Copenhagen, 26.8.2009

Relativistic Smooth Particle Hydrodynamics from a variational principle

> Stephan Rosswog Astrophysics Jacobs University Bremen

Literature: i) S.Rosswog, New Astronomy Reviews, in press (2009), arXiv:0903.5075 ii) S.Rosswog, subm. J. Comp. Phys. (2009), arXiv:0907:4890

You think relativistic SPH is crap?

You think relativistic SPH is crap?

Think again!!!

restriction to "ideal fluid", i.e. no viscosity and conductivity

restriction to "ideal fluid", i.e. no viscosity and conductivity

energy-momentum tensor:

restriction to "ideal fluid", i.e. no viscosity and conductivity

energy-momentum tensor:

$$T^{\mu\nu} = (\rho + P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$$

restriction to "ideal fluid", i.e. no viscosity and conductivity

energy-momentum tensor:

$$T^{\mu\nu} = (\rho + P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$$

rest mass density in comoving frame

restriction to "ideal fluid", i.e. no viscosity and conductivity

energy-momentum tensor:

$$T^{\mu\nu} = (\rho + P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$$

rest mass density in comoving frame

pressure

restriction to "ideal fluid", i.e. no viscosity and conductivity

energy-momentum tensor:

$$T^{\mu\nu} = (\rho + P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$$

4-velocity $U^{\mu}=rac{dx^{\mu}}{d au}$

rest mass density in comoving frame

pressure

restriction to "ideal fluid", i.e. no viscosity and conductivity

energy-momentum tensor:

 $= (\rho + P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$ pressure
4-velocity $U^{\mu} = \frac{dx^{\mu}}{d\tau}$

metric tensor

rest mass density in comoving frame

restriction to "ideal fluid", i.e. no viscosity and conductivity

energy-momentum tensor:

$$T^{\mu\nu} = (\rho + P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$$

rest mass density in comoving frame

pressure

4-velocity $U^{\mu}=rac{dx^{\mu}}{d au}$

metric tensor

equations given by 5 conservation laws

restriction to "ideal fluid", i.e. no viscosity and conductivity

energy-momentum tensor:

$$T^{\mu
u} = (
ho + P)U^{\mu}U^{
u} + Pg^{\mu}$$
ame pressure 4-velocity $U^{\mu} = rac{dx^{\mu}}{d au}$

metric tensor

 $\mu \nu$

rest mass density in comoving frame

pressure

equations given by 5 conservation laws baryon number : $(\rho U^{\mu})_{;\mu} = 0$ energy – momentum : $T^{\mu\nu}_{;\nu} = 0$

So want spatial adaptivity:

So want spatial adaptivity:

example: tidal disruption of a star by a black hole

(SPH + relativ. pseudo potential + nuclear reaction network; from Rosswog et al. 2008, 2009)

WD-BH encounte

nasses (sol.)	0.2 (WD) & 1000 (BH)
n. separation	50 (in 1.E9 cm)
lydrodynamics	SPH (4 030 000 particles)
COS, gravity	Helmholtz, N
nucl. burning	red. QSE-network (Hix 98)
símul. time	5.4 min
color coded	column density
enet. factor	12
coding, simulation, visualisation:	S. Rosswog

want spatial adaptivity:

example: tidal disruption of a star by a black hole

(SPH + relativ. pseudo potential + nuclear reaction network; from Rosswog et al. 2008, 2009)

WD-BH encounte

nasses (sol.)	0.2 (WD) & 1000 (BH)
n. separation	50 (in 1.E9 cm)
nydrodynamics	SPH (4 030 000 particles)
EOS, gravity	Helmholtz, N
nucl. burning	red. QSE-network (Hix 98)
simul. time	5.4 mìn
color coded	column density
penet. factor	12
coding, simulation, visualisation:	S. Rosswog

want spatial adaptivity:

example: tidal disruption of a star by a black hole

(SPH + relativ. pseudo potential + nuclear reaction network; from Rosswog et al. 2008, 2009)

shocks, of course ...

WD-BH encounter

masses (sol.)	0.2 (WD) & 1000 (BH)
n. separation	50 (in 1.E9 cm)
iydrodynamics	SPH (4 030 000 particles)
EOS, gravity	Helmholtz, N
nucl. burning	red. QSE-network (Hix 98)
simul. time	5.4 min
color coded	column density
benet. factor	12
coding, simulation, visualisation:	S. Rosswog

want spatial adaptivity:

example: tidal disruption of a star by a black hole

(SPH + relativ. pseudo potential + nuclear reaction network; from Rosswog et al. 2008, 2009)

shocks, of course ...

but also accurate advection !

₩D-8H encounter

coding, simulation, visualisation:	S. Rosswog
penet. factor	12
color coded	column density
simul, time	5.4 min
nucl. burning	red. QSE-network (Hix 98)
EOS, gravity	Helmholtz, N
nydrodynamics	SPH (4 030 000 particles)
n. separation	50 (in 1.E9 cm)
masses (sol.)	0.2 (WD) & 1000 (BH)

want spatial adaptivity:

example: tidal disruption of a star by a black hole

(SPH + relativ. pseudo potential + nuclear reaction network; from Rosswog et al. 2008, 2009)

shocks, of course ...

but also accurate advection !

"hard-wired" conservation of physical invariants !

