frac{1}{2} + n_B(p)\right)$$

Example: free bosonic field

$$\begin{pmatrix} G_{rr} & G_{ra} \\ G_{ar} & G_{aa} \end{pmatrix} = \begin{pmatrix} 2\pi\delta(P^2) \begin{pmatrix} \frac{1}{2} + n_B(|p^0|) \end{pmatrix} & \frac{-i}{P^2 - i\epsilon p^0} \\ \frac{-i}{P^2 + i\epsilon p^0} & 0 \end{pmatrix}$$

Let's compute some loops

• Consider the model (φ^4), at a finite T, $\lambda << 1$:

$$S = \int d^4x \left[-\frac{1}{2} (\partial_\mu \phi)^2 - \frac{\lambda}{24} \phi^4 \right]$$

Keldysh action:

$$S_1 - S_2 = \int d^4x \left[-\partial_\mu \phi_r \partial^\mu \phi_a - \frac{\lambda}{6} \phi_r^3 \phi_a - \frac{\lambda}{24} \phi_r \phi_a^3 \right]$$

 $ightharpoonup = -i\lambda \left[egin{array}{ll} {
m [notation \ devised \ w/G.D.Moore]} \end{array}
ight]$

The one-loop retarded self-energy:

The one-loop retarded self-energy:

$$\Pi_{R} = \frac{\lambda}{2} \int \frac{d^{4}p}{(2\pi)^{4}} G_{rr}(p)$$

$$= \frac{\lambda}{2} \int \frac{d^{3}p}{(2\pi)^{4}} \frac{\frac{1}{2} + n(p)}{p} = \frac{\lambda T^{2}}{24}$$

- UV divergence exactly as in vacuum; T correction finite
- Thermal mass² is positive

Keldysh formalism

Series for the retarded function well-behaved

• not so for G_{rr}:

 Keldysh's solution: compute only retarded guys, get others by fluctuation-dissipation • Let's keep going... 2-loop:

Let's just look at the T-dependent imaginary part, on-shell.

imaginary part

Kinematics require one particle in the loop to have negative energy, two have positive energy

$$-2\operatorname{Im}\Pi_{R} = \int \frac{d^{3}p_{3}}{(2\pi)^{3}2p_{3}} \frac{d^{3}p_{4}}{(2\pi)^{3}2p_{4}} |\lambda^{2}| \left[n_{2}(1+n_{3})(1+n_{4}) - (1+n_{2})n_{3}n_{4} \right]$$

Imaginary part measures scattering rate (not decay)!

$$G_R \sim \frac{-i}{p^2 - m_{\rm th}^2 - i\Gamma}$$

Other examples

Notice the simple time flow.

Can you find a classical statistical interpretation?