Simulations of the magneto-rotational instability in core-collapse supernovae

Martin Obergaulinger, Pablo Cerdá-Durán, Ewald Müller, Miguel Angel Aloy Torás

Max-Planck-Institut für Astrophysik, Universitat de Valéncia

MICRA 2009, Købnhavn, August 23th – August 28th, 2009

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

MRI simulations

Summary

Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy ($e_{core} \gg e_{env}$), but of energy transfer.

- Spherical neutrino-driven explosion
- neutrino heating aided by hydrodynamic instabilities
- Energy transfer by (accoustic) waves
- rotation

・ロット (雪) (日) (日)

MRI simulations

Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy ($e_{\rm core} \gg e_{\rm env}$), but of energy transfer.

- Spherical neutrino-driven explosion
- neutrino heating aided by hydrodynamic instabilities
- Energy transfer by (accoustic) waves
- rotation

Rotation

- tap into e_{rot} by magnetic fields (Thompson et al., 2004)
- successful?
- realistic?
 - rapid rotation: only certain stars

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

- $|\vec{b}|$ sufficiently strong?
- \rightarrow MRI? (Akiyama et al., 2003)

Field amplification in supernovae

Why magnetic fields?

- pulsar fields, magnetars
- asymmetric explosions: caused by large-scale fields?
- additional energy reservoir: rotation

But...

- strong (equipartition) fields needed for dznmical effects
- typical pre-collapse fields are too weak
- special class of progenitors

・ロット (雪) (日) (日)

strong amplification

field amplification mechanisms

- compression: gravitational infall \Rightarrow magnetic energy
- ▶ winding: differential rotation ⇒ magnetic energy
- ► hydromagnetic instabilities: differential rotation, entropy/composion gradients ⇒ magnetic energy

Field amplification in supernovae

Why magnetic fields?

- pulsar fields, magnetars
- asymmetric explosions: caused by large-scale fields?
- additional energy reservoir: rotation

But...

- strong (equipartition) fields needed for dznmical effects
- typical pre-collapse fields are too weak
- \Rightarrow > special class of progenitors

・ コ ト ・ 雪 ト ・ 目 ト ・

strong amplification

field amplification mechanisms

- compression: gravitational infall \Rightarrow magnetic energy
- ▶ winding: differential rotation ⇒ magnetic energy
- ► hydromagnetic instabilities: differential rotation, entropy/composion gradients ⇒ magnetic energy

Field amplification in supernovae

Why magnetic fields?

- pulsar fields, magnetars
- asymmetric explosions: caused by large-scale fields?
- additional energy reservoir: rotation

But...

- strong (equipartition) fields needed for dznmical effects
- typical pre-collapse fields are too weak
- \Rightarrow > special class of progenitors

・ コ ト ・ 雪 ト ・ 目 ト ・

strong amplification

field amplification mechanisms

- compression: gravitational infall \Rightarrow magnetic energy
- ▶ winding: differential rotation ⇒ magnetic energy
- ► hydromagnetic instabilities: differential rotation, entropy/composion gradients ⇒ magnetic energy

Magneto-rotational explosions

- effective viscosity due to small-scale MHD turbulence
- angular-momentum transport
- ightarrow loss of rotational equilibrium
- ► large-scale fields → bipolar explosions, jets collimated by magnetic hoop stress
- potentially only important on long time scales

MRI simulations

Summary

Magneto-rotational explosions

- effective viscosity due to small-scale MHD turbulence
- angular-momentum transport
- \rightarrow loss of rotational equilibrium
- ► large-scale fields → bipolar explosions, jets collimated by magnetic hoop stress
- potentially only important on long time scales

・ロット (雪) ・ (日) ・ (日)

MRI simulations

Magneto-rotational explosions

- effective viscosity due to small-scale MHD turbulence
- angular-momentum transport
- \rightarrow loss of rotational equilibrium
- ► large-scale fields → bipolar explosions, jets collimated by magnetic hoop stress
- potentially only important on long time scales

MRI simulations

Magneto-rotational explosions

- effective viscosity due to small-scale MHD turbulence
- angular-momentum transport
- \rightarrow loss of rotational equilibrium
 - ► large-scale fields → bipolar explosions, jets collimated by magnetic hoop stress
 - potentially only important on long time scales

General properties of the MRI

- Iocal linear MHD instability of differentially rotating fluids
- weak initial magnetic field required
- run-away of angular-momentum transport along field lines
- instability criterion: negative Ω gradient
- growth time \sim rotational period
- leads to MHD turbulence and efficient transport

Accretion discs

- Keplerian shear
- \Rightarrow Rayleigh-stable, MRI-unstable
 - rapid growth
 - MHD turbulence may provide viscosity required for accretion
 - well-studied system, yet still many open questions

study the MRI in supernovae

- theoretical analysis of the instability criteria
- simulations of MRI-unstable systems