Several formulations exist (Kheyfets et al. 1990; Mann 1991, 1993; Laguna et al. 1993;...)

straight-forward" SPH discretization of fluid equations, use "primitive variables"

Several formulations exist (Kheyfets et al. 1990; Mann 1991, 1993; Laguna et al. 1993;...)

straight-forward" SPH discretization of fluid equations, use "primitive variables"

o no guaranteed conservation

"ugly" formulations (e.g. time derivatives of Lorentz factors)

ø problems with shocks: "spikes" at contact discontinuities

Several formulations exist (Kheyfets et al. 1990; Mann 1991, 1993; Laguna et al. 1993;...)

 usually "straight-forward" SPH discretization of fluid
 equations, use "primitive variables" Laguna et al. (1993)

- no guaranteed conservation 0
- "ugly" formulations (e.g. time derivatives of Lorentz factors) 0
- problems with shocks: "spikes" at contact discontinuities 0

Several formulations exist (Kheyfets et al. 1990; Mann 1991, 1993; Laguna et al. 1993;...)

 usually "straight-forward" SPH discretization of fluid
 equations, use "primitive variables"

- no guaranteed conservation
- "ugly" formulations (e.g. time derivatives of Lorentz factors) Siegler & Riffert (2000)
- problems with shocks: "spikes" at contact discontinuities

Several formulations exist (Kheyfets et al. 1990; Mann 1991, 1993; Laguna et al. 1993;...)

 usually "straight-forward" SPH discretization of fluid
 equations, use "primitive variables"

Laguna et al. (1993)

- no guaranteed conservation
- "ugly" formulations (e.g. time derivatives of Lorentz factors) Siegler & Riffert (2000)
- problems with shocks: "spikes" at contact discontinuities-

Several formulations exist (Kheyfets et al. 1990; Mann 1991, 1993; Laguna et al. 1993;...)

 usually "straight-forward" SPH discretization of fluid
 equations, use "primitive variables"

- no guaranteed conservation
- "ugly" formulations (e.g. time derivatives of Lorentz factors) Siegler & Riffert (2000)
- problems with shocks: "spikes" at contact discontinuities

III. Conservative, special-relativistic SPH: consistent derivation from a Lagrangian

- start from Lagrangian of ideal fluid
- apply Euler-Lagrange equations + first law
 of thermodynamics
- use canonical energy and momentum as guidance for numerical variables
- suse modern form of artificial viscosity

Solution Lagrangian perfect fluid: $L_{\rm pf,sr} = -\int T^{\mu\nu} U_{\mu} U_{\nu} \ dV$ (Fock 1964)

from now on: measure energies in m_oc² (baryon rest mass energy)

choose frame in which computations are performed ("Computing Frame", CF)

relation between number densities:

Solution Set Lagrangian perfect fluid: $L_{\rm pf,sr} = -\int T^{\mu
u} U_{\mu} U_{\nu} \, dV$ (Fock 1964)

 from now on: measure energies in m_oc² (baryon rest mass energy)

choose frame in which computations are performed ("Computing Frame", CF)

relation between number densities:

Solution Set Lagrangian perfect fluid: $L_{\rm pf,sr} = -\int T^{\mu
u} U_{\mu} U_{\nu} \, dV$ (Fock 1964)

 from now on: measure energies in m_oc² (baryon rest mass energy)

Choose frame in which computations are performed ("Computing Frame", CF)

relation between number densities:

 $N = \gamma n$

Solution Lagrangian perfect fluid: $L_{\rm pf,sr} = -\int T^{\mu
u} U_{\mu} U_{\nu} \, dV$ (Fock 1964)

 from now on: measure energies in m_oc² (baryon rest mass energy)

Choose frame in which computations are performed ("Computing Frame", CF)

relation between number densities:

 $N = \gamma n$

Number density in CF

Solution Lagrangian perfect fluid: $L_{\rm pf,sr} = -\int T^{\mu\nu} U_{\mu} U_{\nu} \ dV$ (Fock 1964)

 from now on: measure energies in m_oc² (baryon rest mass energy)

choose frame in which computations are performed ("Computing Frame", CF)

relation between number densities:

 $N = \gamma n_{\star}$

Number density in CF

number density in local rest frame

Solution Lagrangian perfect fluid: $L_{\rm pf,sr} = -\int T^{\mu
u} U_{\mu} U_{\nu} \, dV$ (Fock 1964)

 from now on: measure energies in m_oc² (baryon rest mass energy)

choose frame in which computations are performed ("Computing Frame", CF)

relation between number densities:

Number density in CF

number density in local rest frame Lorentz factor

volume element:

- subdivide computing volume in CF such that each element b contains v_b baryons, or, conversely: $\Delta V_b = \frac{\nu_b}{N_b}$

volume element:

- subdivide computing volume in CF such that each element b contains v_b baryons, or, conversely: $\Delta V_b = \frac{\nu_b}{N_b}$

SPH-discretization:

volume element:

- subdivide computing volume in CF such that each element b contains v_b baryons, or, conversely: $\Delta V_b = \frac{\nu_b}{N_b}$

SPH-discretization: $f(\vec{r}) = \sum_{b} f_b \frac{\nu_b}{N_b} W(|\vec{r} - \vec{r_b}|, h)$
- subdivide computing volume in CF such that each element b contains v_b baryons, or, conversely: $\Delta V_b = \frac{\nu_b}{N_b}$

