Type II Supernovae:
Impact of electro-weak processes during core-collapse phase

Anthea F. FANTINA & Patrick BLOTTIAU

Dr. E. Khan, Dr. J. Margueron (IPN Orsay)
Dr. Ph. Mellor (CEA, DAM, DIF)
Dr. J. Novak, Dr. Micaela Oertel (Luth, Meudon)

Prof. P. Pizzochero & Dr. P. Donati
(Univ. Milano & INFN)

MICRA 2009, NBIA Copenhagen 24th - 28th August
We investigate …

… influence of T-dependence of nuclear symmetry energy during core-collapse phase

 - study of $m^*(T)$: 98Mo, 64Zn, 64Ni in the range $0 < T < 2$ MeV (QRPA)
 - decrease of $m^*(T)$ in the range $0 < T < 2$ MeV
 - increase of E_{sym} ($\sim 8\%$)
 - effects on gravitational collapse not negligible

 - study of $E_{sym}(T)$: A = 56-66 in the range $0.33 < T < 1.23$ MeV (SMMC)
 - increase of E_{sym} ($\sim 6\%$) consistent with Donati et al.
 - “not significant changes for the collapse trajectory”
Effective mass \leftrightarrow Symmetry energy $\leftrightarrow Y_{\text{lept,tr}}$

\[
\frac{m^*}{m} = \frac{m_k}{m} \frac{m_\omega}{m} \\
\frac{m_\omega(T)}{m} = 1 + \left[\frac{m_\omega(0)}{m} - 1 \right] e^{-T/T_0}
\]

\[
E_{\text{symm}}(T) = s(T) \left(1 - 2 \frac{Z}{A} \right)^2 \\
s(T) = s(0) + \text{const} \left(\frac{1}{m^*(T)} - \frac{1}{m^*(0)} \right)
\]

1.4 < \frac{m_\omega(0)}{m} < 1.8

1.9 MeV < k_B T_0 < 2.1 MeV

reduction of m_ω with $T \Rightarrow$ increase of E_{symm}

increase of $\mu_n - \mu_p : \Rightarrow$ Q-value of electron capture rates!

less neutronization \Rightarrow larger values of Y_{lept} at trapping

A. F. Fantina & P. Blottiau - MICRA2009

\[Y_{\text{lept, tr}} \quad \text{Shock wave energy} \]

Shock wave loses energy while crossing matter.

dissociation energy: \(17 \ \text{foe}/M_\odot \)

\[M_{\text{ch}} = 5.8 \ Y_{\text{lept}}^2 \]

\[E_{\text{diss}} = 98 \ [Y_{l, i}^2 - Y_{l, \text{tr}}^2] \ [\text{foe}] \]

larger values of \(Y_{\text{lept}} \) at trapping \(\Rightarrow \) less deleptonization

\(\Rightarrow \) less energy dissipated

\[m^*(T) \rightarrow E_{\text{sym}} \rightarrow Y_{l, \text{tr}} \rightarrow \text{Shock wave energy} \]

A. F. Fantina & P. Blottiau - MICRA2009
Numerical results of collapse simulation (one-zone code)

\[\delta_T E_{\text{diss}} = \left[E_{\text{diss}}|_0 - E_{\text{diss}}|_T \right] > 0 \]

\[E_{\text{diss}} = 98 \left[Y_{l,i}^2 - Y_{l,tr}^2 \right] \text{[foe]} \]

\[\gamma^2 = 1 \]

Langanke K. et al.,

\[\gamma^2 = 0.1 \]

Fuller G.M.,

Fantina A.F. et al.,
Numerical results of collapse simulation (one-zone code)

\[\delta T E_{\text{diss}} \propto Y_{l, tr} \bigg|_0 \delta T Y_{l, tr} \]

A. F. Fantina & P. Blottiau - MICRA2009

Preliminary results of collapse simulation at trapping density (1D Newtonian code)

Preliminary results of collapse simulation at bounce (1D Newtonian code)

Conclusions

• Influence of T-dependence of E_{sym} on the evolution of collapse
 → systematic reduction of neutronization of the core
 (increasing of final lepton fraction) & less energy dissipated by shock wave
 - one zone model -
 → position of shock wave formation: bigger homologous core
 - 1D Newtonian code -

• Gain in shock wave dissociation energy if we consider $m^*(T)$:
 $\delta_T E_{diss} \sim 0.4$ foe (estimation with one-zone code, within reasonable physical ranges of parameters)

and: $K \sim 1 – 1.5$ foe (Bethe H.A. & Pizzochero P., Astrophys. J. 350, L33 (1990))

⇒ even if no dramatic effect on dynamics of the collapse is expected
 (see fluid instabilities, SASI, magnetic field, …) effects are not negligible!

A. F. Fantina & P. Blottiau - MICRA2009
Outlook

- **Nuclear point of view**: *Microscopic calculation of nuclear inputs*
 - Electron capture rates on nuclei → γ^2
 - Calculation of $m^*(T)$ & $E_{sym}(T)$:
 → systematic calculations on more nuclei
 → level density parameter (experiments?!) → dependence on ρ, A, Z, T
 - EoS
 → Lattimer & Swesty, Nucl. Phys. A535, 331 (1991), with $m^*(\rho, x, T)$

- **Astrophysical point of view**: *Hydrodynamics*
 - multizone / multi-D code → test in 1D
 - Newtonian & Relativistic
 - more accurate treatment of neutrinos and shock formation

A. F. Fantina & P. Blottiau - MICRA2009
Thank you