Copenhagen, 26.8.2009

Relativistic Smooth Particle Hydrodynamics from a variational principle

Stephan Rosswog
Astrophysics
Jacobs University Bremen

Literature: i) S.Rosswog, New Astronomy Reviews, in press (2009), arXiv:0903.5075
ii) S.Rosswog, subm. J. Comp. Phys. (2009), arXiv:0907:4890

You think relativistic SPH is crap?

You think relativistic SPH is crap?

Think again!!!

Relativistic hydrodynamics

Relativistic hydrodynamics

- restriction to "ideal fluid", i.e. no viscosity and conductivity

Relativistic hydrodynamics

- restriction to "ideal fluid", i.e. no viscosity and conductivity
- energy-momentum tensor:

Relativistic hydrodynamics

- restriction to "ideal fluid", i.e. no viscosity and conductivity
- energy-momentum tensor:

$$
T^{\mu \nu}=(\rho+P) U^{\mu} U^{\nu}+P g^{\mu \nu}
$$

Relativistic hydrodynamics

- restriction to "ideal fluid", i.e. no viscosity and conductivity
- energy-momentum tensor:
rest mass density in comoving frame

Relativistic hydrodynamics

- restriction to "ideal fluid", i.e. no viscosity and conductivity
- energy-momentum tensor:
rest mass density in comoving frame

$$
T^{\mu \nu}=(\rho+P) U^{\mu} U^{\nu}+P g^{\mu \nu}
$$

Relativistic hydrodynamics

- restriction to "ideal fluid", i.e. no viscosity and conductivity
- energy-momentum tensor:
rest mass density in comoving frame pressure $T^{\mu \nu}=(\rho+P) U^{\mu} U^{\nu}+P g^{\mu \nu}$

Relativistic hydrodynamics

- restriction to "ideal fluid", i.e. no viscosity and conductivity
- energy-momentum tensor:
rest mass density in comoving frame pressure $\quad 4$-velocity $U^{\mu}=\frac{d x^{\mu}}{d \tau}$

Relativistic hydrodynamics

- restriction to "ideal fluid", i.e. no viscosity and conductivity
- energy-momentum tensor:
- equations given by 5 conservation laws

Relativistic hydrodynamics

- restriction to "ideal fluid", i.e. no viscosity and conductivity
- energy-momentum tensor:
rest mass density in comoving frame pressure $\quad 4$-velocity $U^{\mu}=\frac{d x^{\mu}}{d \tau}$
- equations given by 5 conservation laws

$$
\begin{aligned}
& \text { baryon number : } \quad\left(\rho U^{\mu}\right)_{; \mu}=0 \\
& \text { energy - momentum : } T^{\mu \nu}{ }_{; \nu}=0
\end{aligned}
$$

good relativistic grid methods exist, so why a Lagrangian particle scheme????
good relativistic grid methods exist, so why a Lagrangian particle scheme????

- want spatial adaptivity:

good relativistic grid methods exist, so why a Lagrangian particle scheme????

- want spatial adaptivity:

example: tidal disruption of a
star by a black hole
(SPH + relativ. pseudo potential
+ nuclear reaction network;
from Rosswog et al. 2008, 2009)

good relativistic grid methods exist, so why a Lagrangian particle scheme????

- want spatial adaptivity:
example: tidal disruption of a star by a black hole
(SPH + relativ. pseudo potential
+ nuclear reaction network; from Rosswog et al. 2008, 2009)

good relativistic grid methods exist, so why a Lagrangian particle scheme????

- want spatial adaptivity:
example: tidal disruption of a star by a black hole
(SPH + relativ. pseudo potential + nuclear reaction network; from Rosswog et al. 2008, 2009)

- shocks, of course ...

good relativistic grid methods exist, so why a Lagrangian particle scheme????

- want spatial adaptivity:
example: tidal disruption of a star by a black hole
(SPH + relativ. pseudo potential + nuclear reaction network; from Rosswog et al. 2008, 2009)

- shocks, of course ...
- but also accurate advection !

good relativistic grid methods exist, so why a Lagrangian particle scheme????

- want spatial adaptivity:
example: tidal disruption of a star by a black hole
(SPH + relativ. pseudo potential
+ nuclear reaction network; from Rosswog et al. 2008, 2009)

- shocks, of course ...
- but also accurate advection !
- "hard-wired" conservation of physical invariants !

II. Previous special-relativistic SPH formulations

- several formulations exist (Kheyfets et al. 1990; Mann 1991, 1993; Laguna et al. 1993;...)
- usually "straight-forward" SPH discretization of fluid equations, use "primitive variables"

II. Previous special-relativistic SPH formulations

- Several formulations exist (Kheyfets et al. 1990; Mann 1991, 1993; Laguna et al. 1993;...)
- usually "straight-forward" SPH discretization of fluid equations, use "primitive variables"
- no guaranteed conservation
- "ugly" formulations (e.g. time derivatives of Lorentz factors)
- problems with shocks: "spikes" at contact discontinuities

II. Previous special-relativistic SPH formulations

- Several formulations exist (Kheyfets et al. 1990; Mann 1991, 1993; Laguna et al. 1993;...)
- usually "straight-forward" SPH discretization of fluid equations, use "primitive variables"

Laguna et al. (1993)

- no guaranteed conservation
- "ugly" formulations (e.g. time derivatives of Lorentz factors)
- problems with shocks: "spikes" at contact discontinuities

II. Previous special-relativistic SPH formulations

- several formulations exist (Kheyfets et al. 1990; Mann 1991, 1993; Laguna et al. 1993;...)
- usually "straight-forward" SPH discretization of fluid equations, use "primitive variables" Laguna et al. (1993)
- no guaranteed conservation

- "ugly" formulations (e.g. time derivatives of Lorentz factors)

Siegler \& Riffert (2000)

- problems with shocks: "spikes" at contact discontinuities

II. Previous special-relativistic SPH formulations

- several formulations exist (Kheyfets et al. 1990; Mann 1991, 1993; Laguna et al. 1993;...)
- usually "straight-forward" SPH discretization of fluid equations, use "primitive variables" Laguna et al. (1993)
- no guaranteed conservation
- "ugly" formulations (e.g. time derivatives of Lorentz factors)

Siegler \& Riffert (2000)

