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Introduction

Punchline:

Multifluid models may be useful or essential for representing physics
such as superfluidity. However, it is computationally expensive and the
additional instabilities are messy.
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Introduction

Multiple particle species will be important in NSs.
For certain phenomena (e.g. superfluids, heat conduction) a
single ideal fluid approximation is insufficient.
Multiple fluids occupying the same volume may give a sufficient
model;

I Standard hydrodynamic model of superfluids is inherently multifluid;
I Some causal heat conduction models can be derived from multifluid

approaches.
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I Standard hydrodynamic model of superfluids is inherently multifluid;
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approaches.

The key physics question is determining what the fluids represent.
That question is ignored here; instead look at numerical methods for a
toy problem.
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Carter Framework

Carter introduced a Hamiltonian framework based on species number
currents nν

X and a master function (“energy”) Λ ≡ Λ
(
nα

XnY
α

)
.

Action principle varying Λ; clean coupling to GR.
Conjugate momenta µX

ν need not be parallel to nν
X; entrainment.

Covariant continuity and Euler equations follow:

∇µnµ
X = ΓX,

2nµ
X∇[µµ

X
ν] = f X

ν .

Typically assume inter-species forces balance,
∑

X f X
ν = 0.

Even in simple case with no species production (ΓX = 0) and no
forces the fluids can still interact through the entrainment.
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Two-stream instabilities

Linear analysis shows
instabilities when the
relative flow is large and
entrainment occurs.

Plane parallel waves on flat
backgrounds without
boundaries are checked.

The dispersion relation
predicts high frequency
modes will explode.

Samuelsson et al, arXiv:0906.4002
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Nonlinear code

As a first attempt we look at the simplest case:
No species production or forces.
“Generalized polytrope” EOS (Prix et al, PRD71 043005 (2005),
Samuelsson et al, arXiv:0906.4002).
Periodic boundaries, 1+1 or 2+1d, special relativity.
Central differencing with Kreiss-Oliger dissipation.

The equations become

∂tnt
X = −∂jn

j
X,

∂tµ
X
i = ∂iµ

X
t + 2

∑
j

nj
X

nt
X
∂[iµ

X
j].
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Implementation issues

The evolved variables (nt
X, µ

X
i ) do not immediately contain all the

necessary information. All other components of nν
X must be found from

e.g. the master function.

Currently the code
1 guesses the value of the scalars nα

XnY
α;

2 computes Λ and derivatives from these guesses;
3 uses the definition of µX

i to find ni
X by solving a linear system;

4 uses the resulting approximation to nν
X to check the scalar

guesses, implying a nonlinear root-find.

This “primitive variable recovery” requires over 90% of the run-time.
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1d results

Near the instability limit the fully nonlinear evolutions reproduce the
linear analysis. The instability cascades down from high frequency.
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2d results

It is straightforward to extend to a 2d “shearing box”; perturbing the
initial data in the other direction has no effect on the instability.
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Summary

Multiple (ideal) fluids give a simple framework for modelling
complex interactions.
General conservation law forms are not obvious.
Numerically expensive to convert between required types of
variables.
Linear instabilities are clear in nonlinear evolutions.
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