Outline	Introduction	Model	Results	Summary

Backreaction in Swiss Cheese models

Mikko Lavinto

University of Helsinki / Helsinki Institute of Physics

Winter school for particle physics and cosmology, Skeikampen, 4.1.2013

・ 4 日 > 4 日

Backreaction in Swiss Cheese models

University of Helsinki / Helsinki Institute of Physics

Outline	Introduction	Model	Results	Summary

Outline

- Introduction and motivation
- Model construction
- Results
- Summary

・ロト・日下・山下・ 山下・ 山下・ しょう

Outline	Introduction	Model	Results	Summary

► The Einstein equation is

$$G_{\mu\nu}=T_{\mu\nu}$$

Backreaction in Swiss Cheese models

University of Helsinki / Helsinki Institute of Physics

Outline	Introduction	Model	Results	Summary

► The Einstein equation is

$$G_{\mu\nu} = T_{\mu\nu}$$

and the Einstein tensor is non-linear,

$$\langle G_{\mu\nu}(g_{\alpha\beta}) \rangle \neq G_{\mu\nu}(\langle g_{\alpha\beta} \rangle).$$

4 3 b University of Helsinki / Helsinki Institute of Physics

- E - E

nac

Backreaction in Swiss Cheese models

Outline	Introduction	Model	Results	Summary

The Einstein equation is

$$G_{\mu\nu} = T_{\mu\nu}$$

▶ and the Einstein tensor is non-linear,

$$\langle G_{\mu\nu}(g_{\alpha\beta}) \rangle \neq G_{\mu\nu}(\langle g_{\alpha\beta} \rangle).$$

 Therefore averaged metric does not need to evolve according to Einstein equation sourced by averaged energy-momentum tensor.

Outline	Introduction	Model	Results	Summary

The Einstein equation is

$$G_{\mu\nu} = T_{\mu\nu}$$

▶ and the Einstein tensor is non-linear,

$$\langle G_{\mu\nu}(g_{\alpha\beta}) \rangle \neq G_{\mu\nu}(\langle g_{\alpha\beta} \rangle).$$

- Therefore averaged metric does not need to evolve according to Einstein equation sourced by averaged energy-momentum tensor.
- In cosmology we use (almost) always averaged Friedmann-Robertson-Walker metric.

Outline	Introduction	Model	Results	Summary

The Einstein equation is

$$G_{\mu\nu} = T_{\mu\nu}$$

▶ and the Einstein tensor is non-linear,

$$\langle G_{\mu\nu}(g_{\alpha\beta}) \rangle \neq G_{\mu\nu}(\langle g_{\alpha\beta} \rangle).$$

- Therefore averaged metric does not need to evolve according to Einstein equation sourced by averaged energy-momentum tensor.
- In cosmology we use (almost) always averaged Friedmann-Robertson-Walker metric.
- ► Is this correct?

Outline	Introduction	Model	Results	Summary

Backreaction

The Hamiltonian constraint between expansion rate θ, energy density ρ, curvature ⁽³⁾R and shear σ is

$$\frac{1}{3}\theta^2 = 8\pi G_{\rm N}\rho - \frac{1}{2}{}^{(3)}R + \sigma^2$$

nac

Outline	Introduction	Model	Results	Summary

Backreaction

The Hamiltonian constraint between expansion rate θ, energy density ρ, curvature ⁽³⁾R and shear σ is

$$\frac{1}{3}\theta^2 = 8\pi G_{\rm N}\rho - \frac{1}{2}{}^{(3)}R + \sigma^2$$

► Averaging both sides we get one of the Buchert equations

$$3rac{\dot{a}^2}{a^2}=8\pi G_{
m N}\langle
ho
angle-rac{1}{2}\langle^{(3)}R
angle-rac{1}{2}\mathcal{Q}$$

DQ P

Outline	Introduction	Model	Results	Summary

Backreaction

The Hamiltonian constraint between expansion rate θ, energy density ρ, curvature ⁽³⁾R and shear σ is

$$\frac{1}{3}\theta^2 = 8\pi G_{\rm N}\rho - \frac{1}{2}{}^{(3)}R + \sigma^2$$

Averaging both sides we get one of the Buchert equations

$$3rac{\dot{a}^2}{a^2}=8\pi G_{
m N}\langle
ho
angle-rac{1}{2}\langle^{(3)}R
angle-rac{1}{2}\mathcal{G}$$

