Copenhagen, 26.8.2009

Collisions of white dwarfs as a new progenitor channel for type la Supernovae

(Rosswog et al., arXiv0907.3196)

Stephan Rosswog Jacobs University Bremen

In collaboration with:

- James Guillochon, UC Santa Cruz, USA
- Raph Hix, Oakridge, USA
- Dan Kasen, UC Santa Cruz, USA
- Enrico Ramirez-Ruiz, UC Santa Cruz, USA

- Holger Baumgardt, Bonn
- Marius Dan, Bremen
- Glenn van de Ven, Heidelberg

Punchline:

Punchline:

Type la Supernovae are not all caused by accreting CO white dwarfs near the Chandrasekhar mass Punchline:

....

Type Ia Supernovae are not all caused by accreting CO white dwarfs near the Chandrasekhar mass

There are several ways to explode WDs, examples include:

WDs tidally pinched by black holes
collisions of WDs

Globular clusters

Globular clusters

- $\sim | 0^6$ stars
- 10² 10⁴ per galaxy
- typical velocity dispersions $\sigma \sim 5$ km/s
- central densities up to
 - >10⁶ stars/pc³ >> 1 star/pc³ (solar neighbourhood)

Globular clusters

- ~|0⁶ stars
- 10² 10⁴ per galaxy
- typical velocity dispersions $\sigma \sim 5$ km/s
- central densities up to
 - >10⁶ stars/pc³ >> 1 star/pc³ (solar neighbourhood)

Galactic centres

Globular clusters

- ~|0⁶ stars
- 10² 10⁴ per galaxy
- typical velocity dispersions $\sigma \sim 5$ km/s
- central densities up to
 - >10⁶ stars/pc³ >> 1 star/pc³ (solar neighbourhood)

Galactic centres

- large, central number densities, ~ 10⁸ stars/pc³
- σ ~ 200 km/s
- central ~0.1 pc as "stellar collider" (Alexander 2005)

Globular clusters

- ~|0⁶ stars
- 10² 10⁴ per galaxy
- typical velocity dispersions $\sigma \sim 5$ km/s
- central densities up to
 - >|0⁶ stars/pc³ >> | star/pc³ (solar neighbourhood)

Galactic centres

- large, central number densities, ~ 10⁸ stars/pc³
- σ ~ 200 km/s
- central ~0.1 pc as "stellar collider" (Alexander 2005)

mass-segregation: massive stars sink towards centre

Globular clusters

- ~|0⁶ stars
- 10² 10⁴ per galaxy
- typical velocity dispersions $\sigma \sim 5$ km/s
- central densities up to
 - >|0⁶ stars/pc³ >> | star/pc³ (solar neighbourhood)

Galactic centres

- large, central number densities, ~ 10⁸ stars/pc³
- σ ~ 200 km/s
- central ~0.1 pc as "stellar collider" (Alexander 2005)

mass-segregation: massive stars sink towards centre

frequent close encounters/collisions

• White dwarfs are so small, do they collide at all?

- White dwarfs are so small, do they collide at all?
- collision rate of single star for Maxwellian velocity distribution with dispersion σ (closest approach r_{coll} < 2 R*, Binney & Tremaine 2008):

- White dwarfs are so small, do they collide at all?
- collision rate of single star for Maxwellian velocity distribution with dispersion σ (closest approach r_{coll} < 2 R*, Binney &

Tremaine 2008):

$$\frac{1}{\tau_{\rm coll}} = 16\sqrt{\pi}n\sigma R_*^2(1+\Theta)$$

Safronov number $\Theta = \frac{v_{\rm esc}^2}{4\sigma^2}$

- White dwarfs are so small, do they collide at all?
- collision rate of single star for Maxwellian velocity distribution with dispersion σ (closest approach r_{coll} < 2 R*, Binney &

Tremaine 2008):

$$\frac{1}{\tau_{\rm coll}} = 16\sqrt{\pi}n\sigma R_*^2(1+\Theta)$$

Safronov number $\Theta = \frac{v_{\rm esc}^2}{4\sigma^2}$

- White dwarfs are so small, do they collide at all?
- collision rate of single star for Maxwellian velocity distribution with dispersion σ (closest approach r_{coll} < 2 R*, Binney &

Tremaine 2008):

$$\frac{1}{\tau_{\rm coll}} = 16\sqrt{\pi}n\sigma R_*^2(1+\Theta)$$

Safronov number $\Theta = \frac{v_{\rm esc}^2}{4\sigma^2}$

• for WDs: $v_{\rm esc} \approx 4000 \text{ km/s} \gg \sigma_{\rm GC} \approx 5 \text{ km/s}$

- White dwarfs are so small, do they collide at all?
- collision rate of single star for Maxwellian velocity distribution with dispersion σ (closest approach r_{coll} < 2 R*, Binney &

Tremaine 2008):

$$\frac{1}{\tau_{\rm coll}} = 16\sqrt{\pi}n\sigma R_*^2(1+\Theta)$$

Safronov number $\Theta = \frac{v_{\rm esc}^2}{4\sigma^2}$

• for WDs: $v_{\rm esc} \approx 4000 \text{ km/s} \gg \sigma_{\rm GC} \approx 5 \text{ km/s}$

entirely dominated by gravitational focussing!

