Copenhagen, 26.8.2009

Collisions of white dwarfs as a new progenitor channel for type la Supernovae

 (Rosswog et al., arXiv0907.3l96)
Stephan Rosswog Jacobs University Bremen

In collaboration with:

- James Guillochon, UC Santa Cruz, USA
- Raph Hix, Oakridge, USA
- Dan Kasen, UC Santa Cruz, USA
- Enrico Ramirez-Ruiz, UC Santa Cruz, USA
- Holger Baumgardt, Bonn
- Marius Dan, Bremen
- Glenn van de Ven, Heidelberg

Punchline:

Punchline: Type la Supernovae are not all caused by accreting CO white dwarfs near the Chandrasekhar mass

Punchline: Type la Supernovae are not all caused by accreting CO white dwarfs near the Chandrasekhar mass

There are several ways to explode WDs, examples include:

- WDs tidally pinched by black holes
- collisions of WDs

Crowded places

Crowded places

Globular clusters

Crowded places

Globular clusters

- ~ 10^{6} stars
- 10^{2} - 10^{4} per galaxy
- typical velocity dispersions $\sigma \sim 5 \mathrm{~km} / \mathrm{s}$
- central densities up to
> 10^{6} stars $/ \mathrm{pc}^{3} \gg$ | star/pc ${ }^{3}$ (solar neighbourhood)

Crowded places

Globular clusters

- ~ 10^{6} stars
- 10^{2} - 10^{4} per galaxy
- typical velocity dispersions $\sigma \sim 5 \mathrm{~km} / \mathrm{s}$
- central densities up to
> 10^{6} stars $/$ pc $^{3} \gg$ | star/pc ${ }^{3}$ (solar neighbourhood)

Galactic centres

Crowded places

Globular clusters

- ~ 10^{6} stars
- 10^{2} - 10^{4} per galaxy
- typical velocity dispersions $\sigma \sim 5 \mathrm{~km} / \mathrm{s}$
- central densities up to
$>\mid 0^{6}$ stars $/$ pc $^{3} \gg \mid$ star/pc ${ }^{3}$ (solar neighbourhood)

Galactic centres

- large, central number densities, $\sim 10^{8}$ stars $/ \mathrm{pc}^{3}$
- $\sigma \sim 200$ km/s
- central ~0. I pc as "stellar collider" (Alexander 2005)

Crowded places

Globular clusters

- ~ 10^{6} stars
- 10^{2} - 10^{4} per galaxy
- typical velocity dispersions $\sigma \sim 5 \mathrm{~km} / \mathrm{s}$
- central densities up to
> 10^{6} stars $/ \mathrm{pc}^{3} \gg$ | star/pc ${ }^{3}$ (solar neighbourhood)

Galactic centres

- large, central number densities, $\sim 10^{8}$ stars $/ \mathrm{pc}^{3}$
- $\sigma \sim 200 \mathrm{~km} / \mathrm{s}$
- central ~ 0.1 pc as "stellar collider" (Alexander 2005)

Crowded places

Globular clusters

- ~ 10^{6} stars
- 10^{2} - 10^{4} per galaxy
- typical velocity dispersions $\sigma \sim 5 \mathrm{~km} / \mathrm{s}$
- central densities up to
> 10^{6} stars $/$ pc $^{3} \gg$ | star/pc ${ }^{3}$ (solar neighbourhood)

Galactic centres

- large, central number densities, $\sim 10^{8}$ stars $/ \mathrm{pc}^{3}$
- $\sigma \sim 200 \mathrm{~km} / \mathrm{s}$
- central ~ 0.1 pc as "stellar collider" (Alexander 2005)

Collision frequencies

- White dwarfs are so small, do they collide at all?

Collision frequencies

- White dwarfs are so small, do they collide at all?
- collision rate of single star for Maxwellian velocity distribution with dispersion σ (closest approach $r_{\text {roll }}<2$ Rs, Binney \& Tremaine 2008):

Collision frequencies

- White dwarfs are so small, do they collide at all?
- collision rate of single star for Maxwellian velocity distribution with dispersion σ (closest approach roil <2 Rs, Binney \&
Tremaine 2008):

$$
\begin{aligned}
& \frac{1}{\tau_{\text {coll }}}=16 \sqrt{\pi} n \sigma R_{*}^{2}(1+\Theta) \\
& \text { Safronov number } \Theta=\frac{v_{\mathrm{esc}}^{2}}{4 \sigma^{2}}
\end{aligned}
$$