- problems with shocks: "spikes" at contact discontinuities

II. Previous special-relativistic SPH formulations

- several formulations exist (Kheyfets et al. 1990; Mann 1991, 1993; Laguna et al. 1993;...)
- usually "straight-forward" SPH discretization of fluid equations, use "primitive variables" Laguna et al. (1993)
- no guaranteed conservation
- "ugly" formulations (e.g. time derivatives of Lorentz factors)

Siegler \& Riffert (2000)

- problems with shocks: "spikes" at contact discontinuities

III. Conservative, special-relativistic SPH: consistent derivation from a Lagrangian
- our approach:
- start from Lagrangian of ideal fluid
- apply Euler-Lagrange equations + first law of thermodynamics
- use canonical energy and momentum as guidance for numerical variables
- use modern form of artificial viscosity

III. 1 Lagrangian of an ideal, relativistic fluid

- Lagrangian perfect fluid: $L_{\mathrm{pf}, \mathrm{st}}=-\int T^{\mu \nu} U_{\mu} U_{\nu} d V$ (Fock 1964)
- from now on: measure energies in $\mathrm{m}_{0} \mathrm{c}^{2}$ (baryon rest mass energy)
- choose frame in which computations are performed ("Computing Frame", CF)
- relation between number densities:

III. 1 Lagrangian of an ideal, relativistic fluid

- Lagrangian perfect fluid: $L_{\mathrm{pf}, \mathrm{st}}=-\int T^{\mu \nu} U_{\mu} U_{\nu} d V$ (Fock 1964)

$$
L_{\mathrm{pf} f, \mathrm{sr}}=-\int T^{\mu \nu} U_{\mu} U_{\nu} d V
$$

- from now on: measure energies in $m_{0} c^{2}$ (baryon rest mass energy)
- choose frame in which computations are performed ("Computing Frame", CF)
- relation between number densities:

III. 1 Lagrangian of an ideal, relativistic fluid

- Lagrangian perfect fluid: $L_{\mathrm{pf}, \mathrm{si}}=-\int T^{\mu \nu} U_{\mu} U_{\nu} d V$ (Fock 1964)

$$
L_{\mathrm{pf} \mathrm{sr}}=-\int T^{\mu \nu} U_{\mu} U_{\nu} d V
$$

- from now on: measure energies in $m_{0} c^{2}$ (baryon rest mass energy)
- choose frame in which computations are performed ("Computing Frame", CF)
- relation between number densities:

$$
N=\gamma n
$$

III. 1 Lagrangian of an ideal, relativistic fluid

- Lagrangian perfect fluid: $L_{\mathrm{pf}, \mathrm{si}}=-\int T^{\mu \nu} U_{\mu} U_{\nu} d V$ (Fock 1964)

$$
L_{\mathrm{pf} \mathrm{sr}}=-\int T^{\mu \nu} U_{\mu} U_{\nu} d V
$$

- from now on: measure energies in $m_{0} c^{2}$ (baryon rest mass energy)
- choose frame in which computations are performed ("Computing Frame", CF)
- relation between number densities:

$$
N=\gamma n
$$

III. 1 Lagrangian of an ideal, relativistic fluid

- Lagrangian perfect fluid: $L_{\mathrm{pf}, \mathrm{st}}=-\int T^{\mu \nu} U_{\mu} U_{\nu} d V$ (Fock 1964)
- from now on: measure energies in $m_{0} c^{2}$ (baryon rest mass energy)
- choose frame in which computations are performed ("Computing Frame", CF)
- relation between number densities:

III. 1 Lagrangian of an ideal, relativistic fluid

- Lagrangian perfect fluid: $L_{\text {(fock } 1964)}=-\int T^{\mu \nu} U_{\mu} U_{\nu} d V$
- from now on: measure energies in $\mathrm{m}_{0} \mathrm{c}^{2}$ (baryon rest mass energy)
- choose frame in which computations are performed ("Computing Frame", CF)
- relation between number densities:

- volume element:
- subdivide computing volume in CF such that each element b contains V_{b} baryons, or, conversely:

$$
\Delta V_{b}=\frac{\nu_{b}}{N_{b}}
$$

- volume element:
- subdivide computing volume in CF such that each element b contains V_{b} baryons, or, conversely:

$$
\Delta V_{b}=\frac{\nu_{b}}{N_{b}}
$$

- SPH-discretization:
- volume element:
- subdivide computing volume in CF such that each element b contains V_{b} baryons, or, conversely:

$$
\Delta V_{b}=\frac{\nu_{b}}{N_{b}}
$$

- SPH-discretization: $f(\vec{r})=\sum_{b} f_{b} \frac{\nu_{b}}{N_{b}} W\left(\left|\vec{r}-\vec{r}_{b}\right|, h\right)$
- volume element:
- subdivide computing volume in CF such that each element b contains V_{b} baryons, or, conversely:

$$
\Delta V_{b}=\frac{\nu_{b}}{N_{b}}
$$

- SPH-discretization: $\quad f(\vec{r})=\sum_{b} f_{b} \frac{\nu_{b}}{N_{b}} W\left(\left|\vec{r}-\vec{r}_{b}\right|, h\right)$ quantity f at particle b
- volume element:
- subdivide computing volume in CF such that each element b contains V_{b} baryons, or, conversely:

$$
\Delta V_{b}=\frac{\nu_{b}}{N_{b}}
$$

- SPH-discretization: $f(\vec{r})=\sum_{b} \frac{\nu_{b}}{N_{b}} W\left(\left|\vec{r}-\vec{r}_{b}\right|, h\right)$ quantity f at particle b baryon number of particle b
- volume element:
- subdivide computing volume in CF such that each element b contains V_{b} baryons, or, conversely:

$$
\Delta V_{b}=\frac{\nu_{b}}{N_{b}}
$$

- SPH-discretization: $f(\vec{r})=\sum_{b} \frac{\nu_{b}}{N_{b}} W\left(\left|\vec{r}-\vec{r}_{b}\right|, h\right)$ quantity f at particle b baryon number of particle b CF number density
- volume element:
- subdivide computing volume in CF such that each element b contains V_{b} baryons, or, conversely:

$$
\Delta V_{b}=\frac{\nu_{b}}{N_{b}}
$$

- SPH-discretization: $f(\vec{r})=\sum_{b} \frac{\nu_{b}}{N_{b}} W\left(\left|\vec{r}-\vec{r}_{b}\right|, h\right)$
quantity f at particle b baryon number of particle b CF number density smoothing kernel
- volume element:
- subdivide computing volume in CF such that each element b contains V_{b} baryons, or, conversely:

$$
\Delta V_{b}=\frac{\nu_{b}}{N_{b}}
$$

- SPH-discretization: $f(\vec{r})=\sum_{b} \frac{\nu_{b}}{N_{b}} W\left(\left|\vec{r}-\vec{r}_{b}\right|, h\right)$
quantity f at particle b baryon number of particle b CF number density smoothing kernel
- comparison to "standard SPH":

$$
f(\vec{r})=\sum_{b} f_{b} \frac{m_{b}}{\rho_{b}} W\left(\left|\vec{r}-\vec{r}_{b}\right|, h\right)
$$