・ロット (雪) ・ (日) ・ (日)

Accretion discs

Open Questions

Keplerian shear

rapid growth

Issues in MRI theory

- Saturation mechanism
- Saturation level as a function of
 - physics, e.g., dissipation coefficients, thermodynamics of the disc

・ロット (雪) ・ (日) ・ (日)

- numerics (box size, boundaries, ...)
- formulate a simple model

study the MRI in supernovae

well-studied system, yet still

many open questions

Rayleigh-stable, MRI-unstable

MHD turbulence may provide

viscosity required for accretion

- theoretical analysis of the instability criteria
- simulations of MRI-unstable systems

Supernovae

- differential rotation, thermal stratification
- ⇒ possibly: hydrodynamically unstable + MRI unstable
 - growth: fast enough?
 - saturation: strong enough?
 - starting to receive interest

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

study the MRI in supernovae

- theoretical analysis of the instability criteria
- simulations of MRI-unstable systems

Questions in SN MRI

geometry

MRI with complex

MRI simulations

Supernovae

- differential rotation, thermal stratification
- ⇒ possibly: hydrodynamically unstable + MRI unstable
 - growth: fast enough?
 - saturation: strong enough?
 - starting to receive interest

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

study the MRI in supernovae

thermodynamics, in complex

regimes of the MRI: linear

instability analysis

physics of saturation

- theoretical analysis of the instability criteria
- simulations of MRI-unstable systems

Questions in SN MRI

geometry

MRI with complex

Issues in MRI theory

- Saturation mechanism
- Saturation level as a function of
 - physics, e.g., dissipation coefficients, thermodynamics of the disc

・ロット (雪) (日) (日)

- numerics (box size, boundaries, ...)
- formulate a simple model

study the MRI in supernovae

thermodynamics, in complex

regimes of the MRI: linear

instability analysis

physics of saturation

- theoretical analysis of the instability criteria
- simulations of MRI-unstable systems

Instability analysis

local linear WKB analysis (Balbus, 1995; Urpin, 1996)

- hydrodynamic background model in equilibrium with
 - differential rotation, $\Omega \propto \varpi^{-|\alpha_{\Omega}|}$
 - entropy gradient, $S = S_0 + \partial_{\varpi} S \varpi$
- add a weak magnetic field and linearise (incompressible) MHD equations
- examine the dispersion relation of MHD waves

MRI simulations

Summary

The dispersion relation of MRI modes

dashed line: fastest growing mode solid line: boundary between modes branches

Definition of symbols

$$\mathcal{C} = rac{\left(\textit{N}
ight)^2 + \left(arpi imes \partial_{arpi} \Omega^2
ight)^2}{\Omega^2}$$

N = bouyancy frequency

Stable modes short modes are stablised by magnetic tension

Alfvén modes fast growth only for finite wave number

Bouyant modes appear only for large entropy gradient; fast growth for long modes

- $\mathbf{v}_{A} = Alfven velocity$
 - $\mathbf{k} =$ wave number
- θ_k = angle between **k** and the vertical

The dispersion relation of MRI modes

normalised growth rate

MRI simulations

Summary

The dispersion relation of MRI modes

dashed line: fastest growing mode solid line: boundary between modes branches

Stable modes short modes are stablised by magnetic tension

Alfvén modes fast growth only for finite wave number

Bouyant modes appear only for large entropy gradient; fast growth for long modes

Definition of symbols

$$\mathcal{C} = rac{\left(\mathcal{N}
ight)^2 + \left(arpi imes \partial_{arpi} \Omega^2
ight)^2}{\Omega^2}$$

N = bouyancy frequency

 $\mathbf{v}_{A} = Alfven velocity$

 $\mathbf{k} =$ wave number

 θ_k = angle between **k** and the vertical

MRI simulations

Stable

MSI

0

Summary

Regimes of the axisymmetric MRI

convective

similar to hydrodynamic convection (Schwarzschild or Ledoux)

mixed interplay of many effects

shear regime Rayleigh unstable

 N^2/Ω^2

-4

magneto-bouyant

0

-6

 R_m/Ω^2

convection stabilised by

rotation, but destabilised

by the magnetic field

MBI

stable stabilised by positive entropy or Ω gradients

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

Physics and numerics

Simplified physics

- Full ideal MHD (rather than shearing box)
- simplified equation of state
- external gravity
- no neutrino transport

Code

- Eulerian, conservative
- high-order reconstruction (MP or WENO)
- MUSTA Riemann solver (Titarev & Toro, 2005)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

constraint transport

Models

- ► gas in hydrostatic equilibrium; uniform field or vanishing net flux
- axisymmetric and 3d simulations
- small (few kilometres) boxes resembling the equatorial region
- resolution between 0.625 and 40 metres
- shearing-disc boundary conditions (Klahr & Bodenheimer, 200