Collision frequencies

- White dwarfs are so small, do they collide at all?
- collision rate of single star for Maxwellian velocity distribution with dispersion σ (closest approach rool <2 Rs, Binney \&
Tremaine 2008):

$$
\begin{aligned}
& \frac{1}{\tau_{\text {coll }}}=16 \sqrt{\pi} n \sigma R_{*}^{2}(1+\Theta) \\
& \text { Safronov number } \Theta=\frac{v_{\mathrm{esc}}^{2}}{4 \sigma^{2}}
\end{aligned}
$$

- forWDs:

Collision frequencies

- White dwarfs are so small, do they collide at all?
- collision rate of single star for Maxwellian velocity distribution with dispersion σ (closest approach rool <2 Rs, Binney \&
Tremaine 2008):

$$
\begin{aligned}
& \frac{1}{\tau_{\text {coll }}}=16 \sqrt{\pi} n \sigma R_{*}^{2}(1+\Theta) \\
& \text { Safronov number } \Theta=\frac{v_{\mathrm{esc}}^{2}}{4 \sigma^{2}}
\end{aligned}
$$

- forWDs: $\quad v_{\mathrm{esc}} \approx 4000 \mathrm{~km} / \mathrm{s} \gg \sigma_{\mathrm{GC}} \approx 5 \mathrm{~km} / \mathrm{s}$

Collision frequencies

- White dwarfs are so small, do they collide at all?
- collision rate of single star for Maxwellian velocity distribution with dispersion σ (closest approach $\mathrm{rcoll}<2$ R, Binney \&
Tremaine 2008):

$$
\begin{aligned}
& \frac{1}{\tau_{\text {coll }}}=16 \sqrt{\pi} n \sigma R_{*}^{2}(1+\Theta) \\
& \text { Safronov number } \Theta=\frac{v_{\mathrm{esc}}^{2}}{4 \sigma^{2}}
\end{aligned}
$$

- forWDs: $\quad v_{\mathrm{esc}} \approx 4000 \mathrm{~km} / \mathrm{s} \gg \sigma_{\mathrm{GC}} \approx 5 \mathrm{~km} / \mathrm{s}$
entirely dominated by gravitational focussing!
- rate per globular cluster:
- rate per globular cluster: $\quad R_{\mathrm{GC}} \sim \frac{1}{2} \frac{n_{\mathrm{WD}}}{\tau_{\text {coll }}} \times \frac{4}{3} \pi r_{c}^{3}$
- rate per globular cluster: $\quad R_{\mathrm{GC}} \sim \frac{1}{2} \frac{n_{\mathrm{WD}}}{\tau_{\mathrm{coll}}} \times \frac{4}{3} \pi r_{c}^{3}$
- multiply by average globular cluster space density (Brodie \& Strader 2006)
- rate per globular cluster: $\quad R_{\mathrm{GC}} \sim \frac{1}{2} \frac{n_{\mathrm{WD}}}{\tau_{\mathrm{coll}}} \times \frac{4}{3} \pi r_{c}^{3}$
- multiply by average globular cluster space density (Brodie \& Strader 2006)

$$
R_{\mathrm{WDWD}}=2 \times 10^{2} \mathrm{yr}^{-1} \mathrm{Gpc}^{-3} \approx 0.01 \text { SNIa rate }
$$

- rate per globular cluster: $\quad R_{\mathrm{GC}} \sim \frac{1}{2} \frac{n_{\mathrm{WD}}}{\tau_{\text {coll }}} \times \frac{4}{3} \pi r_{c}^{3}$
- multiply by average globular cluster space density (Brodie \& Strader 2006)

$$
R_{\mathrm{WDWD}}=2 \times 10^{2} \mathrm{yr}^{-1} \mathrm{Gpc}^{-3} \approx 0.01 \text { SNIa rate }
$$

(Hut \& Bahcall 1983)

- possibly further enhanced by
- binary fraction in cluster
- contrib. galactic centres, ultracompact dwarf galaxies etc ...

- distinguish:
merger of WD binary

$$
0.3 \& 0.6 M_{\text {sol }}
$$

collision of two WDs

$$
0.6 \& 0.9 M_{\text {sol }}
$$

Dan et al. in prep.
Rosswog et al. 2009, Rosswog et al. in prep.

