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Punchline

Ihis 1s a problem worth attacking

Indeeq, 1t that shows all its worth by
attacking back...
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Plan of the ta

What we believe Is robust in the inspiral-merger of:
equal-mass, unmagnetized BNSs
unequal-mass, unmagnetized BNSs
equal-mass, magnetized BNSs

What we believe Is problematic in the:
postmerger physics and nUMerics

What Is In our future workplan in terms of:
improved microphysics and numerics




Our strengths:

e High-order (up to 8th) finite-difference techniques for the field equations.

e Flux conservative form of HD and MHD equations with constraint transport
or hyperbolic divergence-cleaning for the magnetic field; HRSC methods

e Multiple options for the wave extraction (VWeyl scalars, gauge-invariant pertbs)

* AMR with moving grids

e Accurate measurements of BH properties through apparent horizons (IH)

* Use excision (matter and/or fields) If needed; good gauges do most of the work

Our weaknesses:

e |dea
* Sing

* |dea

zed (analytic) EOSs (realistic EOSs are implemented but not yet used)
e-fluid description: no superfluids nor crusts

-MHD: no resistive effects included (work in progress)

* Only inviscid fluid so far (not necessarily bad approximation)

e Radiation and neutrino transport totally neglected (work in progress)

e Match with astrophysical observations inexistent.

* Very coarse resolution; far from regimes where turbulence/dynamos develop



Unmagnetized equal-mass
DInaries

Balottl, Glacomazzo, Rezzolla, PRD, 2008

Time=6.250 ms

sity (1e14 g/cm3)




Cold vs Hot EOSs

Simplest example of a “cold” EOS is the polytropic EOS.
This isentropic: Internal energy (temperature) Iincreases/
decreases only by mechanical work (compression/expansion)
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Simplest example of a “hot> EOS is the ideal-fluid EOS. This
non-isentropic In presence of shocks: internal energy (i.e.
temperature) can increase via shock heating.
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Although analytic, a “hot” EOS s closer much closer to reality
but a “cold” EOS Is better surted for the inspiral.
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Matter dynamics
high-mass binary
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Waveforms: polytropic EOS
high-mass binary
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As In CCSNe, we know what to expect:
‘merger wmlpy HNNS w—tp-BH + torus”

this behaviour Is general but only qualitatively

Quantitative differences are produced by:

- differences in the mass for the same EOS:
a binary with smaller mass will produce a HMNS which is
further away from the stability threshold and will collapse at a
ater time

- differences in the EOS for the same mass:
a binary with an EOS allowing for a larger thermal internal energy
(e hotter after merger) will have an increased pressure support
and will collapse at a later time



Animations: Kaehler, Giacomazzo, Rezzolla
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Matter dynamics

high-mass binary low-mass binary
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VWaveforms: polytrop
high-mass binary
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first time the full signal from the  development of a bar-deformed
formation to a bh has been computed NS leads to a long gw signal
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Waveforms: ideal-fluid EOS
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the high internal energy (temperature) of ~ the HMNS evolves on longer
the HMNS prevents a prompt collapse (radiation-reaction) timescale



Imprint of the EOS: Ideal-fluid vs polytropic
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-0GWs will work as Rosetta stone to decipher the NS interior
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After the merger a BH Is produced
over a timescale larger or much
larger than the dynamical one

After the merger a BH Is produced
over a timescale comparable with the

dynamical one



Unmagnetized unequal-mass
pinaries

Link, Rezzolla, Baiottl, Giacomazzo, to be submitted, 2009




lorus properties: unequal-masses

VWe have considered the inspiral and merger of / irrotational
binaries with variable total mass and mass ratio (see table)

Model Mtotal q 5 Vorbit Pmax Mtorus
(Mo) (gem?/s) | (Hz) | (g/em?) | (Mo)

