New steps toward realistic simulations of general black hole-neutron star mergers

By Matt Duez, Cornell University, in collaboration with Francois Foucart, Larry Kidder, Christian Ott, and Saul Teukolsky MICRA 2009

BHNS Binaries

- Merger rate: 10⁻⁶-10⁻⁵/Myr/MWEG (Pop. Synth.)
- AdvLIGO rate: 1-10/yr
- Short GRB engine? (need disk + clear region)
- r-process elements? (need unbounded ejecta)
 A range of possible behaviors
- $M_{\rm BH} \gg M_{\rm NS}$
 - expect plunge @ ISCO, NS swallowed whole
- $M_{\rm BH} \sim {\rm few} \times M_{\rm NS}$
 - Disruption, mass transfer
 - Stable vs. unstable mass transfer
 - Disk? Ejected matter? Surviving core?

The challenge to Numerical Relativists

Effects of mass ratio $q=M_{BH}/M_{NS}$

- For higher **q**, expect
 - Disruption closer to plunge
 - smaller disk, more BBH-like GWs
- Studied by Shibata *et al* (09), Etienne *et al* (08): $1 \le q \le 5$ Effects of BH spin s=a_{BH}/M_{BH}
- For higher aligned **s**, expect
 - Smaller ISCO \rightarrow larger disk
 - Longer inspiral
- Studied by Etienne et al (08): s=-0.5,0,0.75 (aligned)
- High s \rightarrow big $(10^{-1}M_{\odot})$ disk

The effect of NS Equation of State

- EoS affects both NS compaction and stability of mass transfer
- Lee (00,01) varied Γ from 5/3—3, Faber *et al* used Γ =1.5,2
- Janka et al (99) used L-S, Rosswog et al (04) used Shen
- In Newtonian gravity, disks much smaller for Shen than L-S
 - Rosswog et al (04)
- In Newtonian gravity, possibility of multiple mass transfers (MMT)
 - Lee (00), Rosswog et al (04)
 - Use of P-W potential (Rosswog 05, Ruffert & Janka (09)) or GR tends to remove MMT
- In GR, Shibata and Taniguchi (08) studied the effect of varying compaction for Γ =2 polytropes (P= $\kappa\rho^{\Gamma}$)
 - More compact star \rightarrow smaller disk, stronger GW signal

Our Cases

- Constants
 - $q=M_{BH}/M_{NS}=3$
 - d(t=0)=7.5M (≥2 orbits of inspiral) + Eccentricity removal
- Spin variation
 - Fix Γ =2 EoS, C=M_{NS}/R_{NS} = 0.15
 - Vary s=a_{BH}/M_{BH}=0, 0.5, 0.9
- EoS variation
 - Fix s=0.5
 - 1) Γ=2, C=0.15
 - 2) Γ=2.75, C=0.15, 0.18
 - 3) Shen et al EoS, C=0.15

advect Y_e (Shen-Adv) or impose β -equil (Shen- β) use full Shen table, or use *T*=0 table + Γ =2 thermal part

Our Code

- Pseudospectral GR, GH formulations
- Shock-capturing FV hydro
- 2 grids, interpolation, automated remapping
- BH excision, comoving coords

- New improvements:
 - |C|~10⁻⁴-10⁻³ (inspiral)
 - |C|~10⁻² (merger)
- Inspiral: 10,000 CPU-h on 32 proc
- Merger: 20,000 CPU-h on 48 proc

Qualitative features of the mergers

- Single disruption event
- Tidal tail, disk

The gravitational wave signatures

- Spin
 - Orbital hangup
 - Smear radius

- EoS
 - Large compaction effect
 - Smaller Γ , \mathbf{Y}_{e} effects

The post-merger disks

Disk properties

- $\rho_{\text{max}} \approx 5 \times 10^{12} \text{ g cm}^{-3}, \ \delta \rho / \rho \approx 0.2$
- *r*~100km, *H/r*~0.15, *H*_{max}=80km
- $<Y_e > ~0.06$ (Adv) ~0.2 (β)
- $\langle T \rangle \approx 3.5 \text{MeV}, \ T_{\text{max}} \approx 20 \text{MeV}, \ \langle c_{\text{s}} \rangle / \langle c_{\text{s}} (T=0) \rangle \approx 1.7$

•
$$\ell \sim \text{const, } F_P/F_{\text{cent}} \sim 10^{-2}$$

Final BH properties

- $M \approx 5.5 M_{\odot}$
- a/m: $0 \rightarrow 0.56$, $0.5 \rightarrow 0.78$, $0.9 \rightarrow 0.93$

What happens next?

- To the disk
 - MRI turbulence: $t_{\rm acc} \sim 10^{-1} \, {\rm s} \, {\rm for} \, \alpha_{\rm eff} \sim 10^{-1}$
 - v-cooling: $\tau_v \sim 10^2$, $L_v \sim 10^{52} \text{ erg s}^{-1}$, $t_{\text{cool}} \sim \text{s}$
 - c.f. similar Newtonian disk: Setiawan, Ruffert, and Janka (2006)
- With simulations
 - GWs:
 - focus on inspiral+disruption
 - Need for general cases, i.e. nonaligned BH spin
 - Current microphysics is nearly adequate
 - GRBs:
 - Focus on merger
 - Need MHD, v-transport, nuclear reactions