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Relativistic hydrodynamics

@ restriction to “ideal fluid”, i.e. no viscosity and
conductivity

metric tensor

@ energy-momentum tensor: l
THE =g+ AT+ Pgh”

f dx*

rest mass density in comoving frame pressure 4-velocity UM —
dT

@ equations given by 5 conservation laws
baryon number : (bU*)., =0

energy = InomenRme e are=—)
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@ want spatial adaptivity:

example: tidal disruption of a
star by a black hole

(SPH + relativ. pseudo potential
+ nuclear reaction network;
from Rosswog et al. 2008, 2009)
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good relativistic grid methods exist, so
why a Lagrangian particle scheme????

@ want spatial adaptivity: —
masses {s0l) (WD) {EH}
example: tidal disruption of a = " e
hydradynamics SPH (4 030 000 particles)
star by a black hole =

(SPH + relativ. pseudo potential
+ nuclear reaction network;
from Rosswog et al. 2008, 2009)

@ shocks, of course ...

coding, simulation, visualisation: 5. Rossweq

@ but also accurate advection !

@ “hard-wired” conservation of physical invariants !
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SPH formulations

® several formulations exist (Kheyfets et al. 1990; Mann 1991, 1993; Laguna
et al. 1993;...)

@ usually “straight-forward” SPH discretization of fluid
equations, use “primitive variables” Laguna et al. (1993)

@ no guaranteed conservation

o ‘ugly” formulations (e.g. time derivatives of Lorentz factors)
iégler & Riffert (2000)

o problems with shocks: “spikes” at contact discontinuities

x-coordinate



II1. Conservative, special-relativistic SPH:
consistent derivation from a Lagrangian

@ our approach:
@ start from Lagrangian of ideal fluid

@ apply Euler-Lagrange equations + ﬁrs’r law
of thermodynamics

@ use canonical energy and momentum as
guidance for numerical variables

@ use modern form of artificial viscosity
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III.1 Lagrangian of an ideal, relativistic fluid

@ Lagrangian perfect fluid: Ly = — /T“”UMUV %

(Fock 1964)

@ from now on: measure energies in moc® (baryon rest
mass energy)

@ choose frame in which computations are performed
("Computing Frame”, CF)

@ relation between number densities:

:/yn

V\umber density in local rest frame

Lorentz factor

local fluid rest frame
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@ volume element:

— subdivide computing volume in CF such that
each element b contains v, baryons, or,

1%
conversely: Rl

@ SPH-discretization:

quantity f at particle b baryon number of particle b CF number density smoothing kernel

@ comparison to “standard SPH":
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@ the discretization applied to Lagrangian:
V
LSPH,SI‘ i R Z 4 [1 | U(nba Sb)]

o .

specific energy number density specific entropy

measured in local rest frame!

@ further strategy:

i) apply
d 0Lgpn i OLSpH -
dt.. 500 0v,
ii) use
ii) energy and momentum

per baryon





















@ resulting SPH equation set:

baryon number: Np = Z VkW(‘Fb — Fk;|, hb)
k

momentum:

energy:

iteration!
o an—1/D

dga, Pa Pb
Bt ie, E 1% = vaWa ha -+ —~VaWa h 9
b ( Qg b( ) Nl?Qb b( b)>

SEN)

— -l Pa
Sa = VaUs | 1 +ug + — can. momentum per baryon

dt N2G), il
Pa Pa . ~ 1 a

6a£%t<1+u“+_)_—:va’5a+ i
na Na fYa

can. energy per baryon
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@ comments:

— equations include “corrective terms” from derivatives
of kernels with resp. fo smoothing length h:

3 Ohy OWor () s g 4
Ope=d ] relativistic qrad-h-terms
: ON; Zk: Ohs 9

— like in relativistic grid-based methods: conversion
between "numerical” and “physical variables” required
at each time step
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@ artificial dissipation terms similar to
Chow & Monaghan (1997)

s, a8 i Koy .
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diss b E
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IV. Artificial dissipation

@ artificial dissipation terms similar to
Chow & Monaghan (1997)

— —
*

dga = e K si A
( o > = — Z TN/ Weomiswith 1T - — = —U = (Sa — S;) et
diss

b Nab
and
de, R : 4 YN
(E)diss g zb: valEnY o Wap Swith 1 = Nabg (€5 € )Cap-
with
1
vavvab R 5 [vaWab(ha) e vaWab(hb)]
N, + N,
N + IV




IV. Artificial dissipation

@ artificial dissipation terms similar to
Chow & Monaghan (1997)

s, o S Rt T e
( At ) g Z VbHabvaWa,b with Hab A ]g; bg A l?) " Cab
diss b b

and
projection along particle line of sight
with
VWap = % [VaWas(ha) + VaWap(hs)]
NGV




IV. Artificial dissipation

@ artificial dissipation terms similar to
Chow & Monaghan (1997)

dga YV W K si
( dt > e Z vy TN/ W mearith 1T — = Usig
diss

and

de, S :
(E) o e zb: I/anbvaWab with

with numerical parameter = 1
1
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IV. Artificial dissipation

