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Relativistic hydrodynamics

equations given by 5 conservation laws

energy −momentum : Tµν
;ν = 0

baryon number : (ρUµ);µ = 0

restriction to “ideal fluid”, i.e. no viscosity and 
conductivity

Tµν = (ρ + P )UµUν + Pgµν

rest mass density in comoving frame pressure 4-velocity Uµ =
dxµ

dτ

metric tensor
 energy-momentum tensor:
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good relativistic grid methods exist, so 
why a Lagrangian particle scheme????

want spatial adaptivity:

example: tidal disruption of a  
star by a black hole

(SPH + relativ. pseudo potential
+ nuclear reaction network; 

from Rosswog et al. 2008, 2009)

 shocks, of course ...

 but also accurate advection !

 “hard-wired” conservation of physical invariants !
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III. Conservative, special-relativistic SPH: 
consistent derivation from a Lagrangian

our approach: 

start from Lagrangian of ideal fluid

apply Euler-Lagrange equations + first law 
of thermodynamics

use canonical energy and momentum as 
guidance for numerical variables

use modern form of artificial viscosity



III.1 Lagrangian of an ideal, relativistic fluid

Lagrangian perfect fluid:

from now on: measure energies in moc2 (baryon rest 
mass energy)

choose frame in which computations are performed 
(“Computing Frame”, CF)

relation between number densities:

Lpf,sr = −
∫

TµνUµUν dV
(Fock 1964)



III.1 Lagrangian of an ideal, relativistic fluid

Lagrangian perfect fluid:

from now on: measure energies in moc2 (baryon rest 
mass energy)

choose frame in which computations are performed 
(“Computing Frame”, CF)

relation between number densities:

Lpf,sr = −
∫

TµνUµUν dV
(Fock 1964)

computing frame
local fluid rest frame

!r
!v



III.1 Lagrangian of an ideal, relativistic fluid

Lagrangian perfect fluid:

from now on: measure energies in moc2 (baryon rest 
mass energy)

choose frame in which computations are performed 
(“Computing Frame”, CF)

relation between number densities:

Lpf,sr = −
∫

TµνUµUν dV
(Fock 1964)

computing frame
local fluid rest frame

!r
!vN = γnn



III.1 Lagrangian of an ideal, relativistic fluid

Lagrangian perfect fluid:

from now on: measure energies in moc2 (baryon rest 
mass energy)

choose frame in which computations are performed 
(“Computing Frame”, CF)

relation between number densities:

Lpf,sr = −
∫

TµνUµUν dV
(Fock 1964)

computing frame
local fluid rest frame

!r
!v

Number density in CF

N = γnn



III.1 Lagrangian of an ideal, relativistic fluid

Lagrangian perfect fluid:

from now on: measure energies in moc2 (baryon rest 
mass energy)

choose frame in which computations are performed 
(“Computing Frame”, CF)

relation between number densities:

Lpf,sr = −
∫

TµνUµUν dV
(Fock 1964)

computing frame
local fluid rest frame

!r
!v

Number density in CF number density in local rest frame

N = γnn



III.1 Lagrangian of an ideal, relativistic fluid

Lagrangian perfect fluid:

from now on: measure energies in moc2 (baryon rest 
mass energy)

choose frame in which computations are performed 
(“Computing Frame”, CF)

relation between number densities:

Lpf,sr = −
∫

TµνUµUν dV
(Fock 1964)

computing frame
local fluid rest frame

!r
!v

Number density in CF number density in local rest frame

Lorentz factor

N = γnn
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 volume element:

 subdivide computing volume in CF such that           
  each element b contains νb baryons, or, 
  conversely: ∆Vb =

νb

Nb

 SPH-discretization: f(!r) =
∑

b

fb
νb

Nb
W (|!r − !rb|, h)

quantity f at particle b baryon number of particle b CF number density smoothing kernel

 comparison to “standard SPH”:

f(!r) =
∑

b

fb
mb

ρb
W (|!r − !rb|, h)
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the discretization applied to Lagrangian:

LSPH,sr = −
∑

b

νb

γb
[1 + u(nb, sb)]

specific energy number density specific entropy

measured in local rest frame!

 further strategy:
i) apply Euler-Lagrange equations

d

dt

∂LSPH,sr

∂"va
− ∂LSPH,sr

∂"va
= 0

iii) canonical energy and momentum
    per baryon as numerical variables

ii)  use first law of thermodynamics
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canonical momentum: !pa ≡ ∂LSPH,sr

∂!va
= ...