► Like Friedmann's equation, except an extra term

$$\mathcal{Q}\equivrac{2}{3}\left(\langle heta^2
angle-\langle heta
angle^2
ight)-2\langle \sigma^2
angle$$

appears due to averaging

Backreaction in Swiss Cheese models

University of Helsinki / Helsinki Institute of Physics

Outline	Introduction	Model	Results	Summary

Lemaître-Tolman-Bondi metric:

 $ds^{2} = -dt^{2} + X^{2}(t, r)dr^{2} + R^{2}(r, t)(d\theta^{2} + \sin^{2}\theta d\phi^{2})$

- ▲日 > ▲ 画 > ▲ 画 > ▲ 画 > ろくの

Backreaction in Swiss Cheese models

University of Helsinki / Helsinki Institute of Physics

Outline	Introduction	Model	Results	Summary

Lemaître-Tolman-Bondi metric:

$$ds^2 = -dt^2 + X^2(t,r)dr^2 + R^2(r,t)(d heta^2 + \sin^2 heta d\phi^2)$$

• Solution characterised by three arbitrary functions; M(r), $E(r), t_{\rm B}(r)$

nac

Outline	Introduction	Model	Results	Summary

Lemaître-Tolman-Bondi metric:

$$ds^2 = -dt^2 + X^2(t,r)dr^2 + R^2(r,t)(d\theta^2 + \sin^2\theta d\phi^2)$$

- Solution characterised by three arbitrary functions; M(r), E(r), t_B(r)
- ► We can construct inhomogeneous spacetimes by cutting a hole in an FRW space and embedding an LTB region inside

DQ P

Outline	Introduction	Model	Results	Summary

• Lemaître-Tolman-Bondi metric:

$$ds^2 = -dt^2 + X^2(t,r)dr^2 + R^2(r,t)(d\theta^2 + \sin^2\theta d\phi^2)$$

- Solution characterised by three arbitrary functions; M(r), E(r), t_B(r)
- We can construct inhomogeneous spacetimes by cutting a hole in an FRW space and embedding an LTB region inside
- If intrinsic and extrinsic curvatures are continuous at the embedding hypersurface, the union of the two spacetimes also satisfies Einstein equations

Outline	Introduction	Model	Results	Summary

• Lemaître-Tolman-Bondi metric:

$$ds^2 = -dt^2 + X^2(t,r)dr^2 + R^2(r,t)(d\theta^2 + \sin^2\theta d\phi^2)$$

- Solution characterised by three arbitrary functions; M(r), E(r), t_B(r)
- We can construct inhomogeneous spacetimes by cutting a hole in an FRW space and embedding an LTB region inside
- If intrinsic and extrinsic curvatures are continuous at the embedding hypersurface, the union of the two spacetimes also satisfies Einstein equations
- $\blacktriangleright \ \rightarrow \text{Darmois junction conditions}$

DQ P

Outline	Introduction	Model	Results	Summary

LTB solution describes pressureless fluid

- ▲ ロ ト ▲ 国 ト ▲ 国 ト ト 国 - シック

Backreaction in Swiss Cheese models

University of Helsinki / Helsinki Institute of Physics

Outline	Introduction	Model	Results	Summary

- LTB solution describes pressureless fluid
- Expansion rate varies with r

Outline	Introduction	Model	Results	Summary

- LTB solution describes pressureless fluid
- Expansion rate varies with r
- If the inside of an LTB region expands faster than outside, at some point the radial dust shells will overlap, generating a shell crossing singularity

Outline	Introduction	Model	Results	Summary

- LTB solution describes pressureless fluid
- Expansion rate varies with r
- If the inside of an LTB region expands faster than outside, at some point the radial dust shells will overlap, generating a shell crossing singularity
- This combined with Darmois junction conditions restricts the models a lot

Outline	Introduction	Model	Results	Summary

One can show that under reasonably physical conditions, backreaction is always small in Swiss Cheese models

• The space has a regular symmetry center at r = 0

Outline	Introduction	Model	Results	Summary

One can show that under reasonably physical conditions, backreaction is always small in Swiss Cheese models

- The space has a regular symmetry center at r = 0
- The areal radius is monotonic, $\frac{\partial R(t,r)}{\partial r} \ge 0$.

Outline	Introduction	Model	Results	Summary

One can show that under reasonably physical conditions, backreaction is always small in Swiss Cheese models

- The space has a regular symmetry center at r = 0
- The areal radius is monotonic, $\frac{\partial R(t,r)}{\partial r} \ge 0$.
- ► There is a big bang singularity at t = t_B(r) ≤ 0, and there are no other singularities at least until time t = t₀, with t₀ - t_B(r) ~ t₀.

