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What is the shear 
viscosity of the QGP?
• In the presence of a y-dependent x-velocity 

(‘shear flow’)
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• Clear from previous picture that

• More precise computation in simple (e.g. 
hard sphere) model gives
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Leading order viscosity 
from Boltzman eq.
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FIG. 2. Leading-order diagrams for all 2 ↔ 2 particle scattering processes in a gauge theory with
fermions. Solid lines denote fermions and wiggly lines are gauge bosons. Time may be regarded as running
horizontally, either way, and so a diagram such as (D) represents both f f̄ → gg and gg → f f̄ . The diagrams
of the first row [(A)–(E)] contribute to the leading log transport coefficients, while the diagrams of the second
row [(F )–(J)], and all interference terms, do not.

which leads to a logarithmically IR divergent scattering cross section. However, we are not
directly interested in the total scattering cross section; we need to know the size of the
contribution to (χi···j, Cχi···j) in the channels relevant to transport coefficients. As we shall
review, these transport collision integrals can be less singular than the total scattering rate.

A. Kinematics

It is convenient to arrange the phase space integrations so that the transfer momentum is
explicitly an integration variable. This will make it easy to isolate the contribution from the
potentially dangerous small momentum exchange region. We choose to label the outgoing
particles so that any infrared singularity in (a given term of) the square of the amplitude
|M|2 occurs only when (p′−p)2 → 0.18 In the collision integral (2.24) it is convenient to
use the spatial δ function to perform the k′ integration, and to shift the p′ integration into
an integration over p′−p ≡ q. We may write the angular integrals in spherical coordinates
with q as the z axis and choose the x axis so p lies in the x-z plane. This yields
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18There is one case where this is impossible, namely, scattering between identical fermions, where the
interference term between outgoing leg assignments in diagram (C) makes a contribution to the matrix
element M2 ∝ s2/ut, which is divergent for both t → 0 and u → 0. As will be discussed shortly, this
interference does not contribute at leading-log level. Regardless, one could also put this case in the desired
form by using s = −u− t and rewriting the matrix element (squared) as (s/t) + (s/u), so that each piece is
now singular in only one momentum region. Diagram (A) apparently has the same problem; but when one
sums all gg → gg processes (only the sum is gauge invariant) one finds M2 ∝ (3 − su/t2 − st/u2 − tu/s2),
so there is no problem.
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form by using s = −u− t and rewriting the matrix element (squared) as (s/t) + (s/u), so that each piece is
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[derivation from 
quantum field theory]
• Effective field theory matching: Kubo formula

• Boltzmann eq. arises from summing ladder diagrams 

6

(Jeon ’95;
 E.Wang& U.Heinz th/0201116)

FIG. 8. The planar ladder diagram with N rungs in λφ4 theory. The black dot at each end represents

an insertion of an external operator.

FIG. 9. The two loop chain diagram in a scalar gφ3 theory.

diagram illustrated in Fig 9. Other possible “chain” diagrams with more than two bub-

bles connected by single lines do not appear because they are a part of the resummed

propagator. Again, for the shear viscosity, the two-loop diagram vanishes due to rota-

tional invariance. For the bulk viscosity, as shown in section IIID, the contribution of this

two-loop diagram is also to modify contribution of the P̄ vertex by a term of O(λT 2) in

addition to the modification from summing up λφ4 chain diagrams. The set of diagrams

that may potentially grow with the increasing number of loops is the set of gφ3 “ladder”

diagrams with straight rungs, shown in Fig. 10. Recall that g = O(
√

λmphys). Hence,

superficially a ladder diagram with n straight rungs could be O(1/λn+2) since there are

n+1 factors of 1/λ2 coming from the n+1 pairs of equal momentum lines, and 2n factors

of g (or equivalently, n factors of λ) from the explicit interaction vertices. However, each

straight rung actually contributes an O(g4) suppression rather than O(g2) suppression,

and hence all ladder diagrams with straight rungs can contribute at O(1/λ2), the same as

the one-loop diagram.

