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Exlosion mechanisms
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How is the failed explosion revived?

Not a matter of energy (€core > €onv), but
of energy transfer.
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» Spherical neutrino-driven
explosion

» neutrino heating aided by
hydrodynamic instabilities

» Energy transfer by
(accoustic) waves

» rotation
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Exlosion mechanisms

How is the failed explosion revived?

Not a matter of energy (€core > €env), but
of energy transfer.
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» neutrino heating aided by (Thompson et al., 2004)
hydrodynamic instabilities > successiul? ’

» Energy transfer by - el
accoustic) waves '
( lu ic) wav > rapid rotation: only certain stars
> rotation > |b| sufficiently strong?
— MRI? (Akiyama et al., 2003)
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Field amplification in supernovae

Why magnetic fields?

» pulsar fields, magnetars
» asymmetric explosions:
caused by large-scale fields?

» additional energy reservoir:
rotation
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Field amplification in supernovae

Why magnetic fields?

» pulsar fields, magnetars
» asymmetric explosions:
caused by large-scale fields?

» additional energy reservoir:
rotation

» strong (equipartition) fields
needed for dznmical effects

» typical pre-collapse fields are
too weak

= » special class of progenitors
» strong amplification
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Field amplification in supernovae

Why magnetic ields? But.

» pulsar fields, magnetars » strong (equipartition) fields
» asymmetric explosions: needed for dznmical effects
caused by large-scale fields? » typical pre-collapse fields are
» additional energy reservoir: too weak
rotation = » special class of progenitors
» strong amplification

field amplification mechanisms

» compression: gravitational infall = magnetic energy

» winding: differential rotation = magnetic energy

» hydromagnetic instabilities: differential rotation,
entropy/composion gradients = magnetic energy
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Magneto-rotational explosions

» effective viscosity due to
small-scale MHD turbulence

» angular-momentum transport
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Magneto-rotational explosions

» effective viscosity due to
small-scale MHD turbulence

» angular-momentum transport
— loss of rotational equilibrium
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Magneto-rotational explosions

» effective viscosity due to
small-scale MHD turbulence

» angular-momentum transport
— loss of rotational equilibrium

» large-scale fields — bipolar
explosions, jets collimated by
magnetic hoop stress
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Magneto-rotational explosions

» effective viscosity due to
small-scale MHD turbulence

» angular-momentum transport
— loss of rotational equilibrium

» large-scale fields — bipolar
explosions, jets collimated by
magnetic hoop stress

» potentially only important on
long time scales
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General properties of the MRI

vV v v v v Yy

local linear MHD instability of differentially rotating fluids
weak initial magnetic field required

run-away of angular-momentum transport along field lines
instability criterion: negative Q gradient

growth time ~ rotational period

leads to MHD turbulence and efficient transport
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Open Questions

Accretion discs

» Keplerian shear

= Rayleigh-stable, MRI-unstable

» rapid growth

» MHD turbulence may provide
viscosity required for accretion

» well-studied system, yet still
many open questions
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Open Questions

Issues in MRI theory

» Keplerian shear » Saturation mechanism
= Rayleigh-stable, MRI-unstable » Saturation level as a function
» rapid growth of
. » physics, e.g., dissipation
> N_IHD t.urbulen.ce may prOVId_e coefficients, thermodynamics
viscosity required for accretion I -
» well-studied system, yet still » numerics (box size,
many open questions boundaries, ... )
» formulate a simple model
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Open Questions

Supernovae

» differential rotation, thermal
stratification

= possibly: hydrodynamically
unstable + MRI unstable

» growth: fast enough?

» saturation: strong enough?

» starting to receive interest
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Open Questions

» MRI with complex » differential rotation, thermal
thermodynamics, in complex stratification
geometry = possibly: hydrodynamically
» regimes of the MRI: linear unstable + MRI unstable
instability analysis » growth: fast enough?

> physics of saturation ) » saturation: strong enough?

» starting to receive interest
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Open Questions

Questions in SN MRI Issues in MRI theory

» MRI with complex » Saturation mechanism
thermodynamics, in complex » Saturation level as a function
geometry of

» regimes of the MRI: linear » physics, e.g., dissipation
instability analysis coefficients, thermodynamics

» physics of saturation arlioelEs

J » numerics (box size,
boundaries, ... )
» formulate a simple model

study the MRI in supernovae

» theoretical analysis of the instability criteria
» simulations of MRI-unstable systems B
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Instability analysis

local linear WKB analysis (Balbus, 1995; Urpin, 1996)
» hydrodynamic background model in equilibrium with

» differential rotation, Q oc o~ l@l
» entropy gradient, S = Sy + 0 Sw

» add a weak magnetic field and linearise (incompressible) MHD
equations

» examine the dispersion relation of MHD waves
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The dispersion relation of MRl modes
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The dispersion relation of MRl modes
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The dispersion relation of MRl modes

