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Summary (v1.0)

Constrained schemes lead to a stable evolution in the presence
of matter, as they are a natural generalization of the
conformally-flat approximation.



3+1 formalism

Decomposition of spacetime and of Einstein equations

Evolution equations:

∂Kij

∂t
−LβKij =

−DiDjN +NRij − 2NKikK
k
j +

N [KKij + 4π((S − E)γij − 2Sij)]

Kij =
1

2N

(
∂γij

∂t
+Diβj +Djβi

)
.

Constraint equations:

R+K2 −KijK
ij = 16πE,

DjK
ij −DiK = 8πJ i.

gµν dx
µ dxν = −N2 dt2 + γij (dxi + βidt) (dxj + βjdt)
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Free vs. constrained
formulations

As in electromagnetism, if the constraints are satisfied initially,
they remain so for a solution of the evolution equations.

free evolution

start with initial data verifying the constraints,
solve only the 6 evolution equations,
recover a solution of all Einstein equations.

⇒apparition of constraint violating modes from round-off
errors. Considered cures:

Using of constraint damping terms and adapted gauges
(many groups).
Solving the constraints at every time-step (efficient elliptic
solver?).
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Conformal flatness condition
(CFC)

and
Fully constrained formulation

(FCF)



Conformal flatness condition
Within 3+1 formalism, one imposes that :

γij = ψ4fij

with fij the flat metric and ψ(t, x1, x2, x3) the conformal factor.
First devised by Isenberg in 1978 as a waveless approximation
to GR, it has been widely used for generating initial data, . . .

set of 5 non-linear elliptic PDEs (K = 0)

∆ψ = − 2πψ−1

(
E∗ +

ψ6KijK
ij

16π

)
,

∆(Nψ) = 2πNψ−1

(
E∗ + 2S∗ +

7ψ6KijK
ij

16π

)
,

∆βi +
1
3
∇i∇jβ

j = 16πNψ−2(S∗)i + 2ψ10Kij∇j
N

ψ6
.
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Core-collapse and CFC
Together with the use of a purely finite-differences code in full
GR, first results of realistic collapse of rotating stellar iron cores
in GR

with finite temperature EOS;
(approximate) treatment of deleptonization.
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⇒complete check that CFC is a good approximation in the
case of core-collapse.
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Fully constrained formulation
bonazzola et al. (2004)

With no approximation: γ̃ij = ψ4γij and the choice of
generalized Dirac gauge (and maximal slicing)

∇j γ̃
ij = ∇jh

ij = 0. (γ̃ij = f ij + hij)

⇒very similar equations to the CFC system + evolution
equations for γ̃ij :

∂Kij

∂t
− LβK

ij = NDkD
khij −DiDjN + Sij ,

∂hij

∂t
− Lβh

ij = 2NKij .

When combined, reduce to a wave-like (strongly hyperbolic)
operator on hij , with no incoming characteristics from a black
hole excision boundary (cordero-carrión et al. (2008)).



Fully constrained formulation

Motivations for the FCF:

Easy to use CFC initial data for an evolution using the
constrained formulation,
Evolution of two scalar fields: the rest of the tensor hij can
be reconstructed using the gauge conditions.
⇐⇒ dynamical degrees of freedom of the gravitational
field.
Elliptic systems have good stability properties (what about
uniqueness?).
Newtonian limit obtained without difficulty.
Constraints are verified!

+ the generalized Dirac gauge gives the property that hij is
asymptotically transverse-traceless
⇒straightforward extraction of gravitational waves . . .
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Excision techniques
apparent horizons as a boundary

Remove a neighborhood of the central singularity from
computational domain;

Replace it with boundary conditions on this newly obtained
boundary (usually, a sphere),

Until now, imposition of apparent horizon / isolated horizon
properties: zero expansion of outgoing light rays.

⇒New views on the concept of black hole,
following works by Hayward, Ashtekar and
Krishnan: dynamical horizon

Quasi-local approach, making the
black hole a causal object;

For hydrodynamic, electromagnetic
and gravitational waves (Dirac
gauge): no incoming characteristics.



Summary (v2.0)

Constrained schemes, together with excision techniques can be
valuable tools for the modeling of a collapse to a black hole.



Summary - Perspectives

Conformally-flat condition:
Is a reasonable approximate theory of gravity for
core-collapse simulations.
With a good Poisson solver, not too difficult to implement
CFC equations.

Constrained scheme:
Can the FCF provide better accuracy on the gravitational
field for long-term astrophysical simulations?
Does FCF need too much CPU to solve elliptic PDEs?

Black holes:
Implement excision technique within collapse code
(CoCoNuT).
Study the dynamical interplay between black holes and
surrounding environment.
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