@ artificial dissipation terms similar to
Chow & Monaghan (1997)

dga o e y KUsi % = X
( - ) == IV Wap with TIg = —4=—2( 92 - ap
diss

and

de, S :
(E) o =y zb: I/anbvaWab with

: numerical parameter = 1
with 1 “signal velocity”
vOLVVOLb R 5 [vaWab(ha) e vaWab(hb)]
INESSEV,
N PV b
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@ use extreme, local eigenvalues of Euler equations for
signal velocity:

Usig.abias max(oza, ab)

with’ o =amax{ll, = f)
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@ control dissipation: make parameter K time-dependent:

d Ky Ki(t) — Knin

dt :§k_ Tk\

minimum value

dissipation parameter|of particle k

source term
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@ use extreme, local eigenvalues of Euler equations for
signal velocity:

Usig.abias max(aa, O‘b)

with o = max(0, £A;)
ol UV I© Cg |

s LG Vi Cs K

@ control dissipation: make parameter K time-dependent:

dKy = ot Ki(t) — Knin
di >

minimum value

dissipation parameter|of particle k

dissipation only where needed!

source term

decay time scale
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V. A slew of benchmark tests

V.I "Advection tests”

@ "set up a situation where a geometrical shape (in
density) should just be advected with the fluid. Test
on which time scale unwanted effects deteriorate the

numerical solution”

@ Test 1: Advection of sin

— initial condition

— set up density sine
wave in periodic box,

so that pressure is
the same everywhere

— give pattern a boost |
Wi'l-h V= 0.997 (y=12.9 2) 0 0.1. 0.2 0.3 0.4 0).(5 0.6 0.7 0.8 0.9
500 particles

1













@ Test 2: Advection of square wave

— set up density square
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@ Test 3: mildly relativistic shock tube
o left: (PN,v)= (40/3, 10, 0); right: (PN,v)= (10°¢, 1, 0)

@ How important are relativistic effects?
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Laguna et al. (1993) Siegler & Riffert (2000)

@ for comparison:

Specific Internal Energy
specific internal energy

0.
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@ Test 4: strong relativistic blast
o left: (PN,v)= (1000, 1, 0); right: (PN,v)= (0.01, 1, O)

@ numerical result:
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@ Test 7: evolution of relativistic simple wave

@ rel. simple wave: spatial and temporal constancy of 2
of 3 Riemann invariants

@ here: specific entropy + J_; JL =In(v+U)+ | —dp

@ challenging test, no analytical solution, comparison
with Anile et al. (1983)

@ numerical results:



from Anile, Miller, Motta, Physics of Fluids, 26, 1450, 1983

‘ [

(d)i. 290 (@) 2700

() - 109




from Anile, Miller, Motta, Physics of Fluids, 26, 1450, 1983
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@ General-relativistic Lagrangian

@ apply similar strategy:

from Rosswog (2009), New Astronomy Reviews

Summary of the general-relativistic SPH
equations on a fixed background metric

Ignoring derivatives from the smoothing lengths, the momentum equation
reads

(ZSV'7 _ —Zl/b <_(apa
b

dt N2

V _gbpb> a‘/lfab vV =Y, (
or?

dg
: : T 2 226
Ng‘z ox?, 2N} ’ )a (226)

where

P,
Sia =0, (1 + g + ) (950" )a (227)
n

ba

is the canonical momentum per baryon and

@a — <_g;w'l’“v”);%

(228)
the generalized Lorentz factor. The energy equation reads

de, V0P 9D V=g DG
—==% e o | - VaWap — e\ T =) (229
dt b%< N2 %t N2 e " N ot a( )

where

14+ u,

5 (230)

A i
€a = SiqU, +

is the canonical energy per nucleon. The number density can again be calcu-
lated via summation,

N: = Z VbVVab(ha). (231)
b




VI. Summary

@ new formulation of special-relativistic SPH
@ features:

@ derived Lagrangian of perfect fluid + first law of
thermodynamics

@ no ambiguity in symmetrization

@ artificial viscosity motivated by Riemann solvers,
time-dependent parameters

@ convincing performance in both advection and
strong, relativistic shocks
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@ Astrophysics:

@ Jets from Active Galactic Nuclei

-

Blagsk hole at the centre
of a gajaxy

relativistic outflows, “jets”



@ Astrophysics:
@ Jets from Active Galactic Nuclei

Lorentz factors
up to v ~ 20

l.e.

v~ 0.99875

Blagsk hole at the centre
of a gajaxy

relativistic outflows, “jets”









@ "Gamma-ray burst”:

relativistic outflow from a dying, massive star

(artist’s view) .-~ |

black hole formation
inside a dying star



@ "Gamma-ray burst”:

relativistic outflow from a dying, massive star

(artists view) .- . ¢

.
.

black hole formation jetted, relativistic
inside a dying star outflow



@ "Gamma-ray burst”:

relativistic outflow from a dying, massive star

typical Lorentz factors
v ~ 300
l.e.

v ~ 0.99999444

black hole formation jetted, relativistic
inside a dying star outflow
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@ describes density and flux of energy and momentum
In spacetime:

THW = “flux of 4-momentum component

across surface with constant v-coordinate”
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@ for an ideal fluid: T"" = (p + P)U*U" + Pg"*
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rest mass density in comoving frame pressure 4-velocity U" = —— pressure

dr






