General relativistic hydrodynamics beyond bouncing polytropes

Pablo Cerdá-Durán Max Planck Institut für Astrophysik Garching bei München, Germany

MICRA2009

Copenhagen - August 24-28 2009

To model rotating compact objects we need MHD and relativity

To model MHD and relativity we need new physics and new methods

Outline

Motivation GR (magneto)hydrodynamics New problems Conclusions

Motivation

Astrophysical scenarios Collapse to black hole Core collapse supernovae Proto-neutron stars Pulsar/Magnetar formation Isolated neutron stars **Instabilities** Asterosismology **Binary neutron stars**

Motivation

Why relativistic?

Shock propagation ~ 0.1c Low density regions **Relativistic jets** Newtonian: Alfvén speed > c Why general relativistic? Compact objects (BH, NS) = strong gravity **Black holes** Gravitational waves

Status

(adapted from the table by Harald Dimmelmeier)

Status

Magnetic fields

- Ideal MHD
- **Resistive MHD**
- Beyond MHD (Hall effect, ambipolar diffusion)

Small scales

- Magneto-rotational instability (MRI)
- **Turbulence and dynamo**

Multi-D performance 1D 2D 3D

Gravity

Microphysics

Framework

3+1 decomposition

$$ds^{2} = g_{\mu\nu} dx^{\mu} dx^{\nu} = (\beta^{i} \beta_{i} - \alpha^{2}) dt^{2} + 2\beta_{i} dx^{i} dt + \gamma_{ij} dx^{i} dx^{j}$$

$$\alpha : \text{lapse}$$

$$\phi : \text{conformal factor}$$

$$\beta^{i} : \text{shift vector}$$

$$\gamma_{ij} : 3 \text{-metric}$$

$$n^{\mu} n_{\mu} = -1 : \text{timelike 4-vector normal to } \Sigma$$

$$x^{2}$$

$$x^{1}$$

Energy-momentum tensor

Equations - Ideal MHD

Energy-momentum conservation (Bianchi identities) $T^{\mu\nu}_{\ \mu\nu}=0$ Continuity (no particle creation) $J^{\mu}_{;\mu} = 0$

Maxwell's equations (ideal MHD)

$$*F_{;v}^{\mu\nu}=0$$

Hyperbolic system of conservation (balance) laws

$$\frac{\partial \hat{\boldsymbol{U}}}{\partial t} + \nabla_i \hat{\boldsymbol{F}}^i(\hat{\boldsymbol{U}}) = \hat{\boldsymbol{S}}(\hat{\boldsymbol{U}})$$
$$\nabla_k \hat{\boldsymbol{B}}^k = 0$$

Conserved variables

$$\hat{U} \equiv \sqrt{\bar{y}} (D, S_i, \tau, B^k) = (\hat{D}, \hat{S}_i, \hat{\tau}, \hat{B}^k)$$

 $D \equiv -n_{\mu}J^{\mu}$: relativistic density $S_{i} \equiv - \perp {}_{i}^{\mu}n^{\nu}T_{\mu\nu}$: momentum $\tau \equiv n^{\mu}n^{\nu}T_{\mu\nu} - D$: energy (without density)

Equations – Ideal MHD

Energy-momentum conservation
(Bianchi identities)
$$\mathcal{T}_{;\mu}^{\mu\nu} = 0$$

Continuity (no particle creation)
$$\mathcal{J}_{;\mu}^{\mu} = 0$$

Conservation of Number of particles Momentum Energy $\partial_t \int dV \, \hat{U}_{fluid} + \int dA \cdot \hat{F} = \int dV \, \hat{S}$ $\hat{U}_{fluid} \equiv (\hat{D}, \hat{S}_i, \hat{\tau})$

Equations - Ideal MHD

Conservation of magnetic flux

Maxwell's equations (ideal MHD)

$$*F_{;v}^{\mu\nu}=0$$

Equations – space-time

Einstein's equations

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

$$\gamma_{ij} = \phi^4 f_{ij} + h_{ij}$$

$$\phi^4 \equiv Tr(\gamma_{ij})$$

10 variables (α , β^i , ϕ , h_{ij})

4 gauge conditions
6 degrees of freedom

Newtonian limit

Vacuum-Minkowski limit

Frame-dragging

 $\alpha^{2} \simeq 1 - 2 U$ $\phi^{4} \simeq 1$ $\beta_{i}, h_{ij} \simeq 0$ 1 degree of freedom

