3D Rad-hydro simulations to solve supernova problem

But to understand the simulations, we need to

parameterize neutrino-transport

Critical Conditions for Successful Neutrino-Driven Explosions

A Model for the Gravitational Wave Emission

> by Jeremiah W. Murphy NSF AAP Fellow (University of Washington)

Thank you..

Adam Burrows Randy LeVeque Christian Ott Luc Dessart Ivan Hubeny Raphael Loubere Misha Shashkov Milan Kucharik Burton Wendroff Casey Meakin Princeton U. Applied Math., UW Caltech / (NBI, Copenhagen) OAMP (Marseille, Fr.) Steward, U.A. CNRS, Fr. LANL LANL LANL U. Arizona

Supernova 1987A • November 28, 2003 Hubble Space Telescope • ACS

NASA and R. Kirshner (Harvard-Smithsonian Center for Astrophysics)

STScI-PRC04-09a

1D simulations (Rad-hydro)

Wilson '85 Bethe & Wilson '85 Liebendoerfer et al. '01 Rampp & Janka '02 Buras et al. '03 Thompson et al. '03 Liebendoer et al. '05 Kitaura et al. '06 Burrows et al. '07

Neutrino mechanism suggested

No Explosions (Except lowest masses)

Relax 1D assumption?

<u>Neutrino Mechanism:</u>

•Neutrino-heated convection

Standing Accretion Shock Instability (SASI)Explosions? maybe

Magnetic Jets: •Only for very rapid rotations

Acoustic Mechanism: •Explosions but caveats.

<u> Neutrino Mechanism:</u>

Neutrino-heated convection
Standing Accretion Shock Instability (SASI)
Explosions? maybe

Magnetic Jets: •Only for very rapid rotations

Acoustic Mechanism: •Explosions but caveats. 0 ms

Note...

- •Stalled shock
- •Begins 1D, but...
- •Convection
- •Standing Accretion Shock Instability (SASI)

Fundamental Question of Core-Collapse Theory

Steady-State Explosion Accretion t=0.280 s t=0.750 s

And why is it easier to explode in 2D compared to 1D?

Murphy & Burrows '08

Two Paths to the Solution

- Detailed 3D radiation-hydrodynamic simulations ("Accurate" energies, NS masses, nucleo., etc.)
- Parameterizations that capture essential physics (Tease out fundamental mechanisms)

Burrows & Goshy '93 Steady-state solution (ODE)

Conditions for Explosions by the Neutrino Mechanism

Murphy & Burrows, 2008

Parameter Study

- Neutrino Luminosity (Local heating and cooling)
- 1D, 2D (90° and 180°)
- 11.2 and 15 M_{\odot} (range of accretion rates)
- Resolution
- ~100 simulations

Is a critical luminosity relevant in hydrodynamic simulations?

• 1D

• 2D Convection and SASI?

How do the critical luminosities differ between 1D and 2D?

Why is critical luminosity of 2D simulations ~70% of 1D?

Conditions during Explosion

$1D \rightarrow \text{one time}$ $2D \rightarrow \text{distribution of times}$ More heating?

Conclusions

- Critical luminosity in hydrodynamic simulations (1D & 2D)
- Radial oscillations vs. SASI
- 2D ~70% of 1D
- Insensitive to resolution or angular domain
- Residence time in multi-D simulations
- Long τ_r explains reduction in critical luminosity

A Model for Gravitational Wave Emission from Neutrino-Driven Explosions

Murphy, Ott, & Burrows '09

Murphy, Ott, & Burrows, 2009

Another Parameter Study

- Neutrino Luminosity (Local heating and cooling)
- 2D
- 12, 15, 20, and 40 M_{\odot} (Woosley & Heger '07)

Characteristic GW frequencies and amplitudes?

The Model: Buoyant Impulse $b(r) = \int N^2 dr$

Similar analysis for 3D convection in stellar interiors (Meakin & Arnett 2007, Arnett & Meakin 2009)

The Model: Buoyant Impulse $b(r) = \int N^2 dr$

Similar analysis for 3D convection in stellar interiors (Meakin & Arnett 2007, Arnett & Meakin 2009)

$$f_p \sim N/(2\pi)$$

Progenitor Mass and v Luminosity Dependence

Conclusions

- GW emission of asymmetric explosions
- A model for GW emission
 - Plumes and buoyant forces (v_p, D_p, f_p)
 - $f_p \propto N_{turn}$
 - N_{turn} is in turn dependent upon nuclear and subnuclear EOS and neutrino transport
 - GW amplitude $\propto f_p v_p$

-9.0

-10.0 ₁

ం _11.0 ల్ల్

Future Directions

The Condition for successful explosions

- Better approximate neutrino physics
- L_{crit}, **M**, and M relation!?
 - Where does it come from?
 - relate to τ_{adv} and τ_{q} condition?
- Distribution of residence times?
 - long and short
 - inherent asymmetry
 - Convection & SASI in context of Accretion?
- Analytic and numerical techniques
- 3D?

Why is it easier to explode in 2D compared to 1D?

Why is it easier to explode in 2D compared to 1D?

Because it's 2D

3D?

3D Simulations

Convection, SASI, & Accretion (in 3D)? Distribution of residence times? Lower critical luminosites? Randy LeVeque et al. CLAWPACK

bottom view at time t = 0.000