Outline	Introduction	Model	Results	Summary

One can show that under reasonably physical conditions, backreaction is always small in Swiss Cheese models

- The space has a regular symmetry center at r = 0
- The areal radius is monotonic, $\frac{\partial R(t,r)}{\partial r} \ge 0$.
- ► There is a big bang singularity at t = t_B(r) ≤ 0, and there are no other singularities at least until time t = t₀, with t₀ - t_B(r) ~ t₀.
- The spacetime matches smoothly to a FRW dust universe at the boundary.

Outline	Introduction	Model	Results	Summary

One can show that under reasonably physical conditions, backreaction is always small in Swiss Cheese models

- The space has a regular symmetry center at r = 0
- The areal radius is monotonic, $\frac{\partial R(t,r)}{\partial r} \ge 0$.
- There is a big bang singularity at $t = t_{\rm B}(r) \leq 0$, and there are no other singularities at least until time $t = t_0$, with $t_0 - t_{\rm B}(r) \sim t_0$.
- The spacetime matches smoothly to a FRW dust universe at the boundary.
- The areal radius at the matching surface is small compared to the spacetime curvature radius of the background FRW universe.

Outline	Introduction	Model	Results	Summary
Our model				

▶ What happens when you break $\frac{\partial R(t,r)}{\partial r} \ge 0$?

ものの 叫 ふぼすえばす (唱や 4日を

Backreaction in Swiss Cheese models

University of Helsinki / Helsinki Institute of Physics

Outline	Introduction	Model	Results	Summary
Our model				

- What happens when you break $\frac{\partial R(t,r)}{\partial r} \ge 0$?
- When $\frac{\partial R(t,r)}{\partial r} = 0$, there is a discontinuity in the extrinsic curvature.

Outline	Introduction	Model	Results	Summary
Our mode				

- What happens when you break $\frac{\partial R(t,r)}{\partial r} \ge 0$?
- When $\frac{\partial R(t,r)}{\partial r} = 0$, there is a discontinuity in the extrinsic curvature.
- ▶ This induces a 2+1-dimensional thin singular shell on the surface

= nac

Outline	Introduction	Model	Results	Summary

Our model

- What happens when you break $\frac{\partial R(t,r)}{\partial r} \ge 0$?
- When $\frac{\partial R(t,r)}{\partial r} = 0$, there is a discontinuity in the extrinsic curvature.
- This induces a 2+1-dimensional thin singular shell on the surface
- Can we suspend our disbelief and construct a model with significant backreaction?

- 4 同 ト 4 三 ト - 三 - シュマ

Outline	Introduction	Model	Results	Summary

Not really

Having significant backreaction requires collapsing regions as

$$\mathcal{Q}\equivrac{2}{3}\left(\langle heta^2
angle-\langle heta
angle^2
ight)-2\langle \sigma^2
angle$$

Collapsing regions require pressure to keep them from collapsing into singularities.

 $\Omega_{\mathcal{Q}} \lesssim 1\%$

Backreaction in Swiss Cheese models

伺下 イヨト イヨト University of Helsinki / Helsinki Institute of Physics

nac

Outline	Introduction	Model	Results	Summary
Summary				

 It is possible to construct inhomogeneous spacetimes that solve Einstein equations exactly.

Outline	Introduction	Model	Results	Summary
Summar	v			

- It is possible to construct inhomogeneous spacetimes that solve Einstein equations exactly.
- However, the junction conditions and having no pressure restrict backreaction to always be small in these models if the inhomogeneities are small.

Outline	Introduction	Model	Results	Summary
<u> </u>				

- It is possible to construct inhomogeneous spacetimes that solve Einstein equations exactly.
- However, the junction conditions and having no pressure restrict backreaction to always be small in these models if the inhomogeneities are small.
- Even if we break one of the junction conditions, we still could not have large backreaction

Outline	Introduction	Model	Results	Summary
<u> </u>				

- It is possible to construct inhomogeneous spacetimes that solve Einstein equations exactly.
 - However, the junction conditions and having no pressure restrict backreaction to always be small in these models if the inhomogeneities are small.
 - Even if we break one of the junction conditions, we still could not have large backreaction
 - It appears likely that more complicated models are needed for estimation of backreaction.