SPH-discretization: $f(\vec{r}) = \sum_{b} f_b \frac{\nu_b}{N_b} W(|\vec{r} - \vec{r_b}|, h)$

quantity f at particle b

- subdivide computing volume in CF such that each element b contains v_b baryons, or, conversely: $\Delta V_b = \frac{\nu_b}{N_b}$

SPH-discretization: $f(\vec{r}) = \sum_{b} f_{b} \frac{\nu_{b}}{N_{b}} W(|\vec{r} - \vec{r}_{b}|, h)$

quantity f at particle b baryon number of particle b

- subdivide computing volume in CF such that each element b contains v_b baryons, or, conversely: $\Delta V_b = \frac{\nu_b}{N_b}$

SPH-discretization: $f(\vec{r}) = \sum_{b} f_{b} \frac{\nu_{b}}{N_{b}} W(|\vec{r} - \vec{r}_{b}|, h)$

quantity f at particle b baryon number of particle b CF number density

- subdivide computing volume in CF such that each element b contains v_b baryons, or, conversely: $\Delta V_b = \frac{\nu_b}{N_b}$

SPH-discretization: $f(\vec{r}) = \sum_{b} f_{b} \frac{\nu_{b}}{N_{b}} W(|\vec{r} - \vec{r}_{b}|, h)$

quantity f at particle b baryon number of particle b CF number density smoothing kernel

- subdivide computing volume in CF such that each element b contains v_b baryons, or, conversely: $\Delta V_b = \frac{\nu_b}{N_b}$

SPH-discretization: $f(\vec{r}) = \sum_{b} f_b \frac{\nu_b}{N_b} W(|\vec{r} - \vec{r_b}|, h)$

quantity f at particle b baryon number of particle b CF number density smoothing kernel

comparison to "standard SPH":

$$f(\vec{r}) = \sum_{b} f_b \frac{m_b}{\rho_b} W(|\vec{r} - \vec{r_b}|, h)$$

• the discretization applied to Lagrangian: $L_{\rm SPH,sr} = -\sum_{b} \frac{\nu_b}{\gamma_b} [1 + u(n_b, s_b)]$

• the discretization applied to Lagrangian: $L_{\rm SPH,sr} = -\sum_{b} \frac{\nu_b}{\gamma_b} [1 + u(n_b, s_b)]$ specific energy number density specific entropy measured in local rest frame! • the discretization applied to Lagrangian: $L_{\rm SPH,sr} = -\sum_{b} \frac{\nu_b}{\gamma_b} [1 + u(n_b, s_b)]$ specific energy number density specific entropy measured in local rest frame!

further strategy:

The discretization applied to Lagrangian: $L_{\rm SPH,sr} = -\sum_{b} \frac{\nu_b}{\gamma_b} [1 + u(n_b, s_b)]$ specific energy number density specific entropy measured in local rest frame! further strategy: i) apply Euler-Lagrange equations $\frac{d}{dt} \frac{\partial L_{\rm SPH,sr}}{\partial \vec{v}_a} - \frac{\partial L_{\rm SPH,sr}}{\partial \vec{v}_a} = 0$

The discretization applied to Lagrangian: $L_{\rm SPH,sr} = -\sum_{b} \frac{\nu_b}{\gamma_b} [1 + u(n_b, s_b)]$ specific energy number density specific entropy measured in local rest frame! further strategy: i) apply Euler-Lagrange equations $\frac{d}{dt} \frac{\partial L_{\rm SPH,sr}}{\partial \vec{v}_a} - \frac{\partial L_{\rm SPH,sr}}{\partial \vec{v}_a} = 0$ ii) use first law of thermodynamics

The discretization applied to Lagrangian: $L_{\rm SPH,sr} = -\sum_{b} \frac{\nu_b}{\gamma_b} [1 + u(n_b, s_b)]$ specific energy number density specific entropy measured in local rest frame! further strategy: i) apply Euler-Lagrange equations $\frac{d}{dt}\frac{\partial L_{\rm SPH,sr}}{\partial \vec{v}_a} - \frac{\partial L_{\rm SPH,sr}}{\partial \vec{v}_a} = 0$ ii) use first law of thermodynamics iii) canonical energy and momentum per baryon as numerical variables

 $\vec{p}_a \equiv \frac{\partial L_{\rm SPH,sr}}{\partial \vec{v}_a} = \dots$ $= \nu_a \gamma_a \vec{v}_a \left(1 + u_a + \frac{P_a}{n_a} \right)$

 $= \nu_a \gamma_a \vec{v}_a \left(1 + u_a + \frac{P_a}{n_a} \right)$

 $\vec{p}_a \equiv \frac{\partial L_{\rm SPH,sr}}{\partial \vec{v}_a} = \dots$

 $= \nu_a \gamma_a \vec{v}_a \left(1 + u_a + \frac{P_a}{n_a} \right)$

 $\vec{S}_a \equiv \gamma_a \vec{v}_a \left(1 + u_a + \frac{P_a}{n_a} \right)$

 $\vec{p}_a \equiv \frac{\partial L_{\rm SPH,sr}}{\partial \vec{v}_a} = \dots$

canonical energy:

 $= \nu_a \gamma_a \vec{v}_a \left(1 + u_a + \frac{P_a}{n_a} \right)$

$$\vec{S}_a \equiv \gamma_a \vec{v}_a \left(1 + u_a + \frac{P_a}{n_a} \right)$$

 $\vec{p}_a \equiv \frac{\partial L_{\rm SPH,sr}}{\partial \vec{v}_a} = \dots$

canonical energy:

$$E \equiv \sum_{a} \frac{\partial L_{\rm SPH,sr}}{\partial \vec{v}_{a}} \cdot \vec{v}_{a} - L_{\rm SPH,sr} =$$
$$= \sum_{a} \nu_{a} \left(\vec{v}_{a} \cdot \vec{S}_{a} + \frac{1+u_{a}}{\gamma_{a}} \right)$$