- the discretization applied to Lagrangian:

$$
L_{\mathrm{SPH}, \mathrm{Sr}}=-\sum_{b} \frac{\nu_{b}}{\gamma_{b}}\left[1+u\left(n_{b}, s_{b}\right)\right]
$$

- the discretization applied to Lagrangian:

$$
L_{\mathrm{SPH}, \mathrm{sr}}=-\sum_{b} \frac{\nu_{b}}{\gamma_{b}}\left[1+u\left(n_{b}, s_{b}\right)\right]
$$

- the discretization applied to Lagrangian:
$L_{\mathrm{SPH}, \mathrm{sr}}=-\sum_{b} \frac{\nu_{b}}{\gamma_{b}}\left[1+u\left(n_{b}, s_{b}\right)\right]$
- the discretization applied to Lagrangian:

$$
L_{\mathrm{SPH}, \mathrm{sr}}=-\sum_{b} \frac{\nu_{b}}{\gamma_{b}}\left[1+u\left(n_{b}, s_{b}\right)\right]
$$

- the discretization applied to Lagrangian:

$$
L_{\mathrm{SPH}, \mathrm{sr}}=-\sum_{b} \frac{\nu_{b}}{\gamma_{b}}\left[1+u\left(n_{b}, s_{b}\right)\right]
$$ measured in local rest frame!

- the discretization applied to Lagrangian:

$$
L_{\mathrm{SPH}, \mathrm{sr}}=-\sum_{b} \frac{\nu_{b}}{\gamma_{b}}\left[1+u\left(n_{b}, s_{b}\right)\right]
$$

- further strategy:
- the discretization applied to Lagrangian:

$$
L_{\mathrm{SPH}, \mathrm{sr}}=-\sum_{b} \frac{\nu_{b}}{\gamma_{b}}\left[1+u\left(n_{b}, s_{b}\right)\right]
$$

- further strategy:
i) apply

$$
\frac{d}{d t} \frac{\partial L_{\mathrm{SPH}, \mathrm{sr}}}{\partial \vec{v}_{a}}-\frac{\partial L_{\mathrm{SPH}, \mathrm{sr}}}{\partial \vec{v}_{a}}=0
$$

- the discretization applied to Lagrangian:

$$
\begin{aligned}
L_{\mathrm{SPH}, \mathrm{sr}}= & -\sum_{b} \frac{\nu_{b}}{\gamma_{b}}\left[1+u\left(n_{b}, s_{b}\right)\right] \\
& \text { specific energy } \\
& \text { measured in local rest frame! }
\end{aligned}
$$

- further strategy:
i) apply

$$
\frac{d}{d t} \frac{\partial L_{\mathrm{SPH}, \mathrm{sr}}}{\partial \vec{v}_{a}}-\frac{\partial L_{\mathrm{SPH}, \mathrm{sr}}}{\partial \vec{v}_{a}}=0
$$

ii) use first law of thermodynamics

- the discretization applied to Lagrangian:

$$
L_{\mathrm{SPH}, \mathrm{sr}}=-\sum_{b} \frac{\nu_{b}}{\gamma_{b}}\left[1+u\left(n_{b}, s_{b}\right)\right]
$$

- further strategy:
i) apply

$$
\frac{d}{d t} \frac{\partial L_{\mathrm{SPH}, \mathrm{sr}}}{\partial \vec{v}_{a}}-\frac{\partial L_{\mathrm{SPH}, \mathrm{sr}}}{\partial \vec{v}_{a}}=0
$$

ii) use first law of thermodynamics
iii) canonical energy and momentum per baryon as numerical variables

- canonical momentum: $\quad \vec{p}_{a} \equiv \frac{\partial L_{\mathrm{SPH}, \mathrm{sr}}}{\partial \vec{v}_{a}}=\ldots$
$=\nu_{a} \gamma_{a} \vec{v}_{a}\left(1+u_{a}+\frac{P_{a}}{n_{a}}\right)$
- canonical momentum: $\quad \vec{p}_{a} \equiv \frac{\partial L_{\mathrm{SPH}, \mathrm{sr}}}{\partial \vec{v}_{a}}=\ldots$

$$
=\nu_{a} \gamma_{a} \vec{v}_{a}\left(1+u_{a}+\frac{P_{a}}{n_{a}}\right)
$$

introduce

$$
\vec{S}_{a} \equiv \gamma_{a} \vec{v}_{a}\left(1+u_{a}+\frac{P_{a}}{n_{a}}\right)
$$

- canonical momentum: $\quad \vec{p}_{a} \equiv \frac{\partial L_{\mathrm{SPH}, \mathrm{sr}}}{\partial \vec{v}_{a}}=\ldots$

$$
=\nu_{a} \gamma_{a} \vec{v}_{a}\left(1+u_{a}+\frac{P_{a}}{n_{a}}\right)
$$

introduce

$$
\vec{S}_{a} \equiv \gamma_{a} \vec{v}_{a}\left(1+u_{a}+\frac{P_{a}}{n_{a}}\right)
$$

