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1. Quantifying Kolmogrov

2. Multi-group RT

3. Optimizing and Parallelizing RT

4. Time-dependent RT

Four subtopics



Quantifying Kolmogorov

 Which resolution is ”sufficient”?

 How can we know?

 Solar convergence study

 Can be compared accurately with the Sun

 RT diagnostics



Emergent solar surface intensity

mesh size: 96 km



Emergent intensity

mesh size: 48 km



Emergent intensity

mesh size: 24 km



Emergent intensity

mesh size: 12 km



Temperature in continuum layers

12 km mesh size (504x504)



Temperature in continuum layers

6 km mesh size (1008x1008)



Active region emerging flux

24x24x20 Mm

2000x2000x500

~12 km mesh



Active region emerging flux

24x24x20 Mm

2000x2000x500

~12 km mesh



Synthetic spectral lines

Asplund et al (2002)

Surface brightness Vertical velocity

Spatially resolved spectral line profiles



Spectral line, with and w/o 

convective velocity field



Synthetic spectral lines

Asplund et al (2002)

 Spectral line widths measure velocity 

amplitudes

 Convective blue-shifts and line shapes measure 

temperature – velocity correlations

 The total energy flux is what it is ( the solar 

luminosity)

 No free parameters!

 Teff, log g, chemical abundancies the Sun!



3-D resolution:

50x50x82 &

200x200x82



This is a wonderful case; a test 

of the ’very large Re’ limit!

 The Sun: 

 has a huge Re, and 

 knows how to ’compute’ convection correctly

 The models:

 have only moderate Re, but 

 have realistic EOS, and detailed radiative transfer

 ”no free parameters”; fixed at solar values

 The models and the Sun agree to fraction of %!

 Dravins & ÅN (1990), Asplund et al (2000)



Why is this evidence that 

nothing happens at Re = 10xx?

 What if turbulent dissipation had a transition to 

values different from those at moderate Re?

 The result would be a different balance btw 

buoyancy work and turbulent dissipation

 Less dissipation higher velocity, lower T

 More dissipation lower velocity, higher T

 Both line widths and line shifts would change!

 Would be inconsistent with observations!



Multi-group Radiative Transfer



Pereira, Asplund & 

Trampedach (2009, in prep.)



Basic radiative transfer;

frequency dependence

 The mean intensity J-S 

 goes inversely as the square of the opacity at 

large optical depth (diffusion limit)

 is ~independent of opacity at low optical depth
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Solar flux; energy per unit log

interval



Integrated solar flux

90% interval:

430 – 2300 nm



Wavelength dependencies at 

h=0 and h=400 km



Histogram of opacities in 90% 

flux interval, monochr. tau = 1



Bin contributions; 

4 bins (black = sum, blue = bin1)



Bin contributions; 

9 bins (black=sum, blue=bin1)



Bin contributions; 

4 bins (dashed); 9 bins (full)



Bins as a function of 

wavelength



Optimizing and Parallelizing

Radiative Transfer



Overview and Quick Summary

 Topic: how to compute the solution to the 

formal problem

as rapidly and accurately as possible

 Solving the ”formal problem” is of course part 

of (and totally independent of) and RT context!
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The bottom line result is that, on typical 

current CPUs (Intel, Opteron) this should not 

take more than about 5-10 nanoseconds per 

mesh point, frequency and angle!

S is a completely 

general source function 

– can contain angle-

scattering, frequency 

redistribition, etc.!



Applications

 Ray tracing, diagnostics

 3-D scattering and & NLTE problems

 Temperature equilbria

 Dynamical evolution with RT



Optimizing steps

 Speed up table lookup

 Use linear interpolation

 increased table size

 Use cache-efficiency table order

 increased table size again...

 Speed up interpolations

 Use long characteristics!

 re-use interpolation weights

 Speed up RT formal solvers

 Use redundant indices

 re-use exponential factors



Impact

 In any and all such problems, the faster the 

method the more angles and frequencies!

 Of course, computing , , and S takes time also..

A reasonable goal is to be able to afford of 

the order of 50-100 angle-frequencies per 

HD/MHD mesh point for a doubling of the 

computing time, on problems where every 

mesh point is a source!



Formal solution
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 Doubly useful:

1. As a direct method

 Very accurate, if S() is piecewise parabolic

 But not the fastest method!

2. As a basis for domain decomposition

 Add ’remote’ contributions separately!

 Expensive part is entirely local!



But, let’s first look at direct 

integration 

 Depending on CPU-type sometimes ”only” a 

factor 1.5 slower, sometimes a factor 5! 

 Accuracy comes in also; is resolution given by other 

factors or not?