M3.4q0.70 | 3.371 | 0.70 | 7.98 x 10*Y | 298.47 | 1.28 x 10'> | 0.132
M3.4q0.80 | 3.375 | 0.80 | 8.36 x 10*° | 303.62 | 9.21 x 10'* | 0.120
M3.490.91 | 3.404 | 0.91 | 8.33 x 10*° | 299.06 | 7.58 x 10'* | 0.079
M3.5q0.75 | 3.464 | 0.75 | 8.40 x 10*° | 300.84 | 1.27 x 10'®> | 0.097
M3.790.94 | 3.680 | 0.94 | 9.37 x 10*° | 306.56 | 9.75 x 10'* | 0.006
M3.6q1.00 | 3.558 55558925 1045303321 7 585 1025 0:001
M3.8q1.00 | 3.802 1 | 9.85x10% | 309.70 | 9.74 x 10'* | 0.001

A lot to say about t
summarizes most o

ne torus properties but a movie
- them




Animations: Koppitz, Link, Rezzolla
0 0.00 16.26

time [ms)

Total mass : 3.7 M; mass ratio :0.94;

the torii are generically more massive
the tori are generically more extended
the torii tend to a stable quasi-Keplerian configuration
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lorus properties: size

spacetime diagram of rest-mass density along x-direction

M3.6q1.00 Ln¢ M3.4g0.80 Ln¢

equal mass binary: note unequal mass binary: note
the periodic accretion and the continuous accretion
the compact size; densities and the very large size and

are not very high densities (temperatures)



lorus properties: unegual-masses

spacetime diagram of specific angular mom.: ¢ = ug/uy

M3.6q1.00 c10% ! M3.4q0.80

equal mass binary: specific ~ unequal mass binary: specific
angular momentum Is angular momentum Is

larger at the Inner edge smaller at iInner edge and
and decreases outwards INncreases outwards



lorus properties: unegual-masses

Model Mtotal q Mtorus
(Mo) (Mo)

M3.4q0.70 | 3.371 | 0.70 | 0.132
M3.4q0.80 | 3.375 | 0.80 | 0.120
M3.4q0.91 | 3.404 | 0.91 | 0.079
M3.5q0.75 | 3.464 | 0.75 | 0.097
M3.7q0.94 | 3.680 | 0.94 | 0.006
M3.6q1.00 | 3.558 | 1 | 0.001
M3.8q1.00 | 3.802 | 1 | 0.001

The torus mass
decreases with the
mass ratio and with
the total mass; at
lowest order:

Y forbidden &
region

Mtorus(qf Mtot) = (1-16 = 0)(Mmax = Mtot)

where Mpyax 1S the maximum (baryonic) mass of the binary



Unmagnetized unequal-mass
pinaries

(Glacomazzo, Rezzolla, Baiottl, MNRAS Lett. 2009




-xtending the work to MHD

We have considered the same models also when an inrtially
poloidal magnetic field of ~10'2 or ~10'/ G is introduced

The magnetic field 1s added by hand using the vector potential:
A= Abrz[max(P — Py, 0)"

where Ay and P.; = 0.04 x max(P) are two constants defining
respectively the strength and the extension of the magnetic field
inside the star. n=2 defines the profile of the initial magnetic field.

The inrtial magnetic fields are therefore fully contained inside the
stars: Ie no magnetospheric effects.
Simulated 8 binaries (low/high mass) with MFs:

B=0=10= 16 06



Waveforms: comparing against magnetic fields

Comparing against
magnetic field strengths
the differences are
much more evident:
*the post-merger
evolution Is different
for all masses (and
essentially also for all
MFs); strong MF delay
the collapse to BH
*the evolution In the
inspiral Is also different
for such large MFs

This confirms Anderson
et al (2008). Is this true
also for smaller MFs?
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Understanding the dependence on M

To quantify the differences and determine whether detectors
will see a difference in the inspiral, we calculate the overlap

0.8

0.8

0.6

e M

0.999

0.998

5

10

15

M1.45

1 ! | | | l ! | | | I ! | | | l

L

0

5

10
log(B+1) (G)

15

Olh

B1Y B2] —

(g, [ g, )

VAN

where the scalar product Is
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In essence, at these res:

Olh

B0O?

h.] > 0.999

for=B:<-10:=@

Because the match Is even
nigher for lower masses, the

influence of MFs on the inspiral
s unlikely to be detected!