• rate per globular cluster:

rate per globular cluster: $R_{\rm GC} \sim \frac{1}{2} \frac{n_{\rm WD}}{\tau_{\rm coll}} \times \frac{4}{3} \pi r_c^3$

- rate per globular cluster: $R_{\rm GC} \sim \frac{1}{2} \frac{n_{\rm WD}}{\tau_{\rm coll}} \times \frac{4}{3} \pi r_c^3$

multiply by average globular cluster space density (Brodie & Strader 2006)

rate per globular cluster:

$$R_{\rm GC} \sim \frac{1}{2} \frac{n_{\rm WD}}{\tau_{\rm coll}} \times \frac{4}{3} \pi r_c^3$$

multiply by average globular cluster space density (Brodie & Strader 2006)

 $R_{\rm WDWD} = 2 \times 10^2 \text{ yr}^{-1} \text{Gpc}^{-3} \approx 0.01 \text{ SNIa rate}$

rate per globular cluster:

$$R_{\rm GC} \sim \frac{1}{2} \frac{n_{\rm WD}}{\tau_{\rm coll}} \times \frac{4}{3} \pi r_c^3$$

• multiply by average globular cluster space density (Brodie & Strader 2006)

 $R_{\rm WDWD} = 2 \times 10^2 \text{ yr}^{-1} \text{Gpc}^{-3} \approx 0.01 \text{ SNIa rate}$

• possibly further enhanced by

- binary fraction in cluster
- contrib. galactic centres, ultracompact dwarf galaxies etc ...

Dan et al. in prep.

Rosswog et al. 2009, Rosswog et al. in prep.

• Hydrodynamics: Smoothed Particle Hydrodynamics

• Hydrodynamics: Smoothed Particle Hydrodynamics

- Lagrangian
- exact numerical conservation
- Galiean invariant

• Hydrodynamics: Smoothed Particle Hydrodynamics

- Lagrangian
- exact numerical conservation
- Galiean invariant

• Hydrodynamics: Smoothed Particle Hydrodynamics

- Lagrangian
- exact numerical conservation
- Galiean invariant

• Equation of state: Helmholtz-EOS (Timmes & Swesty 2000)

- completely general e⁺e⁻ treatment
- therm. consistent interpolation
- free specification of composition

• Artifacts in non-Galilean invariant methods:

example: advecting a white dwarf across the grid

Adaptive mesh refinement code FLASH

• nuclear burning: 7-species, QSE-reduced alpha (Hix et al. 1998)

- tuned for correct energy production
- coupled directly with hydrodynamics (implicit/explicit time integration)
- post-processing by 9-isotope network

• nuclear burning: 7-species, QSE-reduced alpha (Hix et al. 1998)

- tuned for correct energy production
- coupled directly with hydrodynamics (implicit/explicit time integration)
- post-processing by 19-isotope network

complementary approach: FLASH

- 19-isotope network
- Helmholtz-EOS

• relative velocities at impact entirely dominated by mutual gravity: $v_{\rm rel} = 4000 \text{ km/s} \left(\frac{M_{\rm tot}}{1.2 M_{\odot}} \frac{2 \times 10^9 \text{ cm}}{R_1 + R_2} \right)^{1/2} > c_{\rm s} >> \sigma_G C$

• relative velocities at impact entirely dominated by mutual gravity: $v_{
m rel} = 4000 \
m km/s \left(rac{M_{
m tot}}{1.2 \ M_{\odot}} rac{2 imes 10^9
m cm}{R_1 + R_2}
ight)^{1/2} > c_{
m s} >> \sigma_G C$

• initial orbits: parabolae

• relative velocities at impact entirely dominated by mutual gravity: $v_{\rm rel} = 4000 \text{ km/s} \left(\frac{M_{\rm tot}}{1.2 M_{\odot}} \frac{2 \times 10^9 \text{ cm}}{R_1 + R_2} \right)^{1/2} > c_{\rm s} >> \sigma_G C$

- initial orbits: parabolae
- encounter strength measured by

$$\beta = \frac{R_1 + R_2}{d_{\text{peri}}}$$

• relative velocities at impact entirely dominated by mutual gravity: $v_{\rm rel} = 4000 \text{ km/s} \left(\frac{M_{\rm tot}}{1.2 M_{\odot}} \frac{2 \times 10^9 \text{ cm}}{R_1 + R_2} \right)^{1/2} > c_{\rm s} >> \sigma_G C$

- initial orbits: parabolae
- encounter strength measured by $\beta = \frac{R_1 + R_2}{d_{nori}}$

• WD masses: 0.2 ... 1.2 solar masses

• relative velocities at impact entirely dominated by mutual gravity: $v_{\rm rel} = 4000 \text{ km/s} \left(\frac{M_{\rm tot}}{1.2 M_{\odot}} \frac{2 \times 10^9 \text{ cm}}{R_1 + R_2} \right)^{1/2}$

$$> c_{\rm s} >> \sigma_G C$$

- initial orbits: parabolae
- encounter strength measured by $\beta = \frac{R_1 + R_2}{d_{\text{maxi}}}$