- canonical momentum: $\quad \vec{p}_{a} \equiv \frac{\partial L_{\mathrm{SPH}, \mathrm{sr}}}{\partial \vec{v}_{a}}=\ldots$

$$
=\nu_{a} \gamma_{a} \vec{v}_{a}\left(1+u_{a}+\frac{P_{a}}{n_{a}}\right)
$$

introduce

$$
\vec{S}_{a} \equiv \gamma_{a} \vec{v}_{a}\left(1+u_{a}+\frac{P_{a}}{n_{a}}\right)
$$

$$
\begin{aligned}
E & \equiv \sum_{a} \frac{\partial L_{\mathrm{SPH}, \mathrm{sr}}}{\partial \vec{v}_{a}} \cdot \vec{v}_{a}-L_{\mathrm{SPH}, \mathrm{sr}}=. \\
& =\sum_{a} \nu_{a}\left(\vec{v}_{a} \cdot \vec{S}_{a}+\frac{1+u_{a}}{\gamma_{a}}\right)
\end{aligned}
$$

- canonical momentum: $\quad \vec{p}_{a} \equiv \frac{\partial L_{\mathrm{SPH}, \mathrm{sr}}}{\partial \vec{v}_{a}}=\ldots$

$$
=\nu_{a} \gamma_{a} \vec{v}_{a}\left(1+u_{a}+\frac{P_{a}}{n_{a}}\right)
$$

introduce

$$
\vec{S}_{a} \equiv \gamma_{a} \vec{v}_{a}\left(1+u_{a}+\frac{P_{a}}{n_{a}}\right)
$$

$$
\text { (2) canonical energy: } \quad \begin{aligned}
E & \equiv \sum_{a} \frac{\partial L_{\mathrm{SPH}, \mathrm{sr}}}{\partial \vec{v}_{a}} \cdot \vec{v}_{a}-L_{\mathrm{SPH}, \mathrm{sr}}=. . \\
& =\sum_{a} \nu_{a}\left(\vec{v}_{a} \cdot \vec{S}_{a}+\frac{1+u_{a}}{\gamma_{a}}\right)
\end{aligned}
$$

introduce

$$
\hat{\epsilon}_{a} \equiv \vec{v}_{a} \cdot \vec{S}_{a}+\frac{1+u_{a}}{\gamma_{a}}
$$

- resulting SPH equation set:
baryon number:

$$
\left.\begin{array}{l}
N_{b}=\sum_{k} \nu_{k} W\left(\left|\vec{r}_{b}-\vec{r}_{k}\right|, h_{b}\right) \\
h_{b}=\eta N_{b}^{-1 / D}
\end{array}\right\} \text { iteration! }
$$

momentum:

$$
\begin{aligned}
& \frac{d \vec{S}_{a}}{d t}=-\sum_{b} \nu_{b}\left(\frac{P_{a}}{N_{a}^{2} \tilde{\Omega}_{a}} \nabla_{a} W_{a b}\left(h_{a}\right)+\frac{P_{b}}{N_{b}^{2} \tilde{\Omega}_{b}} \nabla_{a} W_{a b}\left(h_{b}\right)\right), \\
& \vec{S}_{a} \equiv \gamma_{a} \vec{v}_{a}\left(1+u_{a}+\frac{P_{a}}{n_{a}}\right) \quad \text { can. momentum per baryon }
\end{aligned}
$$

energy:

$$
\begin{aligned}
& \frac{d \epsilon_{a}}{d t}=-\sum_{b} \nu_{b}\left(\frac{P_{a} \vec{v}_{b}}{N_{a}^{2} \tilde{\Omega}_{a}} \cdot \nabla_{a} W_{a b}\left(h_{a}\right)+\frac{P_{b} \vec{v}_{a}}{N_{b}^{2} \tilde{\Omega}_{b}} \cdot \nabla_{a} W_{a b}\left(h_{b}\right)\right) \\
& \epsilon_{a} \equiv \gamma_{a}\left(1+u_{a}+\frac{P_{a}}{n_{a}}\right)-\frac{P_{a}}{N_{a}}=\vec{v}_{a} \cdot \vec{S}_{a}+\frac{1+u_{a}}{\gamma_{a}}
\end{aligned}
$$

can. energy per baryon

- comments:
- comments:
- equations include "corrective terms" from derivatives of kernels with resp. to smoothing length h :

$$
\tilde{\Omega}_{b} \equiv 1-\frac{\partial h_{b}}{\partial N_{b}} \sum_{k} \frac{\partial W_{b k}\left(h_{b}\right)}{\partial h_{b}}
$$

- comments:
- equations include "corrective terms" from derivatives of kernels with resp. to smoothing length h :

$$
\tilde{\Omega}_{b} \equiv 1-\frac{\partial h_{b}}{\partial N_{b}} \sum_{k} \frac{\partial W_{b k}\left(h_{b}\right)}{\partial h_{b}} \text { relativistic "grad-h-terms" }
$$

- comments:
- equations include "corrective terms" from derivatives of kernels with resp. to smoothing length h :

$$
\tilde{\Omega}_{b} \equiv 1-\frac{\partial h_{b}}{\partial N_{b}} \sum_{k} \frac{\partial W_{b k}\left(h_{b}\right)}{\partial h_{b}} \text { relativistic "grad-h-terms" }
$$

- like in relativistic grid-based methods: conversion between "numerical" and "physical variables" required at each time step

IV. Artificial dissipation

- artificial dissipation terms similar to Chow \& Monaghan (1997)

IV. Artificial dissipation

- artificial dissipation terms similar to

Chow \& Monaghan (1997)

$$
\left(\frac{d \vec{S}_{a}}{d t}\right)_{\text {diss }}=-\sum_{b} \nu_{b} \Pi_{a b} \bar{\nabla} W_{a b} \text { with } \Pi_{a b}=-\frac{K v_{\text {sig }}}{N_{a b}}\left(\vec{S}_{a}^{*}-\vec{S}_{b}^{*}\right) \cdot \hat{e}_{a b}
$$

and

$$
\left(\frac{d \epsilon_{a}}{d t}\right)_{\text {diss }}=-\sum_{b} \nu_{b} \Omega_{a b} \nabla_{a} W_{a b} \quad \text { with } \Omega_{a b}=-\frac{K v_{\text {sig }}}{N_{a b}}\left(\epsilon_{a}^{*}-\epsilon_{b}^{*}\right) \hat{e}_{a b} \text {. }
$$

