Neutron star envelopes: (micro)physics and thermal radiation

Alexander Y. Potekhin

in collaboration with

D.G. Yakovlev,¹ A.I. Chugunov,¹ A.D. Kaminker,¹ Yu.A. Shibanov,¹ ... and

Gilles Chabrier,² Wynn Ho,³ Dong Lai,⁴ Hugh DeWitt,⁵ Forrest Rogers,⁵ ...

¹Ioffe Physical-Technical Institute, Saint-Petersburg, Russia
²Ecole Normale Supérieure de Lyon, France
³University of Southampton, UK
⁴Cornell University, Ithaca, New York, USA
⁵Lawrence Livermore National Laboratory, Livermore, California, USA

1. Motivation: Importance of the envelopes
2. Plasma EoS: fully ionized / partially ionized, nonmagnetic / magnetic
3. Radiative opacities: Magnetized atmospheres
4. Conduction: Thermal structure and luminosity
5. The effects of superstrong magnetic fields: Uncertainties
6. [An application example]
Motivation

Stellar mass–radius relation for different EOSs
Thermal evolution

“Basic cooling curve” of a neutron star (no superfluidity, no exotica)

Cooling of neutron stars with proton superfluidity in the cores

Neutron star cooling

• Relation between *internal* (core) temperature and *effective temperature* (surface luminosity)
 • requires studying *thermal conduction* and *temperature profiles* in heat-blanketing envelopes

• Knowledge of the shape and features of the *radiation spectrum* at given effective temperature
 • requires modeling neutron star *surface layers* and propagation of electromagnetic radiation in them

Solution of both problems relies on
modeling thermodynamic and kinetic properties of *outer neutron-star envelopes* –
dense, strongly magnetized plasmas

Magnetic field affects thermodynamics properties *and the heat conduction of the plasma,*
as well as *radiative opacities*
• **Strong magnetic field** B:
 \[\tilde{\hbar} \omega_c = \tilde{\hbar} eB/m_e c > 1 \text{ a.u.} \]
 \[B > m_e^2 c e^3/\tilde{\hbar}^3 = 2.35 \times 10^9 \text{ G} \]

• **Superstrong field**:
 \[\tilde{\hbar} \omega_c > m_e c^2 \]
 \[B > m_e^2 c^3 / e\tilde{\hbar} = 4.4 \times 10^{13} \text{ G} \]

• **Strongly quantizing**:
 \[\rho < \rho_B = m_{\text{ion}} n_B \langle A \rangle / \langle Z \rangle \approx 7 \times 10^3 B_{12}^{3/2} (\langle A \rangle / \langle Z \rangle) \text{ g cm}^{-3} \]
 \[T << T_B = \tilde{\hbar} \omega_c / k_B \approx 1.3 \times 10^8 B_{12} \text{ K} \]
Neutron star structure
Neutron star structure in greater detail

\[M \approx 1 - 2 \, M_{\odot} \]
\[B \approx 10^8 - 10^{15} \, G \]

Electrons, ions, atoms, molecules (gas/liquid)
electrons, nuclei (Coulomb liquid)
electrons, nuclei (Coulomb crystal)
e\text{, } n \text{ [superfluid], } n\text{-rich nuclei (Coulomb crystal)}
e\text{, } n \text{ (superfluid), exotic nuclei (liquid crystal)}
e\text{, } \mu^\text{e}, n \text{ (superfluid), } p \text{ (supercond.)}
nucleons, e^\text{e}, \mu^\text{e}, hyperons? kaon condensate? pion condensate? quarks? ...

Log \(\rho \) [g cm\(^{-3}\)]

Depth:
- \(\approx 11.6 \) \(\sim 0.3 \) km
- \(\approx 14 \) \(\sim 1 \) km
- \(\approx 14.7 \) \(\sim 10 \) km
- \(\approx 15 \) \(10 - 13 \) km
Neutron star without atmosphere: possible result of a phase transition
Equation of state of electron-ion plasmas

Ideal Fermi gas

Fitting and asymptotic formulae:

An alternative – numerical calculation of tables and interpolation:

Exchange-correlation interaction of electrons

Ion liquid

Best Monte Carlo calculations of the internal energy at $1 < \Gamma < 190$:

Debye – Hückel formula + corrections up to $O(\Gamma^{9/2} \ln \Gamma)$:

Fit formula reproducing the Caillol’s results at $1 < \Gamma < 190$ with a fractional error about $1/10^6$, and also the Cohen – Murphy formula at $\Gamma < 0.3$

Quantum corrections

Numerical results beyond perturbation theory are wanted for quantum liquid!
Coulomb (Wigner) crystal

Harmonic approximation: analytic formulae

Classical anharmonic corrections

Quantum anharmonic corrections

EoS: fully ionized, nonmagnetic
Reliable and usable numerical results beyond perturbation theory and beyond the harmonic model are wanted for quantum crystal!