Modeling of WD-WD collisions

Modeling of WD-WD collisions

- Hydrodynamics:

Smoothed Particle Hydrodynamics

Modeling of WD-WD collisions

- Hydrodynamics:

Smoothed Particle Hydrodynamics

- Lagrangian
- exact numerical conservation
- Galiean invariant

Modeling of WD-WD collisions

- Hydrodynamics:

Smoothed Particle Hydrodynamics

- Lagrangian
- exact numerical conservation
- Galiean invariant

Modeling of WD-WD collisions

- Hydrodynamics: Smoothed Particle Hydrodynamics
- Lagrangian
- exact numerical conservation
- Galiean invariant
- Equation of state: Helmholtz-EOS (Timmes \& Swesty 2000)
- completely general $e^{+} e^{-}$treatment
- therm. consistent interpolation
- free specification of composition
- Artifacts in non-Galilean invariant methods:
example: advecting a white dwarf across the grid

Adaptive mesh refinement code FLASH

- nuclear burning: 7-species, QSE-reduced alpha (Hix et al. I998)
- tuned for correct energy production
- coupled directly with hydrodynamics (implicit/explicit time integration)
- post-processing by I9-isotope network
- nuclear burning: 7-species, QSE-reduced alpha (Hix et al. I998)
- tuned for correct energy production
- coupled directly with hydrodynamics (implicit/explicit time integration)
- post-processing by 19-isotope network
- complementary approach: FLASH
- I9-isotope network
- Helmholtz-EOS

Simulations:

- relative velocities at impact entirely dominated by mutual gravity:

$v_{\text {rel }}=4000 \mathrm{~km} / \mathrm{s}\left(\frac{M_{\text {tot }}}{1.2 M_{\odot}} \frac{2 \times 10^{9} \mathrm{~cm}}{R_{1}+R_{2}}\right)^{1 / 2}>c_{\mathrm{s}} \gg \sigma_{G} C$

Simulations:

- relative velocities at impact entirely dominated by mutual gravity:

$v_{\mathrm{rel}}=4000 \mathrm{~km} / \mathrm{s}\left(\frac{M_{\mathrm{tot}}}{1.2 M_{\odot}} \frac{2 \times 10^{9} \mathrm{~cm}}{R_{1}+R_{2}}\right)^{1 / 2}>c_{\mathrm{s}} \gg \sigma_{G} C$
- initial orbits: parabolae

Simulations:

- relative velocities at impact entirely dominated by mutual gravity:

$v_{\text {rel }}=4000 \mathrm{~km} / \mathrm{s}\left(\frac{M_{\text {tot }}}{1.2 M_{\odot}} \frac{2 \times 10^{9} \mathrm{~cm}}{R_{1}+R_{2}}\right)^{1 / 2}>c_{\mathrm{s}} \gg \sigma_{G} C$
- initial orbits: parabolae
- encounter strength measured by $\beta=\frac{R_{1}+R_{2}}{d_{\text {peri }}}$

Simulations:

- relative velocities at impact entirely dominated by mutual gravity:

$v_{\text {rel }}=4000 \mathrm{~km} / \mathrm{s}\left(\frac{M_{\text {tot }}}{1.2 M_{\odot}} \frac{2 \times 10^{9} \mathrm{~cm}}{R_{1}+R_{2}}\right)^{1 / 2}>c_{\mathrm{s}} \gg \sigma_{G} C$
- initial orbits: parabolae
- encounter strength measured by $\beta=\frac{R_{1}+R_{2}}{d_{\text {peri }}}$
- WD masses: 0.2 ... I 2 solar masses

Simulations:

- relative velocities at impact entirely dominated by mutual gravity:

$v_{\text {rel }}=4000 \mathrm{~km} / \mathrm{s}\left(\frac{M_{\text {tot }}}{1.2 M_{\odot}} \frac{2 \times 10^{9} \mathrm{~cm}}{R_{1}+R_{2}}\right)^{1 / 2}>c_{\mathrm{s}} \gg \sigma_{G} C$
- initial orbits: parabolae
- encounter strength measured by $\beta=\frac{R_{1}+R_{2}}{d_{\text {peri }}}$
-WD masses: 0.2 ... I. 2 solar masses
- 15 simulations, betw.
- example: off-centre collision

$$
M_{1}=0.6 M_{\odot}, \quad M_{2}=0.9 M_{\odot}, \quad \beta=1, \quad \beta \equiv \frac{R_{1}+R_{2}}{R_{\mathrm{per}}}
$$

- example: off-centre collision

$$
M_{1}=0.6 M_{\odot}, \quad M_{2}=0.9 M_{\odot}, \quad \beta=1, \quad \beta \equiv \frac{R_{1}+R_{2}}{R_{\mathrm{per}}}
$$

what about more central collisions?

$$
M_{1}=0.9 M_{\odot}, \quad M_{2}=0.9 M_{\odot}, \quad \text { headon }
$$

code comparison: SPH \& FLASH, $2 \times 0.6 \mathrm{M}_{\text {sol }}$

0	0	0	0	0	0
1	1	0	0	0	0
0	0	0	0	0	0
1	0	0	0	0	0
1					

code comparison: SPH \& FLASH, $2 \times 0.6 \mathrm{M}_{\text {sol }}$

code comparison: SPH \& FLASH, $2 \times 0.6 \mathrm{M}_{\text {sol }}$

 produced nuclear energy: SPH: $\quad 10^{51.21} \mathrm{erg}$FLASH: $10^{51.11} \mathrm{erg}$

resulting lightcurves:

(SEDONA code, Kasen et al. 2006)

ΔM_{15} : decline in $\mathrm{B}-$ band 15 days after maximum

resulting lightcurves:

(SEDONA code, Kasen et al. 2006)

ΔM_{15} : decline in $\mathrm{B}-$ band 15 days after maximum

- 56 Ni-masses: 0.32 $M_{\text {sol }}$ (WD06-WD06) \& 0.66 $M_{\text {sol }}$ (WD09-WD09)
- viewing angle dependence
- both (!) are broadly consistent with Phillips relation

resulting lightcurves:

(SEDONA code, Kasen et al. 2006)

ΔM_{15} : decline in $\mathrm{B}-$ band 15 days after maximum

- 56 Ni-masses: 0.32 $M_{\text {sol }}$ (WD06-WD06) \& 0.66 $M_{\text {sol }}$ (WD09-WD09)
- viewing angle dependence
- both (!) are broadly consistent with Phillips relation

Summary

- about 20 \% of WDWD collisions explode, explosion rate \sim few $10^{-3} \mathrm{SN}$ la
- lightcurves/spectra similar to "normal" SN la
- large number of upcoming supernova/transient surveys: PAN-Starrs, PTF, LSST,

Summary

- about 20 \% of WDWD collisions explode, explosion rate \sim few $10^{-3} \mathrm{SN}$ la
- lightcurves/spectra similar to "normal" SN la
- large number of upcoming supernova/transient surveys: PAN-Starrs, PTF, LSST,

promise detection of several 10^{5} supernovae per year

collision radii

accuracy of A7- vs. Al9-network

for most trajectories better than 5 \%

further collisions

$$
M_{1}=0.4 M_{\odot}, \quad 0.7 M_{\odot}, \quad \beta=3
$$

further collisions

$$
M_{1}=0.9 M_{\odot}, \quad M_{2}=0.9 M_{\odot}
$$

- distribution of species:

result of I9-isotope network

$M_{\mathrm{BH}}=1000 \mathrm{M}_{\odot}, M_{\mathrm{WD}}=0.2 \mathrm{M}_{\odot}, \beta=12$

The Importance of Orientation

Post-processed mass fractions (Approxl9 network)

2×0.6 (sol. masses)

HI: I.2I7I0644658499IE-030
He3: 3.594750358430493E-030
He4: 4.189043739183I5IE-003
CI2: 2.4953|96879|1574E-002
NI4: I.088I8506363689IE-02
OI6: 0.17074I773936532
Ne20: 7.14II236914088I3E-003
Mg24: 5.05743953154783IE-002
Si28: 0.401987526550706
S32: 0.165240570241805
Ar36: 2.79|319887545398E-002
Ca40: 2.43569763999344IE-002
Ti44: 2.373I73078559460E-005
Cr48: 2.7609046|4731734E-004
Fe52: 5.274240424876457E-003
Fe54: I.572|44622878850E-004
Ni56: 0.317170878739039
neut: 1.214341784544193E-016
prot: 2.0998078 | $1748382 \mathrm{E}-008$

2×0.9 (sol. masses)

HI: I.80745I942|43835E-030
He3: 5.3963650234034IIE-030
He4: 3.1454084337556|3E-003
CI2: 2.14I777908098629E-002
NI4: I.I56883143I046I8E-025
Ol6: 0.1987994958678।I
Ne20: 8.05I318839390595E-003
Mg24: 6.355383568977493E-002
Si28: 0.528208291808507
S32: 0.223095866689290
Ar36: 3.957642941078928E-002
Ca40: 3.694688547903079E-002
Ti44: 2.218725646853336E-005
Cr48: 5.049289284|05797E-004
Fe52: I.169269997771984E-002
Fe54: 5.935557993597524E-004
Ni56: 0.664391266963926
neut: I.272072363488627E-016
prot: I. $47459532276 \mid 357 \mathrm{E}-008$

"SPH can't do shocks"

standard, Newtonian, "Sod"- shock tube

"SPH can't do shocks II"

mildly relativistic shock tube (Lorentz factor=1.4)

"SPH can’t do shocks III"

strong, relativistic blast wave (Lorentz factor= 6.0)

"SPH can't do shocks IV"

super-ultra-hyper-relativistic wall shock $\gamma=50000, \quad v=0.9999999998 c$