IV. Artificial dissipation

- artificial dissipation terms similar to

Chow \& Monaghan (1997)

$$
\left(\frac{d \vec{S}_{a}}{d t}\right)_{\text {diss }}=-\sum_{b} \nu_{b} \Pi_{a b} \overline{\nabla_{a} W_{a b}} \text { with } \Pi_{a b}=-\frac{K v_{\text {sig }}}{N_{a b}}\left(\vec{S}_{a}^{*}-\vec{S}_{b}^{*}\right) \cdot \hat{e}_{a b}
$$

and

$$
\left(\frac{d \epsilon_{a}}{d t}\right)_{\text {diss }}=-\sum_{b} \nu_{b} \Omega_{a b} \overline{\nabla_{a} W_{a b}} \quad \text { with } \quad \Omega_{a b}=-\frac{K v_{\text {sig }}}{\bar{N}_{a b}}\left(\epsilon_{a}^{*}-\epsilon_{b}^{*}\right) \hat{e}_{a b}
$$

with

$$
\begin{aligned}
\overline{\nabla_{a} W_{a b}} & =\frac{1}{2}\left[\nabla_{a} W_{a b}\left(h_{a}\right)+\nabla_{a} W_{a b}\left(h_{b}\right)\right] \\
N_{a b} & =\frac{N_{a}+N_{b}}{2}
\end{aligned}
$$

IV. Artificial dissipation

- artificial dissipation terms similar to Chow \& Monaghan (1997)

$$
\begin{aligned}
& \left(\frac{d \vec{S}_{a}}{d t}\right)_{\text {diss }}=-\sum_{b} \nu_{b} \Pi_{a b} \overline{\nabla_{a} W_{a b}} \text { with } \Pi_{a b}=-\frac{K v_{\text {sig }}}{N_{a b}}\left(\overrightarrow{\vec{r}}_{a}^{*}-\vec{T}_{b}^{*}\right) \cdot \hat{e}_{a b} \\
& \text { and } \\
& \left(\frac{d \epsilon_{a}}{d t}\right)_{\text {diss }}=-\sum_{b} \nu_{b} \Omega_{a b} \nabla_{a} W_{a b} \\
& \text { with } \\
& \text { projection along particle line of sight }
\end{aligned}
$$

with

$$
\begin{aligned}
\overline{\nabla_{a} W_{a b}} & =\frac{1}{2}\left[\nabla_{a} W_{a b}\left(h_{a}\right)+\nabla_{a} W_{a b}\left(h_{b}\right)\right] \\
N_{a b} & =\frac{N_{a}+N_{b}}{2}
\end{aligned}
$$

IV. Artificial dissipation

- artificial dissipation terms similar to Chow \& Monaghan (1997)

$$
\begin{aligned}
& \left(\frac{d \vec{S}_{a}}{d t}\right)_{\text {diss }}=-\sum_{b} \nu_{b} \Pi_{a b} \overline{\nabla_{a} W_{a b}} \text { with } \Pi_{a b}=-K v_{\text {sig }}\left(\vec{a}_{a}^{*}-\vec{S}_{b}^{*}\right) \cdot \hat{e}_{a b} \\
& \text { and } \\
& \left(\frac{d \epsilon_{a}}{d t}\right)_{\text {diss }}=-\sum_{b} \nu_{b} \Omega_{a b} \overline{\nabla_{a} W_{a b}} \text { with } \\
& \text { projection along particle line of sight } \\
& \text { numerical parameter } \sim 1
\end{aligned}
$$

with

$$
\begin{aligned}
\overline{\nabla_{a} W_{a b}} & =\frac{1}{2}\left[\nabla_{a} W_{a b}\left(h_{a}\right)+\nabla_{a} W_{a b}\left(h_{b}\right)\right] \\
N_{a b} & =\frac{N_{a}+N_{b}}{2}
\end{aligned}
$$

IV. Artificial dissipation

- artificial dissipation terms similar to Chow \& Monaghan (1997)

$$
\begin{aligned}
& \left(\frac{d \vec{S}_{a}}{d t}\right)_{\text {diss }}=-\sum_{b} \nu_{b} \Pi_{a b} \overline{\nabla_{a} W_{a b}} \text { with } \Pi_{a b}=-K v_{\text {sig }}\left(\vec{z}_{a}^{*}-\vec{c}_{*}^{*}\right) \cdot \hat{e}_{a b} \\
& \text { and } \\
& \left(\frac{d \epsilon_{a}}{d t}\right)_{\text {diss }}=-\sum_{b} \nu_{b} \Omega_{a b} \overline{\nabla_{a} W_{a b}} \text { with } \\
& \text { projection along particle line of sight } \\
& \text { numerical parameter } \sim 1 \\
& \text { "signal velocity" }
\end{aligned}
$$

with

$$
\begin{aligned}
\overline{\nabla_{a} W_{a b}} & =\frac{1}{2}\left[\nabla_{a} W_{a b}\left(h_{a}\right)+\nabla_{a} W_{a b}\left(h_{b}\right)\right] \\
N_{a b} & =\frac{N_{a}+N_{b}}{2}
\end{aligned}
$$

- use extreme, local eigenvalues of Euler equations for signal velocity:
- use extreme, local eigenvalues of Euler equations for signal velocity:
$v_{\text {sig }, a b}=\max \left(\alpha_{a}, \alpha_{b}\right)$

$$
\text { with } \begin{aligned}
\alpha_{k}^{ \pm} & =\max \left(0, \pm \lambda_{k}^{ \pm}\right) \\
\lambda_{k}^{ \pm} & =\frac{v_{k} \pm c_{\mathrm{s}, k}}{1 \pm v_{k} c_{\mathrm{s}, k}}
\end{aligned}
$$

- use extreme, local eigenvalues of Euler equations for signal velocity:

$$
v_{\text {sig }, \mathrm{ab}}=\max \left(\alpha_{a}, \alpha_{b}\right)
$$

$$
\text { with } \begin{aligned}
\alpha_{k}^{ \pm} & =\max \left(0, \pm \lambda_{k}^{ \pm}\right) \\
\lambda_{k}^{ \pm} & =\frac{v_{k} \pm c_{\mathrm{s}, k}}{1 \pm v_{k} c_{\mathrm{s}, k}}
\end{aligned}
$$