“**present**”: Potekhin & Chabrier – interpolation (unpublished)

EoS: fully ionized, nonmagnetic
Equation of state of multicomponent electron-ion plasmas (2009)

1. Strongly nonideal Coulomb plasma

For every component j one can write

$$f_{ex} \equiv \frac{F_{ex}}{N_i k_B T} = f_{ii} + f_{ie} + Z_j f_{ee}$$

Linear Mixing Rule

$$f_{ex}^{LM}(\Gamma) \approx \sum_j x_j f_{ex}(\Gamma_j, x_j = 1), \quad \Gamma_j = \Gamma \frac{Z_j^{5/3}}{\langle Z^{5/3} \rangle}$$

2. Extremely weakly nonideal Coulomb plasma

Debye – Hückel approximation (nonlinear!)

$$f_{ee}^{DH} = -\frac{\Gamma_e^{3/2}}{\sqrt{3}} \quad f_{ii}^{DH} = f_{ee}^{DH} \zeta_{ii}^{DH}, \quad \zeta_{ii}^{DH} = \frac{\langle Z^2 \rangle^{3/2}}{\langle Z \rangle^{1/2}}$$

3. Moderate Coulomb coupling – ???

Examples for three-component plasmas

EoS: fully ionized, nonmagnetic
Electron-ion interaction

Electron polarization in Coulomb liquid

Electron polarization in Coulomb crystal

Numerical results beyond perturbation theory and beyond Yukawa and harmonic models are wanted!
Heat capacity of plasma in a white dwarf or a neutron star envelope

Various contributions to the heat capacity of carbon at density 10^5 g cm$^{-3}$

EoS: fully ionized, nonmagnetic

http://www.ioffe.ru/astro/EIP/
Melting of a neutron star envelope

Top: Latent heat of carbon and iron as function of density.
Bottom: Coulomb coupling parameter Γ value at the melting point.

EoS: fully ionized, nonmagnetic

http://www.ioffe.ru/astro/EIP/
Equation of state in *magnetic* neutron star envelopes

Normalized thermodynamic functions of fully ionized iron without magnetic field (dashed lines) and in a strong magnetic field (solid lines)

Normalized thermodynamic functions of fully ionized iron without magnetic field (dashed lines) and in a strong magnetic field (solid lines)
The effects of a strong magnetic field on the atoms and molecules.

- **a–c**: H atom in the ground state (a: $B < 10^9$ G, b: $B \approx 10^{10}$ G, c: $B \approx 10^{12}$ G).
- **d**: The field stabilizes the molecular chains (H$_3$ is shown).
- **e**: H atom moving across the field becomes decentered.
Main transition energies of the hydrogen atom in a magnetic field

Binding energies of the hydrogen atom in the magnetic field \(B=2.35\times10^{12} \) G as functions of its state of motion across the field
Partial ionization/recombination in hydrogen plasmas with strong magnetic fields

EoS: partially ionized, magnetic
Equation of state of hydrogen in strong magnetic fields: The effects of nonideality and partial ionization

EOS of ideal (dotted lines) and nonideal (solid lines) H plasmas at various field strengths.

Potekhin, Chabrier, & Shibanov, *Phys. Rev. E* 60, 2193 (1999);
Oscillator strengths for transitions between 2 levels of the hydrogen atom at $B=2.35 \times 10^{12}$ G, as functions of pseudomomentum

Photoionization cross sections for the ground-state H atom at $B=2.35 \times 10^{12}$ G

Photoionization cross sections for the ground-state H atom at $B=2.35 \times 10^{12}$ G

Photoionization cross sections for the ground-state H atom at $B = 2.35 \times 10^{12}$ G

Photoionization cross sections for the ground-state H atom at $B=2.35 \times 10^{12}$ G
Photoionization cross sections for the ground-state H atom at $B=2.35 \times 10^{12}$ G

Photoionization cross sections for the ground-state H atom at $B=2.35 \times 10^{12}$ G

Plasma absorption and polarizabilities in strong magnetic fields:
The effects of nonideality and partial ionization