= νaγa!va

(
1 + ua +

Pa

na

)

E ≡
∑

a

∂LSPH,sr

∂"va
· "va − LSPH,sr = ...

=
∑

a

νa

(
"va · "Sa +

1 + ua

γa

)
canonical energy:

 introduce !Sa ≡ γa!va

(
1 + ua +

Pa

na

)

introduce ε̂a ≡ "va · "Sa +
1 + ua

γa



resulting SPH equation set:

baryon number: 

hb = ηN−1/D
b

Nb =
∑

k

νkW (|"rb − "rk|, hb)} iteration!

momentum: d!Sa

dt
= −

∑

b

νb

(
Pa

N2
a Ω̃a

∇aWab(ha) +
Pb

N2
b Ω̃b

∇aWab(hb)

)
,

!Sa ≡ γa!va

(
1 + ua +

Pa

na

)
can. momentum per baryon

energy: dεa

dt
= −

∑

b

νb

(
Pa#vb

N2
a Ω̃a

·∇aWab(ha) +
Pb#va

N2
b Ω̃b

·∇aWab(hb)

)

εa ≡ γa

(
1 + ua +

Pa

na

)
− Pa

Na
= #va · #Sa +

1 + ua

γa

can. energy per baryon
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comments:

 equations include “corrective terms” from derivatives
  of kernels with resp. to smoothing length h:

Ω̃b ≡ 1− ∂hb

∂Nb

∑

k

∂Wbk(hb)
∂hb

 like in relativistic grid-based methods: conversion 
  between “numerical” and “physical variables” required
  at each time step

relativistic “grad-h-terms”
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use extreme, local eigenvalues of Euler equations for 
signal velocity:

vsig,ab = max(αa, αb)

λ±k =
vk ± cs,k

1± vkcs,k

α±k = max(0,±λ±k )with

 control dissipation: make parameter K time-dependent:

dKk

dt
= Sk −

Kk(t)−Kmin

τk

dissipation parameter of particle k

source term
decay time scale

minimum value

dissipation only where needed!
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V. A slew of benchmark tests

“set up a situation where a geometrical shape (in 
density) should just be advected with the fluid. Test 
on which time scale unwanted effects deteriorate the 
numerical solution”

V.I “Advection tests”

 set up density sine 
   wave in periodic box,  
   so that pressure is
   the same everywhere

 give pattern a boost 
   with v= 0.997 (γ=12.92)
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N

after 100 intervall crossings

initial condition

500 particles

 Test 1: Advection of sine wave
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   with v= 0.997 (γ=12.92)
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“wall” modeled by 
“ghost particles”
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with Anile et al. (1983)
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rel. simple wave: spatial and temporal constancy of 2 
of 3 Riemann invariants

here: specific entropy + J-;  

challenging test, no analytical solution, comparison 
with Anile et al. (1983)

numerical results: 

 Test 7: evolution of relativistic simple wave

J± = ln(γ + U)±
∫

cs

ρ
dρ

close agreement with Anile et al. (1983)
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Fig. 9. SPH solution of the relativistic shock tube test of [224] (shown are 3000
particles; upper left: velocity in units of c, upper right: thermal energy, lower left:
pressure, lower right: (computing frame) number density N). The black circles show
the SPH solution, the red line marks the exact solution [226].

the tidal disruption of a star by a supermassive black hole in the center of a
galaxy. Again, we start from the discretized Lagrangian of an ideal fluid and
use the canonical momentum/energy as a guide for the choice of the numerical
variables. As a matter of course, this new set of equations should reduce in
the flat-space limit to the special-relativistic equations, see Eq. (173) - (178),
which, in their low-velocity limit, should be equivalent to the non-relativistic,
standard SPH equations.