To understand this suppression, first consider a ladder diagram with the cut running

through all the straight rungs. When all loop momenta flowing through the side rails are
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Pure Yang-Mills viscosity
• The definitive word at present is from 

[Chen,Deng,Dong&Wang ’10], who include 
2->3 splitting processes
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The QCD viscosity
• Leading order QCD viscosity [2<->2 + collinear 1<->2]

8

[Baym, Monien, Pethick& Ravenhall ’90,
plot: full LO from Arnold, Moore& Yaffe ’03]

4⇡
⌘

s
⇡ 64.3

g4 log 2.41
g

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

next-to-leading log:

dimanche 6 janvier 13



Why is it so large?

• For Nf=3 QCD, dA=8, dF=9, [31.5/47.5]~2/3 
of the energy is in fermions

• Fundamental fermions interact with a smaller 
Casimir (by 1/2)

• Difficult to avoid: 

• Experimental result 4πη/s < 3: a true puzzle              

9
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The N=4 viscosity

10

3

ABC ν
ABC

J
ABC

(p, k)

SFF 12 p2k(p−k)/p3k3(p−k)3

FSF 12 pk2(p−k)/p3k3(p−k)3

FFS 12 pk(p−k)2/p3k3(p−k)3

GSS 3 2k2(p−k)2/p3k3(p−k)3

SGS 3 2p2(p−k)2/p3k3(p−k)3

SSG 3 2p2k2/p3k3(p−k)3

GFF 4 k(p−k)(k2 + (p−k)2)/p3k3(p−k)3

FGF 4 p(p−k)(p2 + (p−k)2)/p3k3(p−k)3

FFG 4 pk(p2 + k2)/p3k3(p−k)3

GGG 1 (p4+k4+(p−k)4)/p3k3(p−k)3

TABLE II: Splitting kernels for allowed 3-body processes in
N=4 SYM theory.

FIG. 1: Shear viscosity to entropy density ratio η/s in N=4
supersymmetric Yang-Mills theory (SYM). The dotted curve
is the weak coupling calculation pushed beyond its likely range
of validity.

where as before, λ ≡ Ncg2 is the ’t Hooft coupling. At
leading order, η/s is a complicated function of λ which
must be determined numerically. We resolve the O(

√
λ)

ambiguities in its determination using the procedure of
Ref. [6]. Our (Nc independent!) result is plotted in Fig.
1, which also shows the strong-coupling asymptotic. The
dotted part of the weak-coupling curve is where we be-
lieve that corrections to the weak-coupling calculation
may exceed the factor-of-2 level, so the curve guides the
eye rather than being a firm calculation. (In the one
theory where we have an all-orders calculation of η/s,
namely large Nf QCD [18], the leading-order and exact
results deviate by about a factor of 2 when the Debye
screening mass mD reaches the same value as where we
switch to a dotted line in Fig. 1.) Similarly, the large-
coupling asymptotic cannot be trusted where it is not
close to the large λ value of 1/4π. The curves suggest that
strong coupling behavior sets in around λ >∼ 10. Note
for comparison that the weak-coupling expansion for the
pressure of SYM theory [19] suggests that it approaches
the strongly-coupled value at a much smaller value of the
’t Hooft coupling, λ ∼ 2.

FIG. 2: η/s for SYM theory and for QCD, scaled by the
dominant λ dependence and plotted as a function of λ. The
value in SYM is dramatically smaller than in QCD.

Our result for weakly coupled SYM theory appears
rather dramatically smaller than the result for QCD,
both with and without fermions, at the same coupling,
as shown very clearly in Fig. 2. Naively, this suggests
that the viscosity of QCD at strong coupling should be
of order 7 times larger than that of SYM theory, far from
the viscosity bound and closer to the values for other flu-
ids near critical points. However, we should explore this
conclusion a little more carefully, to try to understand
how this large difference arose.

The main physics determining the shear viscosity at
weak coupling is Coulomb scattering. Neglecting all
scattering processes but Coulomb scattering changes the
leading-log coefficient A of Eq. (7) by less than 3% (0.2%)
for Nf = 3 QCD (SYM theory). Working beyond loga-
rithmic order, neglecting all processes but Coulomb scat-
tering shifts our viscosity result by O(25%). Therefore,
to good approximation the physics we must compare be-
tween theories is the physics of Coulomb scattering.