 $\vec{p}_a \equiv \frac{\partial L_{\rm SPH,sr}}{\partial \vec{v}_a} =$ $= \nu_a \gamma_a \vec{v}_a \left(1 + u_a + \frac{P_a}{n_a} \right)$

$$\vec{S}_a \equiv \gamma_a \vec{v}_a \left(1 + u_a + \frac{P_a}{n_a} \right)$$

canonical energy:

$$E \equiv \sum_{a} \frac{\partial L_{\text{SPH,sr}}}{\partial \vec{v}_{a}} \cdot \vec{v}_{a} - L_{\text{SPH,sr}} = \\ = \sum_{a} \nu_{a} \left(\vec{v}_{a} \cdot \vec{S}_{a} + \frac{1 + u_{a}}{\gamma_{a}} \right) \\ \hat{\epsilon}_{a} \equiv \vec{v}_{a} \cdot \vec{S}_{a} + \frac{1 + u_{a}}{\gamma_{a}} \end{cases}$$

resulting SPH equation set:

baryon number:

$$N_{b} = \sum_{k} \nu_{k} W(|\vec{r_{b}} - \vec{r_{k}}|, h_{b})$$

$$h_{b} = \eta N_{b}^{-1/D}$$
 iteration!

momentum:

$$\frac{d\vec{S}_a}{dt} = -\sum_b \nu_b \left(\frac{P_a}{N_a^2 \tilde{\Omega}_a} \nabla_a W_{ab}(h_a) + \frac{P_b}{N_b^2 \tilde{\Omega}_b} \nabla_a W_{ab}(h_b) \right)$$
$$\vec{S}_a \equiv \gamma_a \vec{v}_a \left(1 + u_a + \frac{P_a}{n_a} \right) \quad \text{can. momentum per baryon}$$

energy:

$$\frac{d\epsilon_a}{dt} = -\sum_b \nu_b \left(\frac{P_a \vec{v}_b}{N_a^2 \tilde{\Omega}_a} \cdot \nabla_a W_{ab}(h_a) + \frac{P_b \vec{v}_a}{N_b^2 \tilde{\Omega}_b} \cdot \nabla_a W_{ab}(h_b) \right)$$
$$\epsilon_a \equiv \gamma_a \left(1 + u_a + \frac{P_a}{n_a} \right) - \frac{P_a}{N_a} = \vec{v}_a \cdot \vec{S}_a + \frac{1 + u_a}{\gamma_a}$$

can. energy per baryon

o comments:

 equations include "corrective terms" from derivatives of kernels with resp. to smoothing length h:

 $\tilde{\Omega}_b \equiv 1 - \frac{\partial h_b}{\partial N_b} \sum_k \frac{\partial W_{bk}(h_b)}{\partial h_b}$

o comments:

- equations include "corrective terms" from derivatives of kernels with resp. to smoothing length h:
 - $ilde{\Omega}_b \equiv 1 rac{\partial h_b}{\partial N_b} \sum_k rac{\partial W_{bk}(h_b)}{\partial h_b}$ relativistic "grad-h-terms"

o comments:

- equations include "corrective terms" from derivatives of kernels with resp. to smoothing length h: $\tilde{\Omega}_b \equiv 1 - \frac{\partial h_b}{\partial N_b} \sum_{i} \frac{\partial W_{bk}(h_b)}{\partial h_b}$ relativistic "grad-h-terms"

 like in relativistic grid-based methods: conversion
 between "numerical" and "physical variables" required at each time step

 artificial dissipation terms similar to Chow & Monaghan (1997)

 artificial dissipation terms similar to Chow & Monaghan (1997)

$$\left(\frac{d\vec{S}_a}{dt}\right)_{\text{diss}} = -\sum_b \nu_b \Pi_{ab} \overline{\nabla_a W_{ab}} \quad \text{with} \quad \Pi_{ab} = -\frac{K v_{\text{sig}}}{\bar{N}_{ab}} (\vec{S}_a^* - \vec{S}_b^*) \cdot \hat{e}_{ab}$$

and

$$\left(\frac{d\epsilon_a}{dt}\right)_{\text{diss}} = -\sum_b \nu_b \Omega_{ab} \overline{\nabla_a W_{ab}} \quad \text{with} \quad \Omega_{ab} = -\frac{K v_{\text{sig}}}{\bar{N}_{ab}} (\epsilon_a^* - \epsilon_b^*) \hat{e}_{ab}.$$

 artificial dissipation terms similar to Chow & Monaghan (1997)

$$\left(\frac{d\vec{S}_a}{dt}\right)_{\text{diss}} = -\sum_b \nu_b \Pi_{ab} \overline{\nabla_a W_{ab}} \quad \text{with} \quad \Pi_{ab} = -\frac{K v_{\text{sig}}}{\bar{N}_{ab}} (\vec{S}_a^* - \vec{S}_b^*) \cdot \hat{e}_{ab}$$

and

$$\left(\frac{d\epsilon_a}{dt}\right)_{\text{diss}} = -\sum_b \nu_b \Omega_{ab} \overline{\nabla_a W_{ab}} \quad \text{with} \quad \Omega_{ab} = -\frac{K v_{\text{sig}}}{\bar{N}_{ab}} (\epsilon_a^* - \epsilon_b^*) \hat{e}_{ab}.$$

$$\overline{\nabla_a W_{ab}} = \frac{1}{2} \left[\nabla_a W_{ab}(h_a) + \nabla_a W_{ab}(h_b) \right]$$
$$N_{ab} = \frac{N_a + N_b}{2}$$

 artificial dissipation terms similar to Chow & Monaghan (1997)