Nonlinear hydrodynamics at work

Quite clearly, the two stars do not merge with a
frontal (head-on) collision.

Rather; during the merger a shear interface forms
across which the velocities are discontinuous.

TR leads o the s iermatior=ol  Vortices and ef=a
Kelvin-Helmoltz Instability and a possible turbulent
motion.

The Instability can be guite important if the stars are
mMagnetized



KH Instability in the high-mass binary

Note the development of vortices in the VIQ'”e evidenlt | in terms of .the
shear boundary layer produced at the Weighted vorticity In these regions

time of the merger one expects (and sees) large
amplifications of the magnetic field.
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Magnetic field evolution

After merger the MF
s amplified of one
order of magnitude.
The newly produced
MF field 1s mostly
toroidal and s clearly
correlated with the
Increase In vorticity
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Animations: Koppitz, Giacomazzo, Rezzolla
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Note that the torus is much less dense and a large
plasma outflow is starting to be launched. The
evolution has been stopped because of excessive

div-B violations

Typical evolution for a magnetized binary

Ideal — fluid, M = 1.65\M, B = 10** G

9 15 11 16.5

log(rho)[g/ cm3] log(B) [Gauss]



Difficulties requiring extra care!
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Postmerger complications
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Indeed they are second order
convergent: the coeft. of the O(h)
is always smaller than O(h?)



Postmerger nightmares..

igh-mass: 1.6 Msun,
ideal-fluid EOS




Postmerger nightmares..
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The inspiral seems identical but the
postmerger evolution can be rather different.
The delay time increases with resolution?...



Postmerger nightmares..
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The inspiral seems identical but the
postmerger evolution can be rather different.
The delay time increases with resolution?...



Postmerger nightmares..
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The inspiral seems identical but the
postmerger evolution can be rather different.
The delay time increases with resolution?...
Only to decrease at very high res!
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The inspiral seems identical but the
postmerger evolution can be rather different.
The delay time increases with resolution?...

Only to decrease at very high res!
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Postmerger nightmares..
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Of course the same Is true also
when looking at the GWs..
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Postmerger nightmares..
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The inspiral Is really identical as it Is the
first few postmerger oscillations.

Is this a signature that turbulence is
responsible for the different behaviour?



Postmerger nightmares..
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The inspiral I1s really identical as it 1s the  If this behaviour is generic, it needs to
first few postmerger oscillations. be fully understood before going to

s this a signature that turbulence is finer details on the microphysics...
responsible for the different behaviour?



Why high-order methods are needed..

Top panel: results obtained
using HLLE Riemann solver

and a “minmod”
reconstruction (2nd-order)

Bottom results obtained
using HLLE Riemann solver

and PPM reconstruction
(3rd-order).

Differences are present
both during the inspiral
and after the merger

The need for high-order
methods and high
resolution is essential




Conclusions |

* Huge progress has been made in the simulation of compact
binaries over the last 4 years (more of this in Shibata, Duez,
Nellsen'’s talks).

*With idealized EOSs we have a complete “picture” of BNSs:
inspiral, merger, collapse to BH.We can draw this “picture” with
and without magnetic fields, for equal and uneqgual-mass binaries.

X Astrophysical magnetic fields are unlikely to be strong enough
to be detected during the inspiral. However, they will play a role
after the merger when amplified by dynamos or instabilities

X The dynamics of the postmerger torus is strongly influenced
by the presence of magnetic fields and may lead to the launching
of a Jet. Better handling div-B Is necessary for robust modelling



Conclusions |

* While the modelling of the inspiral is robust and without
major surprises, the postmerger phase Is less robust.

* The physics of the merged object is extremely complex and
delicate; the degradation of the convergence order doesn't help.

X It I1s possible that realistic EOSs or higher resolutions will
remove these difficulties and work Is In progress to assess this.

X It is also possible that new techniques (eg large-eddy approx.)
will be needed; precise timing in GW physics Is essential

* Much remains to be done to model realistically BNSs, both
from a microphysical point of view (EQOS, neutrino emission, etc)

and a from a macrophysical one (large scale instabilities, etc.).
More-enzthis in- MieraZ1:5.;