- control dissipation: make parameter K time-dependent:
- use extreme, local eigenvalues of Euler equations for signal velocity:

$$
v_{\text {sig }, \mathrm{ab}}=\max \left(\alpha_{a}, \alpha_{b}\right)
$$

$$
\text { with } \begin{aligned}
\alpha_{k}^{ \pm} & =\max \left(0, \pm \lambda_{k}^{ \pm}\right) \\
\lambda_{k}^{ \pm} & =\frac{v_{k} \pm c_{\mathrm{s}, k}}{1 \pm v_{k} c_{\mathrm{s}, k}}
\end{aligned}
$$

- control dissipation: make parameter K time-dependent:

$$
\frac{d K_{k}}{d t}=S_{k}-\frac{K_{k}(t)-K_{\min }}{\tau_{k}}
$$

- use extreme, local eigenvalues of Euler equations for signal velocity:

$$
v_{\text {sig }, \mathrm{ab}}=\max \left(\alpha_{a}, \alpha_{b}\right)
$$

$$
\text { with } \begin{aligned}
\alpha_{k}^{ \pm} & =\max \left(0, \pm \lambda_{k}^{ \pm}\right) \\
\lambda_{k}^{ \pm} & =\frac{v_{k} \pm c_{\mathrm{s}, k}}{1 \pm v_{k} c_{\mathrm{s}, k}}
\end{aligned}
$$

- control dissipation: make parameter K time-dependent:

- use extreme, local eigenvalues of Euler equations for signal velocity:

$$
v_{\text {sig }, \mathrm{ab}}=\max \left(\alpha_{a}, \alpha_{b}\right)
$$

$$
\text { with } \quad \alpha_{k}^{ \pm}=\max \left(0, \pm \lambda_{k}^{ \pm}\right)
$$

$$
\lambda_{k}^{ \pm}=\frac{v_{k} \pm c_{\mathrm{s}, k}}{1 \pm v_{k} c_{\mathrm{s}, k}}
$$

- control dissipation: make parameter K time-dependent:

- use extreme, local eigenvalues of Euler equations for signal velocity:

$$
v_{\text {sig }, \mathrm{ab}}=\max \left(\alpha_{a}, \alpha_{b}\right)
$$

$$
\text { with } \quad \alpha_{k}^{ \pm}=\max \left(0, \pm \lambda_{k}^{ \pm}\right)
$$

$$
\lambda_{k}^{ \pm}=\frac{v_{k} \pm c_{\mathrm{s}, k}}{1 \pm v_{k} c_{\mathrm{s}, k}}
$$

- control dissipation: make parameter K time-dependent:

- use extreme, local eigenvalues of Euler equations for signal velocity:

$$
v_{\text {sig }, \mathrm{ab}}=\max \left(\alpha_{a}, \alpha_{b}\right)
$$

$$
\text { with } \quad \alpha_{k}^{ \pm}=\max \left(0, \pm \lambda_{k}^{ \pm}\right)
$$

$$
\lambda_{k}^{ \pm}=\frac{v_{k} \pm c_{\mathrm{s}, k}}{1 \pm v_{k} c_{\mathrm{s}, k}}
$$

- control dissipation: make parameter K time-dependent:

- use extreme, local eigenvalues of Euler equations for signal velocity:

$$
v_{\text {sig }, \mathrm{ab}}=\max \left(\alpha_{a}, \alpha_{b}\right)
$$

$$
\text { with } \quad \alpha_{k}^{ \pm}=\max \left(0, \pm \lambda_{k}^{ \pm}\right)
$$

$$
\lambda_{k}^{ \pm}=\frac{v_{k} \pm c_{\mathrm{s}, k}}{1 \pm v_{k} c_{\mathrm{s}, k}}
$$

- control dissipation: make parameter K time-dependent:

V. A slew of benchmark tests

V.I "Advection tests"

V. A slew of benchmark tests

V.I "Advection tests"

- "set up a situation where a geometrical shape (in density) should just be advected with the fluid. Test on which time scale unwanted effects deteriorate the numerical solution"

V. A slew of benchmark tests

V.I "Advection tests"

- "set up a situation where a geometrical shape (in density) should just be advected with the fluid. Test on which time scale unwanted effects deteriorate the numerical solution"
- Test 1: Advection of sine wave

V. A slew of benchmark tests

V.I "Advection tests"

- "set up a situation where a geometrical shape (in density) should just be advected with the fluid. Test on which time scale unwanted effects deteriorate the numerical solution"
- Test 1: Advection of sine wave
- set up density sine
wave in periodic box, so that pressure is the same everywhere

V. A slew of benchmark tests

V.I "Advection tests"

- "set up a situation where a geometrical shape (in density) should just be advected with the fluid. Test on which time scale unwanted effects deteriorate the numerical solution"
- Test 1: Advection of sine wave
- set up density sine
wave in periodic box, so that pressure is the same everywhere
- give pattern a boost with $v=0.997(\gamma=12.92)$

V. A slew of benchmark tests

V.I "Advection tests"

- "set up a situation where a geometrical shape (in density) should just be advected with the fluid. Test on which time scale unwanted effects deteriorate the numerical solution"
- Test 1: Advection of sin
- set up density sine wave in periodic box, so that pressure is the same everywhere
- give pattern a boost with $v=0.997(\gamma=12.92)$

500 particles

- Test 2: Advection of square wave
- Test 2: Advection of square wave
- set up density square
wave in periodic box, so that pressure is
the same everywhere
- Test 2: Advection of square wave
- set up density square wave in periodic box, so that pressure is the same everywhere
- give wave a boost
with $v=0.997(\gamma=12.92)$
- Test 2: Advection of square wave
- set up density square wave in periodic box, so that pressure is the same everywhere
- give wave a boost with $v=0.997 \quad(\gamma=12.92)$

V.II "Shock tests"
- Test 3: mildly relativistic shock tube
V.II "Shock tests"
- Test 3: mildly relativistic shock tube
- left: $(P, N, v)=(40 / 3,10,0)$; right: $(P, N, v)=\left(10^{-6}, 1,0\right)$
V.II "Shock tests"
- Test 3: mildly relativistic shock tube
(2) left: $(P, N, v)=(40 / 3,10,0)$; right: $(P, N, v)=\left(10^{-6}, 1,0\right)$
- How important are relativistic effects?
- Test 3: mildly relativistic shock tube
- left: $(P, N, v)=(40 / 3,10,0)$; right: $(P, N, v)=\left(10^{-6}, 1,0\right)$
- How important are relativistic effects?