э

Physics and numerics

Simplified physics

- Full ideal MHD (rather than shearing box)
- simplified equation of state
- external gravity
- no neutrino transport

Code

- Eulerian, conservative
- high-order reconstruction (MP or WENO)
- MUSTA Riemann solver (Titarev & Toro, 2005)
- constraint transport

Models

- gas in hydrostatic equilibrium; uniform field or vanishing net flux
- axisymmetric and 3d simulations
- small (few kilometres) boxes resembling the equatorial region
- resolution between 0.625 and 40 metres
- shearing-disc boundary conditions (Klahr & Bodenheimer, 2003)

Dynamics

- confirm all (relevant) regimes of the linear analysis
- (de-)stabilisation by interplay of Ω and S gradients
- growth rates in agreement with linear analysis, i.e., a few milliseconds for rapidly rotating cores

(日)

 $\blacktriangleright\,$ maximum field strength $\gtrsim 10^{15}~G$

Dynamics

Mice Fanch Forstat Six Astrophysik

 early phase: exponential growth of channel flows

(a)

 termination of growth and breakup of channels

15.6 15.8

MRI simulations

Summary

Scaling of the termination level

Termination (\neq saturation)

the Maxwell stress reached at the end of the growth of the MRI depends on (among other factors)

- the grid resolution: finer grid \Rightarrow higher $M_{\varpi\phi}$
- ► the initial field: stronger b₀ ⇒ higher M_{∞φ}
- the rotational profile: slower \Rightarrow higher $M_{\varpi\phi}$

MRI simulations

Summary

Scaling of the termination level

- MRI growth terminates when channel flows are disrupted by resistive instabilities.
- Channels are generically unstable against secondary instabilities, here tearing modes (Goodman & Xu, 1994).
- MRI terminates approximately when the resistive instabilities grow faster than the MRI.

MRI simulations

Summary

Scaling of the termination level

- MRI growth terminates when channel flows are disrupted by resistive instabilities.
- Channels are generically unstable against secondary instabilities, here tearing modes (Goodman & Xu, 1994).
- MRI terminates approximately when the resistive instabilities grow faster than the MRI.

MRI simulations

Summary

Scaling of the termination level

- MRI growth terminates when channel flows are disrupted by resistive instabilities.
- Channels are generically unstable against secondary instabilities, here tearing modes (Goodman & Xu, 1994).
- MRI terminates approximately when the resistive instabilities grow faster than the MRI.

MRI simulations

Summary

Scaling of the termination level

- MRI growth terminates when channel flows are disrupted by resistive instabilities.
- Channels are generically unstable against secondary instabilities, here tearing modes (Goodman & Xu, 1994).
- MRI terminates approximately when the resistive instabilities grow faster than the MRI.

MRI simulations

Summary

Scaling of the termination level

scaling laws for MRI termination

competing growth of MRI modes and parasites allows for an explanation

◆ロ▶ ◆課 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 → のへ()

Saturation: turbulence and coherent flows

- Saturation: turbulent state
- efficient transport of angular momentum
- coherent flow and field patterns can be identified
- stable over several rotational periods
- example: average value of the toroidal field on slices
 z = const. as a function of time (cf. Lesur & Ogilvie, 2008)

MRI simulations

Saturation: turbulence and coherent flows

- Saturation: turbulent state
- efficient transport of angular momentum
- coherent flow and field patterns can be identified
- stable over several rotational periods
- example: average value of the toroidal field on slices
 z = const. as a function of time (cf. Lesur & Ogilvie, 2008)

・ロット (雪) (日) (日)

MRI simulations

Saturation: turbulence and coherent flows

- Saturation: turbulent state
- efficient transport of angular momentum
- coherent flow and field patterns can be identified
- stable over several rotational periods
- example: average value of the toroidal field on slices
 z = const. as a function of time (cf. Lesur & Ogilvie, 2008)

Summary

Preliminay answers

- analysis of the dispersion relation: MRI can be relevant
- high-resolution simulations agree with linear regime
- turbulence and enhanced transport in saturation

Open issues

- influence of global geometry and progenitor structure
- interplay with additional physics
- physics of saturation
- formulation of a model for use in lower-resolution simulations

・ ロ ト ・ 雪 ト ・ 目 ト ・

Conclusion

It may not be safe to neglect the MRI a priori, but we are far from detailed modelling to include it properly.

Preliminay answers

- analysis of the dispersion relation: MRI can be relevant
- high-resolution simulations agree with linear regime
- turbulence and enhanced transport in saturation

Open issues

- influence of global geometry and progenitor structure
- interplay with additional physics
- physics of saturation
- formulation of a model for use in lower-resolution simulations

・ロット (雪) (日) (日)

Conclusion

It may not be safe to neglect the MRI a priori, but we are far from detailed modelling to include it properly.