 $N_{ab} = \frac{N_a + N_b}{2}$

$$\left(\frac{dS_a}{dt}\right)_{\text{diss}} = -\sum_b \nu_b \Pi_{ab} \overline{\nabla_a W_{ab}} \quad \text{with} \quad \Pi_{ab} = -\frac{K v_{\text{sig}}}{\overline{N}_{ab}} (\vec{S}_a^* - \vec{S}_b^*) \cdot \hat{e}_{ab}$$

and
$$\left(\frac{d\epsilon_a}{dt}\right)_{\text{diss}} = -\sum_b \nu_b \Omega_{ab} \overline{\nabla_a W_{ab}} \quad \text{with} \quad \Omega_{ab} = -\frac{K v_{\text{sig}}}{\overline{N}_{ab}} (\vec{\epsilon}_a^* - \vec{\epsilon}_b^*) \hat{e}_{ab}.$$

projection along particle line of sight
$$\overline{\nabla_a W_{ab}} = \frac{1}{2} \left[\nabla_a W_{ab}(h_a) + \nabla_a W_{ab}(h_b) \right]$$

 artificial dissipation terms similar to Chow & Monaghan (1997)

 \boldsymbol{Z}

$$\begin{pmatrix} \frac{d\bar{S}_{a}}{dt} \end{pmatrix}_{\text{diss}} = -\sum_{b} \nu_{b} \Pi_{ab} \overline{\nabla_{a} W_{ab}} \quad \text{with} \quad \Pi_{ab} = -\frac{K v_{\text{sig}}}{\bar{N}_{ab}} (\vec{S}_{a}^{*} - \vec{S}_{b}^{*}) \cdot \hat{e}_{ab}$$
and
$$\begin{pmatrix} \frac{d\epsilon_{a}}{dt} \end{pmatrix}_{\text{diss}} = -\sum_{b} \nu_{b} \Omega_{ab} \overline{\nabla_{a} W_{ab}} \quad \text{with} \quad \Omega_{ab} = -\frac{K v_{\text{sig}}}{\bar{N}_{ab}} (\vec{e}_{a}^{*} - \vec{e}_{b}^{*}) \hat{e}_{ab}.$$
projection along particle line of sight
$$numerical \text{ parameter } \sim 1$$

$$\overline{\nabla_{a} W_{ab}} = \frac{1}{2} \left[\nabla_{a} W_{ab} (h_{a}) + \nabla_{a} W_{ab} (h_{b}) \right]$$

$$N_{ab} = \frac{N_{a} + N_{b}}{2}$$

artificial dissipation terms similar to Chow & Monaghan (1997)

$$\begin{pmatrix} \frac{d\vec{S}_{a}}{dt} \end{pmatrix}_{\text{diss}} = -\sum_{b} \nu_{b} \Pi_{ab} \overline{\nabla_{a} W_{ab}} \quad \text{with} \quad \Pi_{ab} = -\frac{K v_{\text{sig}}}{N_{ab}} (\vec{S}_{a}^{*} - \vec{S}_{b}^{*}) \cdot \hat{e}_{ab}$$
and
$$\begin{pmatrix} \frac{d\epsilon_{a}}{dt} \end{pmatrix}_{\text{diss}} = -\sum_{b} \nu_{b} \Omega_{ab} \overline{\nabla_{a} W_{ab}} \quad \text{with} \quad \Omega_{ab} = -\frac{K v_{\text{sig}}}{N_{ab}} (\vec{e}^{*} - \vec{e}^{*}_{b}) \hat{e}_{ab}.$$
projection along particle line of sight
$$numerical \text{ parameter } \tilde{-1}$$

$$\overline{\nabla_{a} W_{ab}} = \frac{1}{2} [\nabla_{a} W_{ab} (h_{a}) + \nabla_{a} W_{ab} (h_{b})]$$

$$N_{ab} = \frac{N_{a} + N_{b}}{2}$$

signal velocity:
Ical eigenvalues of Euler equations for

signal velocity:
Ical eigenvalues of Euler equations for

 $v_{\rm sig,ab} = \max(\alpha_a, \alpha_b)$

with
$$\alpha_k^{\pm} = \max(0, \pm \lambda_k^{\pm})$$

 $\lambda_k^{\pm} = \frac{v_k \pm c_{\mathrm{s},k}}{1 \pm v_k c_{\mathrm{s},k}}$

signal velocity:
Iccal eigenvalues of Euler equations for

 $v_{\rm sig,ab} = \max(\alpha_a, \alpha_b)$

with
$$\alpha_k^{\pm} = \max(0, \pm \lambda_k^{\pm})$$

 $\lambda_k^{\pm} = \frac{v_k \pm c_{\mathrm{s},k}}{1 \pm v_k c_{\mathrm{s},k}}$

control dissipation: make parameter K time-dependent:

signal velocity:
Ical eigenvalues of Euler equations for

 $v_{\mathrm{sig,ab}} = \max(\alpha_a, \alpha_b)$

with
$$\alpha_k^{\pm} = \max(0, \pm \lambda_k^{\pm})$$

 $\lambda_k^{\pm} = \frac{v_k \pm c_{s,k}}{1 \pm v_k c_{s,k}}$

control dissipation: make parameter K time-dependent:

$$\frac{dK_k}{dt} = S_k - \frac{K_k(t) - K_{\min}}{\tau_k}$$

signal velocity:
Subscription:

