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Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (ecore � eenv), but
of energy transfer.

I Spherical neutrino-driven
explosion

I neutrino heating aided by
hydrodynamic instabilities

I Energy transfer by
(accoustic) waves

I rotation
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I Spherical neutrino-driven
explosion

I neutrino heating aided by
hydrodynamic instabilities

I Energy transfer by
(accoustic) waves

I rotation

Rotation
I tap into erot by magnetic fields

(Thompson et al., 2004)
I successful?
I realistic?

I rapid rotation: only certain stars
I |~b| sufficiently strong?

→ MRI? (Akiyama et al., 2003)
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Field amplification in supernovae

Why magnetic fields?
I pulsar fields, magnetars
I asymmetric explosions:

caused by large-scale fields?
I additional energy reservoir:

rotation

But...
I strong (equipartition) fields

needed for dznmical effects
I typical pre-collapse fields are

too weak
⇒ I special class of progenitors

I strong amplification

field amplification mechanisms
I compression: gravitational infall⇒ magnetic energy
I winding: differential rotation⇒ magnetic energy
I hydromagnetic instabilities: differential rotation,

entropy/composion gradients⇒ magnetic energy
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Magneto-rotational explosions

I effective viscosity due to
small-scale MHD turbulence

I angular-momentum transport
→ loss of rotational equilibrium
I large-scale fields→ bipolar

explosions, jets collimated by
magnetic hoop stress

I potentially only important on
long time scales
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General properties of the MRI

I local linear MHD instability of differentially rotating fluids
I weak initial magnetic field required
I run-away of angular-momentum transport along field lines
I instability criterion: negative Ω gradient
I growth time ∼ rotational period
I leads to MHD turbulence and efficient transport
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Open Questions

Accretion discs
I Keplerian shear
⇒ Rayleigh-stable, MRI-unstable
I rapid growth
I MHD turbulence may provide

viscosity required for accretion
I well-studied system, yet still

many open questions

study the MRI in supernovae
I theoretical analysis of the instability criteria
I simulations of MRI-unstable systems
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Supernovae
I differential rotation, thermal

stratification
⇒ possibly: hydrodynamically

unstable + MRI unstable
I growth: fast enough?
I saturation: strong enough?
I starting to receive interest

study the MRI in supernovae
I theoretical analysis of the instability criteria
I simulations of MRI-unstable systems
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Instability analysis

local linear WKB analysis (Balbus, 1995; Urpin, 1996)
I hydrodynamic background model in equilibrium with

I differential rotation, Ω ∝ $−|αΩ|

I entropy gradient, S = S0 + ∂$S$

I add a weak magnetic field and linearise (incompressible) MHD
equations

I examine the dispersion relation of MHD waves
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The dispersion relation of MRI modes

normalised growth rate
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Regimes of the axisymmetric MRI

convective
similar to
hydrodynamic
convection
(Schwarzschild
or Ledoux)

mixed interplay
of many
effects

magneto-bouyant
convection stabilised by
rotation, but destabilised
by the magnetic field
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Physics and numerics

Simplified physics
I Full ideal MHD (rather

than shearing box)
I simplified equation of state
I external gravity
I no neutrino transport

Code
I Eulerian, conservative
I high-order reconstruction

(MP or WENO)
I MUSTA Riemann solver

(Titarev & Toro, 2005)
I constraint transport

Models
I gas in hydrostatic equilibrium; uniform field or vanishing net flux
I axisymmetric and 3d simulations
I small (few kilometres) boxes resembling the equatorial region
I resolution between 0.625 and 40 metres
I shearing-disc boundary conditions (Klahr & Bodenheimer, 2003)
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Dynamics

temporal evolution of the
magnetic energy
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I confirm all (relevant) regimes
of the linear analysis

I (de-)stabilisation by interplay
of Ω and S gradients

I growth rates in agreement
with linear analysis, i.e., a few
milliseconds for rapidly
rotating cores

I maximum field strength
& 1015 G
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  t = 12.123 ms

I early phase: exponential growth
of channel flows

I termination of growth and
breakup of channels
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Scaling of the termination level

Termination (6= saturation)

the Maxwell stress reached at
the end of the growth of the MRI
depends on (among other
factors)

I the grid resolution:
finer grid⇒ higher M$φ

I the initial field:
stronger b0 ⇒ higher M$φ

I the rotational profile:
slower⇒ higher M$φ 10 100
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Scaling of the termination level

I MRI growth terminates when
channel flows are disrupted by
resistive instabilities.

I Channels are generically
unstable against secondary
instabilities, here tearing
modes (Goodman & Xu,
1994).

I MRI terminates approximately
when the resistive instabilities
grow faster than the MRI.
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Scaling of the termination level
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scaling laws for MRI termination

competing growth of MRI modes and parasites allows for an
explanation
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Saturation: turbulence and coherent flows

I Saturation: turbulent state
I efficient transport of angular

momentum
I coherent flow and field

patterns can be identified
I stable over several rotational

periods
I example: average value of the

toroidal field on slices
z = const. as a function of
time (cf. Lesur & Ogilvie, 2008)
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Summary

Preliminay answers
I analysis of the dispersion

relation: MRI can be relevant
I high-resolution simulations

agree with linear regime
I turbulence and enhanced

transport in saturation

Open issues
I influence of global geometry

and progenitor structure
I interplay with additional

physics
I physics of saturation
I formulation of a model for use

in lower-resolution simulations

Conclusion
It may not be safe to neglect the MRI a priori, but we are far from
detailed modelling to include it properly.
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