 So, in general this method is based on ”just” 

integrating
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Accurate optical depth 

increments

 Accurate optical depth calculation is often 

forgotten.   Three alternatives:

 trapezoidal (common choice – not the best!)

 integral of exponential (better)

 spline integral (best)
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A note about speed vs. 

accuracy on modern CPUs

 Employing more accurate – e.g. higher order –

expressions is generally advantageous

 Cache speed vs. memory speed relatively little 

extra time needed for extra operations

 better load/store/compute balance

 Improvements in precision are paid back 3-fold 

(diagnostics) or 4-fold (dynamics)



Accuracy requirements?

 For temperature balance / heat exchange: 

need solutions that go to diffusion approx. 

at large optical depth!

 S( ) must be at least 2nd order (piecewise 

parabolic), since the asymtotic solutions ( )
are
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The next tem is 

3rd order for 

each direction, 

but 4th order in 

the sum!

Note that the 1st 

derivative term 

vanishes in the 

sum!



Lower orders are not just 

inaccurate but wrong!

 Doing, for example

would lead to incorrect heating/cooling –

catastrophically bad in optically thick regions!
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Dual direction methods (1)

 The transfer equation for I+( ), the intensity in 

the direction of increasing optical depth, is

and in the oppostite direction (still expressed in 

the same ) it is
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Why dual directions?

 Saves a factor of two in computing common 

factors!



Using the 

net intensity          Q = I – S

It is almost always the difference between the intensity and 

the source function, e.g. Q+ = I+ – S that we need.  It obeys
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while for the net intensity Q– in the opposite direction,
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Why net intensity?

 Since S’( ) and S”( ) are anyway needed, 

nothing is lost, but precision is maintained at 

arbitrarily large 



Formal solutions:

Integral method, 2nd order S

For a locally quadratic approximation of S the analytic solution 

at some discrete point i  is
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and, in the opposite direction,
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Note also that this 

goes seemlessly to 

the standard case 

S=0!

Note the asymtotic 

behavior as !



Direct solution, integral form

 Three coefficients needed (may be reused!)



The Feautrier Method

(this goes way back in RT!)



The Feautrier Equation for 

net radiative heating



Speeds of integral and 

Feautrier methods (dual dir!) 

CPU
type

Integral
method

Feautrier
method

Opteron/Intel
recursive

25 ns/pt 30 ns/pt

Opteron/Intel
vector (SSE)

14 ns/pt 9 ns/pt

Columbia
recursive

68 ns/pt 32 ns/pt

Columbia
vector 

53 ns/pt 12 ns/pt



How to parallelize (Heinemann, et 

al. 2005; Rijkhorst et al 2005)

 Solve for the intensity generated internally in 

each domain, separately and in parallel

 Then propagate and accumulate the boundary 

intensities, modified only by trivial optical depth 

factors



About Node Wave Fronts and 

other parallelization aspects

 In cases where RT is handled separately it is 
NOT necessary to use node wave fronts –
local contribution can then be scattered / 
gathered globally

 Cf. Rijkhorst et al 2005

 Heinemann et al 2005



Putting it together



The Transfer Equation & 

Parallelization

Analytic Solution:
Processors



The Transfer Equation & 

Parallelization

Analytic Solution:

Ray direction

Intrinsic Calculation

Processors



The Transfer Equation & 

Parallelization

Analytic Solution:

Ray direction

Communication

Processors



The Transfer Equation & 

Parallelization

Analytic Solution:

Ray direction

Communication

Processors



The Transfer Equation & 

Parallelization

Analytic Solution:

Ray direction

Processors

Intrinsic Calculation



Pencil code (Brandenburg et al)

CPU-time per ray-point

The scaling 

properties are 

great!

The actual RT 

speed has 

been greatly 

improved 

since!

Now scales up 

to 2048 cores

on Pleiades at 

NASA/Ames



Perspective

 What we want to do is to include radiation, as 

an active ingredient and a diagnostic tool, 

whenever it is relevant – this is now becoming 

doable!

 In practice there is a balance between 

realism and cost, which may be tilted 

towards realism by optimizing the methods!

 maximize number of angle-frequencies!



Time-dependent 

Radiative Transfer



Non-trivial demo case

Huge optical 

depth (1e6), 

but constant 

S”(tau)

Extremely 

small optial 

depth (1e-6)

Localized 

region with 

larger optical 

depth



Summary

 RT is important / crucial in a number of 
astro-subfields

 Cosmology, compact objects, molecular cloud 
formation star formation, planet formation, …

 RT-HD and RT-MHD is becoming practical
in more or less all of these circumstances

 Speed of computation (of transfer and
interpolations) is of premium importance!

 Optimal choices depend on circumstances and 
also surprisingly much on hardware (CPU type)



Thanks for your attention!
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