 $v_{\rm sig,ab} = \max(\alpha_a, \alpha_b)$

with
$$\alpha_k^{\pm} = \max(0, \pm \lambda_k^{\pm})$$

 $\lambda_k^{\pm} = \frac{v_k \pm c_{s,k}}{1 \pm v_k c_{s,k}}$

control dissipation: make parameter K time-dependent:

$$\frac{dK_k}{dt} = S_k - \frac{K_k(t) - K_{\min}}{\tau_k}$$

dissipation parameter of particle k
$v_{\rm sig,ab} = \max(\alpha_a, \alpha_b)$

with
$$\alpha_k^{\pm} = \max(0, \pm \lambda_k^{\pm})$$

 $\lambda_k^{\pm} = \frac{v_k \pm c_{\mathrm{s},k}}{1 \pm v_k c_{\mathrm{s},k}}$

control dissipation: make parameter K time-dependent:

$$\frac{dK_k}{dt} = S_k - \frac{K_k(t) - K_{\min}}{\tau_k}$$

dissipation parameter of particle k

source term

 $v_{\rm sig,ab} = \max(\alpha_a, \alpha_b)$

with
$$\alpha_k^{\pm} = \max(0, \pm \lambda_k^{\pm})$$

 $\lambda_k^{\pm} = \frac{v_k \pm c_{\mathrm{s},k}}{1 \pm v_k c_{\mathrm{s},k}}$

control dissipation: make parameter K time-dependent:

$$\frac{dK_k}{dt} = S_k - \frac{K_k(t) - K_{\min}}{\tau_k}$$

dissipation parameter of particle k
source term
decay time scale

 $v_{\rm sig,ab} = \max(\alpha_a, \alpha_b)$

with
$$\alpha_k^{\pm} = \max(0, \pm \lambda_k^{\pm})$$

 $\lambda_k^{\pm} = \frac{v_k \pm c_{\mathrm{s},k}}{1 \pm v_k c_{\mathrm{s},k}}$

control dissipation: make parameter K time-dependent:

$$\frac{dK_k}{dt} = S_k - \frac{K_k(t) - K_{\min}}{\tau_k}$$

minimum value
dissipation parameter of particle k
source term
decay time scale

 $v_{\rm sig,ab} = \max(\alpha_a, \alpha_b)$

with
$$\alpha_k^{\pm} = \max(0, \pm \lambda_k^{\pm})$$

 $\lambda_k^{\pm} = \frac{v_k \pm c_{s,k}}{1 \pm v_k c_{s,k}}$

control dissipation: make parameter K time-dependent:

Set up a situation where a geometrical shape (in density) should just be advected with the fluid. Test on which time scale unwanted effects deteriorate the numerical solution"

Set up a situation where a geometrical shape (in density) should just be advected with the fluid. Test on which time scale unwanted effects deteriorate the numerical solution"

Test 1: Advection of sine wave

Set up a situation where a geometrical shape (in density) should just be advected with the fluid. Test on which time scale unwanted effects deteriorate the numerical solution"

Test 1: Advection of sine wave

set up density sine
 wave in periodic box,
 so that pressure is
 the same everywhere

Set up a situation where a geometrical shape (in density) should just be advected with the fluid. Test on which time scale unwanted effects deteriorate the numerical solution"

Test 1: Advection of sine wave

set up density sine
 wave in periodic box,
 so that pressure is
 the same everywhere

give pattern a boost
 with v= 0.997 (γ=12.92)

Set up a situation where a geometrical shape (in density) should just be advected with the fluid. Test on which time scale unwanted effects deteriorate the numerical solution"

Test 1: Advection of sine

- set up density sine
 wave in periodic box,
 so that pressure is
 the same everywhere
- give pattern a boost
 with v= 0.997 (γ=12.92)

© Test 2: Advection of square wave

• Test 2: Advection of square wave

 set up density square wave in periodic box, so that pressure is the same everywhere

• Test 2: Advection of square wave

 set up density square wave in periodic box, so that pressure is the same everywhere

give wave a boost
 with v= 0.997 (γ=12.92)

Test 2: Advection of square wave

 set up density square wave in periodic box, so that pressure is the same everywhere

give wave a boost
 with v= 0.997 (γ=12.92)

high density, high pressure low density, low pressure

high density, high pressure

low density, low pressure

Test 3: mildly relativistic shock tube

low density, low pressure

Test 3: mildly relativistic shock tube left: (P,N,v)= (40/3, 10, 0); right: (P,N,v)= (10⁻⁶, 1, 0)

low density, low pressure

Test 3: mildly relativistic shock tube left: (P,N,v)= (40/3, 10, 0); right: (P,N,v)= (10⁻⁶, 1, 0) How important are relativistic effects?

low density, low pressure

Test 3: mildly relativistic shock tube left: (P,N,v)= (40/3, 10, 0); right: (P,N,v)= (10⁻⁶, 1, 0) How important are relativistic effects?