Spectral opacities for 3 basic polarizations.
Solid lines – taking into account bound states,
dot-dashes – full ionization

To the right: top panel – basic components of the absorption coefficients; middle and bottom – components of the polarizability tensor
Opacities for two normal modes of electromagnetic radiation in models of an ideal fully ionized (dash-dot) and nonideal partially ionized (solid lines) plasma at the magnetic field strength $B=3\times10^{13}$ G, density 1 g/cc, and temperature 3.16×10^5 K. The 2 panels correspond to 2 different angles of propagation with respect to the magnetic field lines. An upper/lower curve of each type is for the extraordinary/ordinary polarization mode, respectively [Potekhin, Lai, Chabrier, & Ho (2004) ApJ 612, 1034]
Modeling results: temperature profiles and the atomic fractions

\[B = 10^{12} \, \text{G} \]

\[\log T_{\text{eff}} = 6.8 \]

\[\log T_{\text{eff}} = 5.5 \]

\[\rho \, (\text{g cm}^{-3}) \]
Result of modelling: spectra, dipole model
(Wynn Ho)
NS Magnetic Atmosphere Model

The NSMAX model interpolates from a grid of neutron star (NS) atmosphere spectra to produce a final spectrum that depends on the parameters listed below. The atmosphere spectra are obtained using the latest equation of state and opacity results for a partially ionized, strongly magnetized hydrogen plasma. The models are constructed by solving the coupled radiative transfer equations for the two photon polarization modes in a magnetized medium, and the atmosphere is in radiative and hydrostatic equilibrium. The atmosphere models mainly depend on the surface effective temperature T_{eff} and magnetic field strength B and inclination θ_B; there is also a dependence on the surface gravity $g=(1+z_g)GM/R^2$, where $1+z_g=(1-2GM/R)^{1/2}$ is the gravitational redshift and M and R are the NS mass and radius, respectively.

Two sets of models are given: one set with a single surface B and T_{eff} and a set which is constructed with B and T_{eff} varying across the surface according to the magnetic dipole model (for the latter, θ_m is the angle between the direction to the observer and the magnetic axis). The effective temperatures span the range $\log T_{\text{eff}}=5.5-6.8$. The models with single (B,T_{eff}) cover the energy range 0.05-10 keV, while the models with (B,T_{eff})-distributions cover the range 0.09-5 keV.

The model parameters are:

- $par_1 = \log T_{\text{eff}}$ surface (unredshifted) effective temperature
- $par_2 = 1+z_g$ gravitational redshift
- $par_3 = \text{switch indicating model to use (see nsmax.dat or list)}$
- $A = (R_{\text{em}}/d)^2 (1+z_g)^{-1}$, normalization, where R_{em} is the size (in km) of the emission region and d is the distance (in kpc) to the object.

Note: A is added automatically by XSPEC.

The source code, Inmodel.dat entries, input model list, and model data files (in one tar file) are available. A list of the models currently available can be found here. The model data files should either be placed in the $XANADU$/spectral/modellonData (v12), $XANADU$/spectral/xspec/manager (v11) directory, or the XSPEC command xset NSMAX(DIR directory-path) should be used to define the directory containing the model data files.
An alternative (or supplement):
Radiation from condensed surface
(Matt van Adelsberg)

Monochromatic flux from the condensed surface in various cases

Stellar heat conductivities

Basic data sources

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.G.Yakovlev et al. (1980 – 2001)</td>
<td>ei: (i) liquid: classical ions (strongly and weakly coupled) with a good structure factor; non-Born correction; (ii) solid: quantum treatment, account of multi-phonon processes. Allowance for strong magnetic fields. ee: strongly degenerate electrons; inaccurate treatment at relativistic densities.</td>
</tr>
<tr>
<td>S.Cassisi et al. (2007)</td>
<td>ee: extension to arbitrary degeneracy.</td>
</tr>
<tr>
<td>A. Chugunov & P. Haensel (2007)</td>
<td>le, ii: ion thermal conduction.</td>
</tr>
</tbody>
</table>
Improvement of conduction opacities in RGB stellar cores relative to some previous models.

Thermal conductivities in a strongly magnetized envelope

Solid – exact, dots – without \(T \)-integration, dashes – magnetically non-quantized

Heat flux: \[F = -\kappa_{\parallel} \nabla_{\parallel} T - \kappa_{\perp} \nabla_{\perp} T - \kappa_{\wedge} \mathbf{b} \times \nabla T, \quad \mathbf{b} = \frac{B}{B} \]
Thermal structure with a magnetic field

$B = 10^{15}$ G, different T

$T_b = 10^7$ K, different B
Thermal structure with a magnetic field and different chemical compositions of the envelope.