Two coupling strengths are relevant in Coulomb scat-
tering; the coupling of a quasiparticle to gauge bosons,
and the coupling of that gauge boson to all other de-
grees of freedom in the plasma. The first coupling
(summed over available gauge bosons) goes as CRg2 with
CR the relevant group Casimir. In the case of SYM the-
ory, CR=CA=Nc; for QCD it is Nc=3 for gluons and
(N2

c −1)/2Nc = 4
3 for quarks. The second factor depends

on the number, representation, and statistics of the other
degrees of freedom in the plasma, in exactly the combi-
nation which enters in the Debye screening mass squared.
Therefore it is natural to expect s/η ∼ CRg2(m2

D/T 2).
The quarks in SYM theory are adjoint rather than fun-

damental, leading to about a factor of 2 in the Casimir
and 1

2 in η/s. But much more importantly, the degree-of-
freedom count which enters in m2

D is substantially larger
in SYM than in QCD. For instance, for Nc = 3, SYM
theory has 4 × 2 × 8 = 64 fermionic degrees of freedom
(four Weyl fermion species, consisting of a particle and
antiparticle in 8 colors) and (6+2)× 8 = 64 bosonic de-
grees of freedom (6 scalars and 2 gauge boson polariza-
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• Given the puzzles about strong interactions 
between the plasma constituents, it is a good 
idea to look at hard probes 

• Partons with atypically large momenta, heavy 
quarks,...

• pQCD can be reasonably expected to provide 
a good baseline for these observables
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Jet quenching, I

12

[pTtrig>4GeV, pTassoc>2GeV]
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Jet quenching, II 

13
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Jet quenching: theory 
cartoon

dP
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=

P a
bc(x)
k2
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... 
hadrons

k�

In a medium, extra ‘kicks’ induce further bremsstrahlung
dP

dxd2k�
=

P a
bc(x)
k2
�

+PBDMPS

increased

Jet quenching: theory 
cartoon
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Landau-Migdal-
Pomeranchuk (LPM) effect

Quark path

• Radiation is not instantaneous

• When                           , gluon source gets blurred

• Less radiation per kick than for separated kicks 
(destructive interference, easily a factor 2-3 suppression)

tformation
>� tcollision

tformation

[typically ~1÷3fm]

t
formation

⇠ k2?
2!
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Jet quenching

• For a while it was thought this was thought 
to be the whole story 

• (for a pQCD jet propagating through a 
weak or strong QGP)

• Further leading-order effects were 
uncovered recently (destruction of color 
coherence)

(Leonidov & Nechitailo `10,
Mehtar-Tani, Salgado & Tywoniuk `10)
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• Phenomenology mostly characterized by a 
few microscopic parameters:

 - 
 

 - 

• For heavy quarks, one can further define

q̂ =

Z
d2q?

d�el

d2q?
q2? = “hq2?i”

 =

Z
d3q

d�el

d3q
q2 = “hq2i”

[⌘L] = rate of elastic energy loss

momentum broadening coefficient

HQ momentum diffusion coeff.
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• Studies characterized by a few 
phenomenological parameters:

 - 
 

 - 

• For heavy quarks, one can further define

q̂ =

Z
d2q?

d�el

d2q?
q2? = “hq2?i”

 =

Z
d3q

d�el

d3q
q2 = “hq2i” (defined

nonperturbatively)

[⌘L] = rate of elastic energy loss

momentum broadening coefficient

HQ momentum diffusion coeff.

(not yet defined
nonperturbatively)
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FIG. 3. Nuclear modification factor for charged hadrons in
Pb+Pb collisions at

p
s = 2.76ATeV in the 0-5% centrality

class simulated with Jewel+Pythia and compared to pre-
liminary Cms [27] and Alice [28] data (only maximum of
statistical and systematic and errors shown).

and its
p
s- and p?-dependence.

At very large p? the nuclear modification factor contin-
ues to rise above unity. This is a purely kinematical e↵ect
that becomes visible at very large p? where the energy
loss starts to vanish. The elastic scattering of energetic
partons converts longitudinal momentum into transverse
momentum and thus e↵ectively makes the p?-spectrum
harder. While this is a generic e↵ect its size and the
turn-on point to some degree dependend on the medium
model, as they are sensitive to the amount of scattering
centres encountered in the forward direction.