low density, low pressure

Test 3: mildly relativistic shock tube left: (P,N,v)= (40/3, 10, 0); right: (P,N,v)= (10⁻⁶, 1, 0) How important are relativistic effects?

red: special-relativistic black: Newtonian

low density, low pressure

Test 3: mildly relativistic shock tube left: (P,N,v)= (40/3, 10, 0); right: (P,N,v)= (10⁻⁶, 1, 0) How important are relativistic effects?

red: special-relativistic black: Newtonian

shock

low density, low pressure

Test 3: mildly relativistic shock tube left: (P,N,v)= (40/3, 10, 0); right: (P,N,v)= (10⁻⁶, 1, 0) How important are relativistic effects?

low density, low pressure

Test 3: mildly relativistic shock tube left: (P,N,v)= (40/3, 10, 0); right: (P,N,v)= (10⁻⁶, 1, 0) How important are relativistic effects?

ø numerical result:

ø numerical result:

numerical result:

ø for comparison:

numerical result:

Laguna et al. (1993)

for comparison:

© Test 4: strong relativistic blast

Test 4: strong relativistic blast
left: (P,N,v)= (1000, 1, 0); right: (P,N,v)= (0.01, 1, 0)
numerical result:

Test 4: strong relativistic blast left: (P,N,v)= (1000, 1, 0); right: (P,N,v)= (0.01, 1, 0) numerical result:

(Dolezal & Wong 1995)

Test 5: sinusoidally perturbed shock tube (Dolezal & Wong 1995)

Test 5: sinusoidally perturbed shock tube (Dolezal & Wong 1995)
left: (P,N,v)= (50, 5, 0); right: (P,N,v)= (5,2+0.3 sin(50x), 0)
challenge: transport smooth structure across shock
numerical result:
Test 5: sinusoidally perturbed shock tube (Dolezal & Wong 1995)
left: (P,N,v)= (50, 5, 0); right: (P,N,v)= (5,2+0.3 sin(50x), 0)
challenge: transport smooth structure across shock

o numerical result:

© Test 6: ultra-relativistic wall shock test

Test 6: ultra-relativistic wall shock test
reflecting boundary ("wall") at x= 1
cold gas streams towards wall with

v= 0.99999999998, i.e. $\gamma = 50\ 000$!

o numerical result:

Test 6: ultra-relativistic wall shock test
reflecting boundary ("wall") at x= 1

Cold gas streams towards wall with v= 0.9999999998, i.e. $\gamma = 50\ 000$!

Test 6: ultra-relativistic wall shock test
reflecting boundary ("wall") at x= 1

wall" modeled by "ghost particles"

cold gas streams towards wall with
 v= 0.9999999998, i.e. γ = 50 000 !

Test 7: evolution of relativistic simple wave

rel. simple wave: spatial and temporal constancy of 2 of 3 Riemann invariants

There: specific entropy + J_-; $J_{\pm} = \ln(\gamma + U) \pm \int \frac{c_s}{\rho} d\rho$

challenging test, no analytical solution, comparison with Anile et al. (1983)

numerical results:

Test 7: evolution of relativistic simple wave

rel. simple wave: spatial and temporal constancy of 2 of 3 Riemann invariants

The here: specific entropy + J_-; $J_{\pm} = \ln(\gamma + U) \pm \int \frac{c_s}{\rho} d\rho$

challenging test, no analytical solution, comparison with Anile et al. (1983)

numerical results:

Test 7: evolution of relativistic simple wave

rel. simple wave: spatial and temporal constancy of 2 of 3 Riemann invariants

The here: specific entropy + J_-; $J_{\pm} = \ln(\gamma + U) \pm \int \frac{c_s}{\rho} d\rho$

challenging test, no analytical solution, comparison with Anile et al. (1983)

• numerical results:

close agreement with Anile et al. (1983)

from Anile, Miller, Motta, Physics of Fluids, 26, 1450, 1983

from Anile, Miller, Motta, Physics of Fluids, 26, 1450, 1983

General-relativistic Lagrangian

$$L_{\rm pf,GR} = -\int T^{\mu\nu} U_{\mu} U_{\nu} \sqrt{-g} \, dV,$$

General-relativistic Lagrangian

$$L_{\rm pf,GR} = -\int T^{\mu\nu} U_{\mu} U_{\nu} \sqrt{-g} \, dV,$$

apply similar strategy:

General-relativistic Lagrangian

$$L_{\rm pf,GR} = -\int T^{\mu\nu} U_{\mu} U_{\nu} \sqrt{-g} \, dV,$$

apply similar strategy:

Summary of the general-relativistic SPH equations on a fixed background metric

Ignoring derivatives from the smoothing lengths, the momentum equation reads

$$\frac{dS_{i,a}}{dt} = -\sum_{b} \nu_b \left(\frac{\sqrt{-g_a} P_a}{N_a^{*2}} + \frac{\sqrt{-g_b} P_b}{N_b^{*2}} \right) \frac{\partial W_{ab}}{\partial x_a^i} + \frac{\sqrt{-g_a}}{2N_a^*} \left(T^{\mu\nu} \frac{\partial g_{\mu\nu}}{\partial x^i} \right)_a (226)$$

where

$$S_{i,a} = \Theta_a \left(1 + u_a + \frac{P_a}{n_a} \right) \ (g_{i\mu}v^{\mu})_a \tag{227}$$

is the canonical momentum per baryon and

$$\Theta_a = \left(-g_{\mu\nu}v^{\mu}v^{\nu}\right)_a^{-\frac{1}{2}} \tag{228}$$

the generalized Lorentz factor. The energy equation reads

$$\frac{d\hat{\epsilon}_a}{dt} = -\sum_b \nu_b \left(\frac{\sqrt{-g_a} P_a}{N_a^{*2}} \vec{v}_b + \frac{\sqrt{-g_b} P_b}{N_b^{*2}} \vec{v}_a \right) \cdot \nabla_a W_{ab} - \frac{\sqrt{-g_a}}{2N_a^*} \left(T^{\mu\nu} \frac{\partial g_{\mu\nu}}{\partial t} \right)_a, (229)$$

where

$$\hat{\epsilon}_a = S_{i,a} v_a^i + \frac{1 + u_a}{\Theta_a} \tag{230}$$

is the canonical energy per nucleon. The number density can again be calculated via summation,

$$N_a^* = \sum_b \nu_b W_{ab}(h_a).$$
(231)

from Rosswog (2009), New Astronomy Reviews

VI. Summary

new formulation of special-relativistic SPH

derived Lagrangian of perfect fluid + first law of thermodynamics

no ambiguity in symmetrization

artificial viscosity motivated by Riemann solvers, time-dependent parameters

convincing performance in both advection and strong, relativistic shocks

I. Where is special-relativistic Hydrodynamics used?

Heavy ion collisions:

 $v \approx 0.9994 \ c$

Jets from Active Galactic Nuclei

Jets from Active Galactic Nuclei

Jets from Active Galactic Nuclei

Black hole at the centre of a galaxy

Jets from Active Galactic Nuclei

Black hole at the centre of a galaxy

relativistic outflows, "jets"

Jets from Active Galactic Nuclei

Lorentz factors up to $\gamma \sim 20$ i.e. $v \approx 0.99875$

Black hole at the centre of a galaxy

relativistic outflows, "jets"

(artist's view)

black hole formation inside a dying star

(artist's view)

black hole formation inside a dying star

jetted, relativistic outflow

(artist's view)

typical Lorentz factors $\gamma\sim 300$ i.e.

 $v \approx 0.99999444$

black hole formation inside a dying star jetted, relativistic outflow

Energy- momentum tensor $T^{\mu\nu}$

describes density and flux of energy and momentum in spacetime:

 $T^{\mu\nu}$ = "flux of 4-momentum component μ

across surface with constant v-coordinate"

describes density and flux of energy and momentum in spacetime:

 $T^{\mu\nu}$ = "flux of 4-momentum component μ

across surface with constant v-coordinate"

momèntum momèntum density flux

describes density and flux of energy and momentum in spacetime:

 $T^{\mu\nu}$ = "flux of 4-momentum component μ

across surface with constant v-coordinate"

momèntum momèntum density flux

• for an ideal fluid:

ø describes density and flux of energy and momentum in spacetime:

 $T^{\mu\nu}$ = "flux of 4-momentum component μ

across surface with constant v-coordinate"

momèntum momèntum flux density

If for an ideal fluid: $T^{\mu
u} = (
ho + P) U^{\mu} U^{
u} + P g^{\mu
u}$

describes density and flux of energy and momentum in spacetime:

 $T^{\mu\nu}$ = "flux of 4-momentum component μ

across surface with constant v-coordinate"

momèntum momèntum density flux

👁 for an ideal fluid: $T^{\mu
u} = (
ho + P) U^{\mu} U^{
u} + P g^{\mu
u}$

rest mass density in comoving frame

describes density and flux of energy and momentum in spacetime:

 $T^{\mu\nu}$ = "flux of 4-momentum component μ

across surface with constant v-coordinate"

momentum momentum density flux

 $= (\rho + P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$ ${f \circ}$ for an ideal fluid: $T^{\mu
u}$

rest mass density in comoving frame

pressure

ø describes density and flux of energy and momentum in spacetime:

 $T^{\mu\nu}$ = "flux of 4-momentum component μ

across surface with constant v-coordinate"

-shear stress

momèntum momèntum flux density

 $= (\rho + P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$ pressure 4-velocity $U^{\mu} = \frac{dx^{\mu}}{d\tau}$ ${f \circ}$ for an ideal fluid: $T^{\mu
u}$

rest mass density in comoving frame

ø describes density and flux of energy and momentum in spacetime:

 $T^{\mu\nu}$ = "flux of 4-momentum component μ

across surface with constant v-coordinate"

momèntum momèntum flux density

• for an ideal fluid: $T^{\mu\nu} = (\rho + P)U^{\mu}U^{\nu} + Pg^{\mu\nu}$ rest mass density in comoving frame pressure 4-velocity $U^{\mu} = \frac{dx^{\mu}}{d\tau}$ pressure
Energy- momentum tensor T^{µv}

describes density and flux of energy and momentum in spacetime:

 $T^{\mu\nu}$ = "flux of 4-momentum component μ

across surface with constant v-coordinate"

rest mass density in comoving frame

*thermokinetic energy equation":

 $\frac{d\hat{e}_a}{dt} = -\sum_b m_b \left(\frac{P_a \vec{v}_b}{\rho_a^2} + \frac{P_b \vec{v}_a}{\rho_b^2} \right) \cdot \nabla_a W_{ab}.$