U : Newtonian potential

 $\Box h^{ij} = 0$ $\phi, \alpha \simeq 1$ $\beta^{i} \simeq 0$ 2 degree of freedom

$$h^+$$
 , $h^ imes$: Gravitational waves

General relativistic ideal MHD code

(Dimmelmeier et al. 2002, Cerda-Duran et al 2008)

Spherical coordinates: 2D (MHD) and 3D (only HD)

Godunov-type schemes + CT scheme

General relativity: dynamic space-time in the CFC approx. (isenberg 1979, Wilson 1989) with **spectral methods** (LORENE: www.lorene.obspm.fr) (Dimmelmeier et al. 2004)

Microphysics: finite temperature EOS (SHEN, LS) and deleptonization scheme (Liebendörfer 2005) Applications: core collapse supernovae, isolated neutron star evolution and BH formation.

Some new problems

Microphysics/recovery Multi-scale problem 3D-efficiency "realistic" MHD

Newtonian

$$\partial_{t} \rho = S_{\rho}(\rho, v^{i})$$

$$\partial_{t} v^{i} = S_{v^{i}}(\rho, v^{i}, P)$$

$$\partial_{t} \epsilon = S_{\epsilon}(\rho, v^{i}, \epsilon, P)$$
Time sources & fluxes
$$\rho, v^{i}, \epsilon \longrightarrow P(\rho, \epsilon)$$

Relativistic

Efficiency: number of iterations? Use the previous time-step value **Robustness: always converge?** "Safe" recovery values (next slide) Parallel computation: can be a bottle neck! Recovery: ~10–20% CPU time Bad balance: Amdahl's law limits number of **CPUs**

"Safe" recovery values (SHEN EOS, collapse and bounce conditions)

Multi-scale problem

Multi-scale problem - MRI (small scales)

s20 model (Woosley et al 2002) + rotation (T/|W|=0.05)

Unstable to hydromagnetic instabilities (MRI, magnetoconvection) Timescale ~ 1 ms!

Problems: Dynamo, MRI, convection, cooling ... Methods: Implicit?, anelastic? ...

Multi-scale problem - long term evolution

3D efficiency

Efficient 3D

Cartesian coordinates

- + Easy to implement
- + Best for scenarios without any symmetry
- (e.g. binary)
- Not possible to recover spherical symmetry and difficult for axisymmetry (Cartoon method)
- Difficult to treat large domains (AMR, FMR)

Spherical polar coordinates

- Geometric terms everywhere!
- + Well adapted for quasi-spherical objects (isolated tars)
- + Spherical and axisymmetry easily imposed
- Severe time-step restrictions for explicit methods
- + Large radial domains and compactification

Adaptive Mesh refinement (AMR)

- Extremely complicated
 + Long expertise / available
 infrastructure
- + No time-step problem
- Non-adapted to the problem (Cartesian)
- MHD+AMR difficult

Examples: - Carpet (Schnetter et al 2006) used in Cactus/Whisky - HAD used for GRMHD simulations(Anderson et al 2006)

Multi-patched grids

- + Very well adapted to the problem
- + No time-step problem
- Still complicated
- Patch boundaries

Examples:

- Zink et al 2008
- (cube-sphere)
- Scheidegger et al 2008

(3D Cartesian embeded in 1D spherical)

Smoothed particle hydrodymanics (SPH)

+ Well adapted to the problem
+ No time-step problem
- GR gravity is not a force
(Auxiliary grid for the metric)
- Difficult to handle
discontinuities

Examples:

- Oechslin et al 2001

Central density evolution: coarsened vs standard Rotating neutron star: $M=1.63M_{o}$, $R_{e}=17.3$, T/|W|=0.074, rigid rot., 80x32

Central density evolution: convergence (PPM+MC)

Rotation profile (after 10 ms)

Numerical viscosity (damping of radial modes) v

- + Well adapted to the problem (spherical coordinates)
 + No time-step problem
 + Small modification in spherical coordinates code
- Still experimental

Conclusions

Rotating compact objects (CC, NS) can be much more difficult than standard Supernovae

- **General relativity**
- MHD and small scale instabilities
- Recovery (maybe no)
- Mesh coarsening: poor man's approach to 3D