Stable modes short modes are
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Buoyan 04 finite wave number
Alfvén modes 02 Bouyant modes appear only for
0 large entropy gradient; fast
-100 -10 -1 -0.1 -0.01
c growth for long modes

dashed line: fastest growing mode
solid line: boundary between
modes branches

Definition of symbols

o (N)2 + (w x anZ)Z vV = Alfven velocity

92 k = wave number
N = bouyancy frequency

0 = angle between K and the vertical | fif



Magnetic fields and the MRI in supernovae

oe

Regimes of the axisymmetric MRI

magneto-bouyant
convection stabilised by

rotation, but destabilised stable stabilised
by the magnetic field by positive
convective entropy or Q2
similar to gradients
hydrodynamic
convection
(Schwarzschild
or Ledoux) magneto-shear
classical MR,
e.g., accretion
discs

mixed interplay
of many

shear regime Rayleigh
effects unstable Bt



MRI simulations
°

Physics and numerics

Simplified physics

» Full ideal MHD (rather » Eulerian, conservative
than shearing box) » high-order reconstruction
» simplified equation of state (MP or WENO)
» external gravity » MUSTA Riemann solver
> No neutrino transport (Titarev & Toro, 2005)
» constraint transport
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°

Physics and numerics

Simplified physics

» Full ideal MHD (rather » Eulerian, conservative
than shearing box) » high-order reconstruction

» simplified equation of state (MP or WENO)

» external gravity » MUSTA Riemann solver

> No neutrino transport (Titarev & Toro, 2005)

» constraint transport

v

gas in hydrostatic equilibrium; uniform field or vanishing net flux
axisymmetric and 3d simulations

small (few kilometres) boxes resembling the equatorial region
resolution between 0.625 and 40 metres

shearing-disc boundary conditions (Klahr & Bodenheimer, 2003) | fif

o’

vV V. v v Yy




MRI simulations
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Dynamics

temporal evolution of the » confirm all (relevant) regimes
magnetic energy of the linear analysis
» (de-)stabilisation by interplay
of Q and S gradients
» growth rates in agreement
with linear analysis, i.e., a few
milliseconds for rapidly

rotating cores

| » maximum field strength
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Dynamics

a » early phase: exponential growth
® of channel flows
A . .
2 f P » termination of growth and
5 [T breakup of channels
= 27
’ZO 100
timd s jg[G/em]
12 < 1
1.0 +
"""""" ;""E&l&"";"""

08 T
E 0.6 *
3 + HEUHE -

0.4 [ I SN - S — ®

0.2

, ]



MRI simulations
[se IeTole}

Scaling of the termination level
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the end of the growth of the MRI 100.0¢
depends on (among other g
factors)

» the grid resolution:
finer grid = higher M4 i

» the initial field: 1.0
stronger by = higher M, g

» the rotational profile:
slower = higher M,
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Scaling of the termination level

» MRI growth terminates when
channel flows are disrupted by
resistive instabilities.
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Scaling of the termination level

b, [104G]
» MRI growth terminates when
channel flows are disrupted by
resistive instabilities.
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MRI simulations
[seYe] Tole}

Scaling of the termination level

b, [104G]
» MRI growth terminates when
channel flows are disrupted by
resistive instabilities.
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MRI simulations
[seYe] Tole}

Scaling of the termination level

» MRI growth terminates when
channel flows are disrupted by
resistive instabilities.

» Channels are generically
unstable against secondary
instabilities, here tearing

z[km]

modes (Goodman & Xu, B
1994). ~
» MRI terminates approximately
when the resistive instabilities Lo
grow faster than the MRI. 3 = s s
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Scaling of the termination level
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scaling laws for MRI termination

competing growth of MRI modes and parasites allows for an
explanation
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Saturation: turbulence and coherent flows

» Saturation: turbulent state

» efficient transport of angular
momentum
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Saturation: turbulence and coherent flows

» Saturation: turbulent state

» efficient transport of angular
momentum
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Saturation: turbulence and coherent flows

» Saturation: turbulent state bg, [G]

.. -1.0810" -3.60x10'® 3.60x10'° 1.08<10"
» efficient transport of angular r
momentum

» coherent flow and field
patterns can be identified

» stable over several rotational
periods

» example: average value of the
toroidal field on slices
z = const. as a function of
time (cf. Lesur & Ogilvie, 2008)

z [km]
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Summary

Preliminay answers Open issues

» analysis of the dispersion » influence of global geometry
relation: MRI can be relevant and progenitor structure
» high-resolution simulations » interplay with additional
agree with linear regime physics
» turbulence and enhanced » physics of saturation
transport in saturation ) » formulation of a model for use
in lower-resolution simulations
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Summary

Preliminay answers Open issues

» analysis of the dispersion » influence of global geometry
relation: MRI can be relevant and progenitor structure
» high-resolution simulations » interplay with additional
agree with linear regime physics
» turbulence and enhanced » physics of saturation
transport in saturation | » formulation of a model for use
in lower-resolution simulations

It may not be safe to neglect the MRI a priori, but we are far from
detailed modelling to include it properly.
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