In this publication we have presented a novel descrip-
tion of jet quenching dynamics entirely based on stan-
dard perturbative technology also used in the simulation
of proton–proton collisions, and implemented it into the
Monte Carlo generator Jewel. In contrast to other sim-
ilar attempts, we do not only overcome certain limita-
tions imposed by the eikonal limit [29], but we also re-
solve the dichotomy in the description of in-medium and
vacuum radiation, basing all emissions on the same par-
ton shower. We reinterpret induced radiation as regular,
although infra-red-regulated, 2 ! 2 parton scatterings,
supplemented with our parton shower. This of course
makes any distinction of elastic and inelastic scattering
obsolete. We hinted at various ways of how our model
can systematically be improved, using a well–understood
perturbative language. This framework is flexible enough
to accommodate observables such as correlations, or jets,
which reach far beyond the very inclusive ones studied
here. For the fairly successful simulation of the nuclear
modification factor at Rhic and Lhc we used a simple
Bjorken model. Taking the description of this inclusive
data as a proof of principle, we reserve further and more
detailed investigations to future work.
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(Young, Schenke, Jeon
 &Gale 1103.5769)

initial conditions.

In summary, the strengths of martini include the inclusion of combined radiative and

elastic processes, its integration with pythia and Glauber model calculations for both sam-

pling of the initial parton distributions in momentum and position and the fragmentation

of the evolved partons into hadrons, and the ability to evolve the partons in a background

medium obtained from realistic hydrodynamical simulations.

III. RESULTS FOR LEAD-LEAD COLLISIONS MEASURED AT ATLAS AND

CMS

Once high-energy partons have evolved and hadronized, the resulting hadrons must then

be reconstructed into jets. For the best possible comparison with the results of the LHC,

we use the same anti-kt jet reconstruction that the ATLAS collaboration uses [20]. These

algorithms depend on the definition of distances between two 4-momenta:

dij = min

✓
1

k

2
it

,

1

k

2
jt

◆
(�i � �j)2 + (yi � yj)2

R

2
. (1)

The distances are determined between all pairs of final-state particles whose energies are

large enough to trigger the calorimeters, and starting with the smallest distance, 4-momenta

close to each other are clustered and added together and final jets are determined. The

implementation of this algorithm that we used is fastjet, publicly available online [21].

Once the clustering of hadrons into jets is complete, the jet with highest ET is determined,

and the highest energy jet whose azimuthal angle from the leading jet �� > ⇡/2 (or 2⇡/3,

as is the case with the CMS analysis) is also determined. If the energies of this dijet are

high enough to make it into the given detector’s analysis, they are recorded and binned.

In Figure 1, we show the results for ATLAS, in the 0-10% centrality range, for the di↵er-

ential yield dN/dAJ , where AJ = ET1�ET2
ET1+ET2

is a measure of the transverse energy asymmetry

of the dijets. The ATLAS results used are from the latest analysis using R = 0.4 [22]; there

was little dependence of R found in the latest results, suggesting partonic energy loss as

the dominant mechanism leading to dijet asymmetry. Our results are compared with p+p

events using pythia and fastjet, and the di↵erential yields are normalized to one. In

Figure 2, we show the di↵erential yields dN/d�, where � is the azimuthal opening angle for

the dijets.

4

Dijet asymetry
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• General message from these [still 
preliminary studies] is that pQCD-strength 
cross-sections are enough to describe the 
quenching (αs~0.3)

22
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Figure 3: (a,b) Fragmentation functions reconstructed in peripheral and central PbPb data for
the leading (open circles) and subleading (solid points) jets. (c,d) Ratio of each PbPb fragmen-
tation function to its pp-based reference. Error bars are statistical, the hollow boxes represent
the systematic uncertainty for the leading jet, and gray boxes show the systematic uncertainty
for the subleading jet. (e,f) Jet pT distributions in PbPb data (not corrected for efficiency and
not unfolded for pT resolution) compared to the pp-based reference (see text). Only statistical
uncertainties are shown in panels a, b, e and f.
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Conclusions
• Heavy ions have been running for a long time, 

yet at the same time many new recent ideas

• Many remarkable experimental discoveries: 
fast apparent thermalization, low apparent 
viscosity,... Deep puzzles for theory!

• Hopefully, hard probes will help shed light, and 
a consistent picture will emerge!
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