• WD masses: 0.2 ... I.2 solar masses

• 15 simulations, betw. 500 000 & 3 000 000 SPH particles

• example: off-centre collision

$$M_1 = 0.6 \ M_{\odot}, \quad M_2 = 0.9 \ M_{\odot}, \quad \beta = 1, \quad \beta \equiv \frac{R_1 + R_2}{R_{\text{per}}}$$

• example: off-centre collision

$$M_1 = 0.6 \ M_{\odot}, \quad M_2 = 0.9 \ M_{\odot}, \quad \beta = 1, \quad \beta \equiv \frac{R_1 + R_2}{R_{\text{per}}}$$

what about more central collisions?

$M_1 = 0.9 M_{\odot}, \quad M_2 = 0.9 M_{\odot}, \text{ headon}$

code comparison: SPH & FLASH, $2 \times 0.6 M_{sol}$

code comparison: SPH & FLASH, $2 \times 0.6 M_{sol}$

code comparison: SPH & FLASH, 2 x 0.6 M_{sol} produced nuclear energy: SPH: 10^{51.21} erg FLASH: 10^{51.11} erg

 ΔM_{15} : decline in B – band 15 days after maximum

 ΔM_{15} : decline in B – band 15 days after maximum

- 56 Ni-masses: 0.32 M_{sol} (WD06-WD06) & 0.66 M_{sol} (WD09-WD09)
- viewing angle dependence
- both (!) are broadly consistent with Phillips relation

 ΔM_{15} : decline in B – band 15 days after maximum

- 56 Ni-masses: 0.32 M_{sol} (WD06-WD06) & 0.66 M_{sol} (WD09-WD09)
- viewing angle dependence
- both (!) are broadly consistent with Phillips relation very similar to "normal" SN la

Summary

 about 20 % of WDWD collisions explode, explosion rate ~ few 10⁻³ SN la

• lightcurves/spectra similar to "normal" SN la

 large number of upcoming supernova/transient surveys: PAN-Starrs, PTF, LSST,

Summary

 about 20 % of WDWD collisions explode, explosion rate ~ few 10⁻³ SN la

Ightcurves/spectra similar to "normal" SN la

- Iarge number of upcoming supernova/transient surveys: PAN-Starrs, PTF, LSST,

promise detection of several 10⁵ supernovae per year

collision radii

accuracy of A7- vs. A19-network

for most trajectories better than 5 %

further collisions $M_1 = 0.4 \ M_{\odot}, \quad 0.7 \ M_{\odot}, \quad \beta = 3$

further collisions

 $M_1 = 0.9 \ M_{\odot}, \quad M_2 = 0.9 \ M_{\odot}$

• distribution of species:

result of 19-isotope network

 $M_{\rm BH} = 1000 \,\,{\rm M}_{\odot}, M_{\rm WD} = 0.2 \,\,{\rm M}_{\odot}, \beta = 12$

Post-processed mass fractions (Approx 19 network)

2×0.6 (sol. masses)

HI: 1.217106446584991E-030 3.594750358430493E-030 He3: He4: 4.189043739183151E-003 C12: 2.495319687911574E-002 NI4: 1.088185063636891E-02 OI6: 0.170741773936532 Ne20: 7.141123691408813E-003 Mg24: 5.057439531547831E-002 Si28: 0.401987526550706 S32: 0.165240570241805 Ar36: 2.791319887545398E-002 Ca40: 2.435697639993441E-002 Ti44: 2.373173078559460E-005 Cr48: 2.760904614731734E-004 Fe52: 5.274240424876457E-003 Fe54: 1.572144622878850E-004 Ni56: 0.317170878739039 neut: 1.214341784544193E-016 2.099807811748382E-008 prot:

2×0.9 (sol. masses)

HI:	1.807451942143835E-030
He3:	5.396365023403411E-030
He4:	3.145408433755613E-003
C12:	2.141777908098629E-002
NI4:	1.156883143104618E-025
016:	0.198799495867811
Ne20:	8.051318839390595E-003
Mg24:	6.355383568977493E-002
Si28:	0.528208291808507
S32:	0.223095866689290
Ar36:	3.957642941078928E-002
Ca40:	3.694688547903079E-002
Ti44:	2.218725646853336E-005
Cr48:	5.049289284105797E-004
Fe52:	I.169269997771984E-002
Fe54:	5.935557993597524E-004
Ni56:	0.664391266963926
neut:	1.272072363488627E-016
prot:	1.474595322761357E-008

"SPH can't do shocks"

standard, Newtonian, "Sod"- shock tube

"SPH can't do shocks II" mildly relativistic shock tube (Lorentz factor=1.4)

"SPH can't do shocks III"

strong, relativistic blast wave (Lorentz factor= 6.0)

"SPH can't do shocks IV" super-ultra-hyper-relativistic wall shock $\gamma = 50\ 000, \quad v = 0.999999998c$