Graphs showing the relationship between temperature (T) and density (ρ) for different magnetic field strengths (B), with lines representing iron envelopes and light elements.
Temperature drops in magnetized envelopes of neutron stars

Cooling of neutron stars with **accreted envelopes**

![Graph showing thermal evolution of neutron stars with accreted envelopes.](image)

Cooling of neutron stars with **magnetized envelopes**

![Graph showing thermal evolution of neutron stars with magnetized envelopes.](image)

Challenges from the **superstrong** fields
(B > 10^{14} G)

1. **Mechanical structure**: field affects EoS also in the inner crust
2. **Thermal structure**: field affects luminosity
3. [Possibly] **non-isotropic heat transport in the inner crust**
4. **Surface layers**: molecules, chains, and magnetic condensation
5. **Radiative transfer**: vacuum polarization and mode conversion
6. **Energy transport below the plasma frequency**
7. **Non-LTE distribution of ions over Landau levels**
Superstrong field affects EOS

Dependence of pressure on density for ground-state matter with zero and superstrong magnetic fields
Superstrong field affects total luminosity

Dependence of the mean effective temperature on the magnetic field strength for the light-element (dashed lines) and iron (solid lines) envelopes.
Thick or thin atmosphere?

Superstrong fields

Solid lines – extended atmosphere, dot-dashed lines – condensed surface
Importance of energy transport below plasma frequency

 Photon-decoupling densities for X- and O-modes for a partially ionized H atmosphere, for magnetic field strengths typical of pulsars (blue lines) and magnetars (red lines).

 Dot-dashed lines correspond to the radiative surface, the shadowed region corresponds to $E < E_{pl}$.

$$E_{pe} = \left(\frac{4\pi\hbar^2 e^2 n_e}{m_e} \right)^{1/2} \approx 28.7 \rho^{1/2} \text{ eV}$$
Temperature profiles in the accreted envelope of a neutron star with “ordinary” (left panel) and superstrong (right) magnetic field, for the local effective temperature $10^{5.5}$ K, with (solid lines) and without (dashed lines) plasma-frequency cut-off [Potekhin et al. (2003) *ApJ* 594, 404]
Heating and cooling of magnetars

\[M = 1.1 \, M_\odot \]
\[B = 5 \times 10^{14} \, G \]
Heating and cooling of magnetars

![Graph showing cooling curves of magnetars with data points and labels.](image)

- **Viewing Points:**
 - 1=SGR 1900+14
 - 2=SGR 0526-66
 - 3=1E 1841-045
 - 4=CXOU J010043.1-721134
 - 5=1RXS J170849-400910
 - 6=4U 0142+61
 - 7=1E 2259+586

- **Other Data Points:**
 - 1=Crab
 - 2=PSR J0206+64
 - 3=RX J0822-43
 - 4=1E 1207-52
 - 5=CTA 1
 - 6=Vela
 - 7=PSR 1706-44
 - 8=PSR J0538+28
 - 9=Geminga
 - 10=RX J1856-37
 - 11=PSR 1055-52
 - 12=RX J0720-31

- **Equations:**
 - $M = 1.1 \ M_\odot$
 - $B = 5 \times 10^{14} \ G$

- **Legend:**
 - black: DH
 - blue: APR III
Heating and cooling of magnetars with accreted envelopes

\[
M = 1.1 \, M_\odot \\
B_p = 5 \times 10^{14} \, G
\]
Heating and cooling of magnetars with accreted envelopes

Heating and cooling of magnetars with accreted envelopes

Heating and cooling of magnetars with accreted envelopes

Conclusions

- **Equation of state** in neutron-star envelopes is basically known, but there remain uncertain ingredients.
- **Opacities** with strong magnetic fields are known for hydrogen at relatively high temperatures. [Note: For middle-Z elements, there are atmosphere models by Kaya Mori and Wynn Ho, with a restricted account of the atomic motion.]
- Practical models of the conductivities, applicable to neutron stars, are developed in recent years.
- A superstrong magnetic field
 - on the average, makes the envelope more heat-transparent,
 - accelerates cooling at late epochs,
 - leads to theoretical uncertainties, which require further study.

THANK YOU FOR YOUR ATTENTION!