4.2.2 The Lagrangian

We start from the general-relativistic Lagrangian of a perfect fluid [222]

Lpf,GR = −
∫

T µνUµUν

√
−g dV, (180)

where
√
−g dV is the proper volume element and g = det(gµν) is the deter-

minant of the metric tensor, gµν . As before, the energy momentum tensor is

54

 General-relativistic Lagrangian
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 General-relativistic Lagrangian

 apply similar strategy:
Summary of the general-relativistic SPH
equations on a fixed background metric

Ignoring derivatives from the smoothing lengths, the momentum equation
reads

dSi,a

dt
= −

∑

b

νb

(√
−gaPa

N∗2
a

+

√
−gbPb

N∗2
b

)
∂Wab

∂xi
a

+

√
−ga

2N∗
a

(

T µν ∂gµν

∂xi

)

a

(226)

where

Si,a = Θa

(
1 + ua +

Pa

na

)
(giµv

µ)a (227)

is the canonical momentum per baryon and

Θa = (−gµνv
µvν)−

1
2

a (228)

the generalized Lorentz factor. The energy equation reads

dε̂a

dt
= −

∑

b

νb

(√
−gaPa

N∗2
a

$vb +

√
−gbPb

N∗2
b

$va

)

·∇aWab −
√
−ga

2N∗
a

(

T µν ∂gµν

∂t

)

a

,(229)

where

ε̂a = Si,av
i
a +

1 + ua

Θa
(230)

is the canonical energy per nucleon. The number density can again be calcu-
lated via summation,

N∗
a =

∑

b

νbWab(ha). (231)

5 Summary

Since the Smooth Particle Hydrodynamics method was suggested in the late
seventies it has undergone a long sequence of technical improvements. In par-
allel, the method has been applied to a large variety of problems both inside
and outside astrophysics, and consequently a slew of different physical pro-
cesses has been included in SPH-based simulations.
In this review we have only very briefly touched upon this latter development,
we merely provided pointers to the current literature. Instead we have focused
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VI. Summary

new formulation of special-relativistic SPH

features:

derived Lagrangian of perfect fluid + first law of 
thermodynamics

no ambiguity in symmetrization

artificial viscosity motivated by Riemann solvers, 
time-dependent parameters

convincing performance in both advection and 
strong, relativistic shocks



I. Where is special-relativistic 
Hydrodynamics used?

Heavy ion collisions:

Lorentz factors up to

i.e. 

v ≈ 0.9994 c

γ =

√
1

1− v/c
∼ 30
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Astrophysics:

Jets from Active Galactic Nuclei

Black hole at the centre 
of a galaxy

relativistic outflows, “jets”

Lorentz factors 
up to

i.e.
v ≈ 0.99875

γ ∼ 20
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“Gamma-ray burst”: 

relativistic outflow from a dying, massive star

(artist’s view)

black hole formation 
inside a dying star

jetted, relativistic 
outflow

typical Lorentz factors

i.e.

v ≈ 0.99999444

γ ∼ 300
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Energy- momentum tensor Tµν

describes density and flux of energy and momentum 
in spacetime:

Tμν = “flux of 4-momentum component μ    

        across surface with constant ν-coordinate”

Tµν = (ρ + P )UµUν + Pgµν

rest mass density in comoving frame pressure 4-velocity Uµ =
dxµ

dτ

metric tensor

for an ideal fluid:

pressure



“thermokinetic energy equation”:

dêa

dt
= −

∑

b

mb

(
Pa!vb

ρ2
a

+
Pb!va

ρ2
b

)
·∇aWab.