V.II "Shock tests"
- Test 3: mildly relativistic shock tube
- left: $(P, N, v)=(40 / 3,10,0)$; right: $(P, N, v)=\left(10^{-6}, 1,0\right)$
- How important are relativistic effects?

red: special-relativistic black: Newtonian
V.II "Shock tests"
- Test 3: mildly relativistic shock tube
- left: $(P, N, v)=(40 / 3,10,0)$; right: $(P, N, v)=\left(10^{-6}, 1,0\right)$
- How important are relativistic effects?

V.II "Shock tests"
- Test 3: mildly relativistic shock tube
- left: $(P, N, v)=(40 / 3,10,0)$; right: $(P, N, v)=\left(10^{-6}, 1,0\right)$
- How important are relativistic effects?

V.II "Shock tests"
- Test 3: mildly relativistic shock tube
- left: $(P, N, v)=(40 / 3,10,0)$; right: $(P, N, v)=\left(10^{-6}, 1,0\right)$
- How important are relativistic effects?

- numerical result:

- numerical result:

- for comparison:
- numerical result:

Laguna et al. (1993)

Siegler \& Riffert (2000)

- Test 4: strong relativistic blast
- left: $(P, N, v)=(1000,1,0)$; right: $(P, N, v)=(0.01,1,0)$
- numerical result:
- Test 4: strong relativistic blast
- left: $(P, N, v)=(1000,1,0)$; right: $(P, N, v)=(0.01,1,0)$
- numerical result:

- Test 5: sinusoidally perturbed shock tube (Dolezal \& Wong 1995)
- left: $(P, N, v)=(50,5,0)$; right: $(P, N, v)=(5,2+0.3 \sin (50 x), 0)$
- challenge: transport smooth structure across shock
- numerical result:
- Test 5: sinusoidally perturbed shock tube (Dolezal \& Wong 1995)
- left: $(P, N, v)=(50,5,0)$; right: $(P, N, v)=(5,2+0.3 \sin (50 x), 0)$
- challenge: transport smooth structure across shock
- numerical result:

- Test 6: ultra-relativistic wall shock test
- reflecting boundary ("wall") at $x=1$
- cold gas streams towards wall with $\mathrm{v}=0.9999999998$, i.e. $\gamma=50000$!
- numerical result:
- Test 6: ultra-relativistic wall shock test
- reflecting boundary ("wall") at $x=1$
- cold gas streams towards wall with $v=0.9999999998$, i.e. $\gamma=50000$!
- numerical result:

- Test 6: ultra-relativistic wall shock test
- reflecting boundary ("wall") at $x=1$
- cold gas streams towards wall with $v=0.9999999998$, i.e. $\gamma=50000$!
- numerical result:

- Test 7: evolution of relativistic simple wave
- rel. simple wave: spatial and temporal constancy of 2 of 3 Riemann invariants
- here: specific entropy $+J_{-} ; J_{ \pm}=\ln (\gamma+U) \pm \int \frac{c_{\mathrm{s}}}{\rho} d \rho$
- challenging test, no analytical solution, comparison with Anile et al. (1983)
- numerical results:
- Test 7: evolution of relativistic simple wave
- rel. simple wave: spatial and temporal constancy of 2 of 3 Riemann invariants
- here: specific entropy $+J_{-} ; J_{ \pm}=\ln (\gamma+U) \pm \int \frac{c_{\mathrm{s}}}{\rho} d \rho$
- challenging test, no analytical solution, comparison with Anile et al. (1983)
- numerical results:

- Test 7: evolution of relativistic simple wave
- rel. simple wave: spatial and temporal constancy of 2 of 3 Riemann invariants
- here: specific entropy $+J_{-} ; J_{ \pm}=\ln (\gamma+U) \pm \int \frac{c_{\mathrm{s}}}{\rho} d \rho$
- challenging test, no analytical solution, comparison with Anile et al. (1983)
- numerical results:

close agreement with Anile et al. (1983)
from Anile, Miller, Motta, Physics of Fluids, 26, 1450, 1983

from Anile, Miller, Motta, Physics of Fluids, 26, 1450, 1983

(a) 1.0

(d) $\mathrm{i}, 2.90$
(d). 2.00

(o) 1.7 .60
(0) $1: 7.60$
(c) $i=2.09$

VI. Outlook to general relativity
VI. Outlook to general relativity
- General-relativistic Lagrangian $\quad L_{r, t, g n}=-\int T^{w_{\mu} U_{\Delta} U_{\nu}=g d V}$
VI. Outlook to general relativity
- General-relativistic Lagrangian

$$
L_{\mathrm{p}, \mathrm{GR}}=-\int T^{\mu \mu} U_{\mu} U_{\nu} \sqrt{-g} d V,
$$

- apply similar strategy:

VI. Outlook to general relativity

- General-relativistic Lagrangian

$$
L_{\mathrm{pf}, \mathrm{GR}}=-\int T^{\mu \nu} U_{\mu} U_{\nu} \sqrt{-g} d V
$$

Summary of the general-relativistic SPH equations on a fixed background metric

- apply similar strategy:

Ignoring derivatives from the smoothing lengths, the momentum equation reads

$$
\frac{d S_{i, a}}{d t}=-\sum_{b} \nu_{b}\left(\frac{\sqrt{-g}_{a} P_{a}}{N_{a}^{* 2}}+\frac{\sqrt{-g}_{b} P_{b}}{N_{b}^{* 2}}\right) \frac{\partial W_{a b}}{\partial x_{a}^{i}}+\frac{\sqrt{-g}_{a}}{2 N_{a}^{*}}\left(T^{\mu \nu} \frac{\partial g_{\mu \nu}}{\partial x^{i}}\right)_{a}(226)
$$

where

$$
S_{i, a}=\Theta_{a}\left(1+u_{a}+\frac{P_{a}}{n_{a}}\right)\left(g_{i \mu} v^{\mu}\right)_{a}
$$

is the canonical momentum per baryon and

$$
\Theta_{a}=\left(-g_{\mu \nu} v^{\mu} v^{\nu}\right)_{a}^{-\frac{1}{2}}
$$

the generalized Lorentz factor. The energy equation reads

$$
\frac{d \hat{\epsilon}_{a}}{d t}=-\sum_{b} \nu_{b}\left(\frac{\sqrt{-g}_{a} P_{a}}{N_{a}^{* 2}} \vec{v}_{b}+\frac{\sqrt{-g}_{b} P_{b}}{N_{b}^{* 2}} \vec{v}_{a}\right) \cdot \nabla_{a} W_{a b}-\frac{\sqrt{-g}_{a}}{2 N_{a}^{*}}\left(T^{\mu \nu} \frac{\partial g_{\mu \nu}}{\partial t}\right)_{a}
$$

where

$$
\begin{equation*}
\hat{\epsilon}_{a}=S_{i, a} v_{a}^{i}+\frac{1+u_{a}}{\Theta_{a}} \tag{230}
\end{equation*}
$$

is the canonical energy per nucleon. The number density can again be calculated via summation,

$$
\begin{equation*}
N_{a}^{*}=\sum_{b} \nu_{b} W_{a b}\left(h_{a}\right) \tag{231}
\end{equation*}
$$

VI. Summary

- new formulation of special-relativistic SPH
- features:
- derived Lagrangian of perfect fluid + first law of thermodynamics
- no ambiguity in symmetrization
- artificial viscosity motivated by Riemann solvers, time-dependent parameters
- convincing performance in both advection and strong, relativistic shocks

I. Where is special-relativistic Hydrodynamics used?

- Heavy ion collisions:

Lorentz factors up to
$\gamma=\sqrt{\frac{1}{1-v / c}} \sim 30$
i.e.
$v \approx 0.9994 c$

- Astrophysics:
- Jets from Active Galactic Nuclei
- Astrophysics:
- Jets from Active Galactic Nuclei

- Astrophysics:
- Jets from Active Galactic Nuclei

Black hole at the centre
of a galaxy

- Astrophysics:
- Jets from Active Galactic Nuclei

- Astrophysics:
- Jets from Active Galactic Nuclei

Lorentz factors up to $\gamma \sim 20$ i.e.
$v \approx 0.99875$
relativistic outflows, "jets"

- "Gamma-ray burst":
relativistic outflow from a dying, massive star
- "Gamma-ray burst":
relativistic outflow from a dying, massive star
(artist's view)

- "Gamma-ray burst":
relativistic outflow from a dying, massive star
(artist's view)

black hole formation inside a dying star
- "Gamma-ray burst":
relativistic outflow from a dying, massive star
(artist's view)

black hole formation inside a dying star jetted, relativistic outflow
- "Gamma-ray burst":
relativistic outflow from a dying, massive star

Energy- momentum tensor $T^{\mu v}$

Energy- momentum tensor $T^{\mu v}$

- describes density and flux of energy and momentum in spacetime:
$T^{\mu \nu}=$ "flux of 4-momentum component μ
across surface with constant v-coordinate"

Energy- momentum tensor $T^{\mu v}$

- describes density and flux of energy and momentum in spacetime:
$T^{\mu \nu}=$ "flux of 4-momentum component μ
across surface with constant v-coordinate"

Energy- momentum tensor $T^{\mu v}$

- describes density and flux of energy and momentum in spacetime:

$$
T^{\mu \nu}=\text { "flux of 4-momentum component } \mu
$$

across surface with constant v-coordinate"

- for an ideal fluid:

Energy- momentum tensor $T^{\mu v}$

- describes density and flux of energy and momentum in spacetime:

$$
T^{\mu \nu}=\text { "flux of 4-momentum component } \mu
$$

across surface with constant v-coordinate"

- for an ideal fluid: $T^{\mu \nu}=(\rho+P) U^{\mu} U^{\nu}+P g^{\mu \nu}$

Energy- momentum tensor $T^{\mu v}$

- describes density and flux of energy and momentum in spacetime:

$$
T^{\mu \nu}=\text { "flux of 4-momentum component } \mu
$$

across surface with constant v-coordinate"

- for an ideal fluid: $T^{\mu \nu}=(\rho+P) U^{\mu} U^{\nu}+P g^{\mu \nu}$ rest mass density in comoving frame'

Energy- momentum tensor $T^{\mu v}$

- describes density and flux of energy and momentum in spacetime:

$$
T^{\mu \nu}=\text { "flux of 4-momentum component } \mu
$$

across surface with constant v-coordinate"

for an ideal fluid: $T^{\mu \nu}=(\rho+P) U^{\mu} U^{\nu}+P g^{\mu \nu}$
rest mass density in comoving frame \quad pressure

Energy- momentum tensor $T^{\mu v}$

- describes density and flux of energy and momentum in spacetime:

$$
T^{\mu v}=\text { "flux of 4-momentum component } \mu
$$

across surface with constant v-coordinate"

for an ideal fluid: $T^{\mu \nu}=(\rho+P) U^{\mu} U^{\nu}+P g^{\mu \nu}$
rest mass density in comoving frame

Energy- momentum tensor $T^{\mu v}$

- describes density and flux of energy and momentum in spacetime:

$$
T^{\mu \nu}=\text { "flux of 4-momentum component } \mu
$$

across surface with constant v-coordinate"

- for an ideal fluid: $T^{\mu \nu}=(\rho+P) U^{\mu} U^{\nu}+P g^{\mu \nu}$
rest mass density in comoving frame

Energy- momentum tensor $T^{\mu v}$

- describes density and flux of energy and momentum in spacetime:

$$
T^{\mu v}=\text { "flux of 4-momentum component } \mu
$$

across surface with constant v-coordinate"

$\left[\begin{array}{cccc}T_{00} & T_{01} & T_{02} & T_{03} \\ T_{10} & T_{11} & T_{12} & T_{13} \\ T_{20} & T_{21} & T_{22} & T_{23} \\ T_{30} & T_{31} & T_{32} & T_{33}\end{array}\right]$-shear stress
momentum momentum density flux
metric tensor

- for an ideal fluid: $T^{\mu \nu}=(\rho+P) U^{\mu} U^{\nu}+P g^{\mu \nu}$
rest mass density in comoving frame
- "thermokinetic energy equation":

$$
\frac{d \hat{e}_{a}}{d t}=-\sum_{b} m_{b}\left(\frac{P_{a} \vec{v}_{b}}{\rho_{a}^{2}}+\frac{P_{b} \vec{v}_{a}}{\rho_{b}^{2}}\right) \cdot \nabla_{a} W_{a b} .
$$

