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We need more equation of state tables with

decent gridding covering relevant ranges of

density, temperature and composition that are

thermodynamically consistent and for which

nuclear parameters can be extensively varied.
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Required Equation of State Conditions
• density ρ : 0 to 1015 g cm−3 (ρs = 2.7 × 1014 g cm−3, ns = 0.16 fm−3)

• temperature T : 0 to 60 MeV

• electron fraction Ye : ∼ 0.6 to ∼ 0

For densities below 107 g cm−3, large Ye, low T : Known nuclear masses with Nuclear
Statistical Equilibrium (NSE) with Coulomb corrections, or network

Focus here will be for densities > 107 g cm−3:
• extrapolation of nuclear masses to lower Ye, higher A

• inclusion of nuclei - external n − p gas interactions

• inclusion of nuclear excited states
• phase transition to bulk nucleon matter around ρs/3 − ρs/2,

• vary uncertain bulk nuclear properties (K, K′, Sv , Sv(n), Ss)

Necessary table assumption: Single nucleus approximation
Distribution of nuclei replaced by most energetically favored nucleus. Although this
introduces negligible errors in pressure ≃ nT/A and chemical potentials ≃ T/A, not
adequate for modelling neutrino opacities or electron capture/beta decay rates. Do
regions of substantial light nucleus abundances exist?

Leptons can be treated separately from baryons
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Black hole? ⇒
Firm lower mass limit?⇒

M > 1.68 M⊙, 95% confidence {

M < 1.17 M⊙(95%) ⇒

Although simple average
mass of w.d. companions
is 0.27 M⊙ larger, weighted
average is 0.08 M ⊙ smaller

Freire et al. 2007 { } w.d. companion?
statistics?

Champion et al. 2008
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Single Nucleus Approximation
Souza et al., arXiv:0810.0963v1
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Main Classes of Nucleon Force Models
• Non-relativistic potential models

• Momentum- and density-dependent contact or finite-range potentials
• Momentum dependence greatly restricted for calculational ease
• Density-dependent effective nucleon masses
• Relatively slowly varying Sv(n), smaller neutron star radii (but adjustable)
• Can become acausal
• Can be constrained to fit low-density neutron matter properties

• Relativistic field-theoretical models
• Interactions mediated by bosons (ω, σ, ρ)
• Implicitly causal
• Generally have linearly increasing Sv(n), larger radii (but adjustable)
• Not as easily constrained to fit low-density neutron matter properties

• High-density ’exotica’
• Strangeness in form of hyperons, kaon/pion condensates, deconfined quark

matter; many fewer laboratory constraints
• Possibility of stable strange quark matter at zero pressure (Witten)
• Are these important in supernova models (or suppressed by large µe)?
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Neutron Star Matter Pressure

Extrapolation in symmetry
to nearly pure neutron matter

⇑

⇓
Wide variation:
1.2 <

P (ρs)

MeV fm−3 < 7

Short-term goal:
Reduce this uncertainty

↓ρs
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Major existing approaches for EOS tables
• Liquid droplet models

• Myers & Swiatecki 1969, Baym, Bethe & Pethick
1971, Lattimer et al. 1985; Lattimer & Swesty 1990
Non-relativistic contact potential, surface energy from semi-infinite calculation,

Coulomb energy from droplet model, many nuclear parameter combinations

• Hybrid Droplet/Thomas-Fermi unit cell calculations

• Oyamatsu 1993, Shen et al. 1998
Relativistic mean field theory, suface and Coulomb energies from

parametrized density profile optimizations, only 1 set of nuclear parameters

• Finite-temperature Hartree-Fock unit cell calculations

• Bonche & Vautherin 1980, Wolff & Hilledbrandt (ca.
1985)
Not well documented, only 1 set of nuclear parameters
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Lattimer & Swesty 1991,NPA 535, 331
• Based on Lattimer, Pethick, Ravenhall & Lamb [NPA 432, 646, (1985)] liquid droplet

model merged with bulk equilibrium

• Free energy density is minimized

F = uni[fi + fsurf + fCoul + ftrans] + (1 − u − nNnαvα)fo + nαfα(1 − u)

µno = µni + ∆n, µpo = µpi + ∆p, Po = Pi + ∆P , fsurf = 2fCoul

• fi, fo from non-relativistic potential (Skyrme-like) model

• fsurf from semi-infinite plane-parallel calculations using fi, fo and gradient
contributions, but ignoring Coulomb effects

• fCoul, ftrans from liquid-drop model including lattice effects

• fα for Maxwell-Boltzmann particles to represent "light" nuclei

• uniform densities inside and outside nucleus

• L-S ignores "neutron skin" and nucleon effective masses to simplify minimization
although LPRL includes these

• Phase transition to uniform matter treated with Maxwell construction

• L-S includes minimization wrt nuclear shape (i.e., nuclear pasta)

• LPRL assumed SI′ model; L-S contains arbitrary parameters to match input
incompressibility and bulk and surface symmetry energies

• New tables including neutron skin and various nuclear parameter sets available
www.astro.sunysb.edu/lattimer
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Shen, Toki, Oyamatsu & Sumiyoshi 1998,
PTP100, 1013

• Based on Oyamatsu [NPA 561, 431 (1993)]

• Thomas-Fermi spherical cell

• Relativistic field-theoretical (RFT) model with σ, ω, ρ mesons

• Self-consistent gradient contributions to RFT energy density replaced with a
single-parameter, ad-hoc density-gradient term with no symmetry dependence

• Full Coulomb energies included

• Alpha particles represented as Maxwell-Boltzmann particles

• Incomplete energy minimization using parametrized Fermi-like nucleon density
radial profiles

• Phase transition to uniform matter ignored, but low density of table points makes
this largely irrelevant

• Variations of nuclear shapes ignored

• Table exists for just one set of RFT parameters
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Current problems
L-S

• α-particle binding energy error

• Unity effective masses underestimate nuclear specific heats

• Doesn’t work well for extremely small temperatures and proton fractions and some
points near critical temperature/density (convergence issues)

• Ignores neutron skin and Coulomb corrections to surface energy

• Extension to other nuclear models restricted by physical labor involved in
computation of phase boundaries

Shen et al.
• table relatively sparse; not possible to implement "thermodynamically consistent"

table generation scheme (Swesty & Timmes)

• Incomplete energy minimization may make the table inherently thermodynamically
inconsistent

• Tables for alternate incompressibility and symmetry parameters not available

• Inconsistent surface energies with no symmetry dependence (possibly reflected in
anomalously small neutron skin thicknesses)

• Does not consider aspherical geometries
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Current improvements to L-S
• α-particle binding energy error corrected (comparison

to NSE calculations at low density satisfactory [Hix])

• Nuclear force generalized for arbitrary effective
masses, both NRP and RFT models utilized

• Re-introduction of neutron skin

• Energy minimized without algebraic substitutions
results in relatively automatic table generation – fewer
convergence issues

• Works to very low temperatures and electron fractions

• Technical problems exist for Ye > 0.5

• Two finely gridded tables are generated to identify table
points within the phase transition region and replace
appropriate values
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Nuclear Structure Considerations
Information about Esym can be extracted from nuclear binding energies and models for
nuclei. For example, consider the schematic liquid droplet model (Myers & Swiatecki):

E(A, Z) ≃ −avA + asA2/3 +
Sv

1 + (Ss/Sv)A−1/3
A + acZ2A−1/3

Fitting binding energies results in a strong correlation between Sv and Ss, but not
definite values.

Blue: ∆E < 0.01 MeV/b
Green: ∆E < 0.02 MeV/b
Gray: ∆E < 0.03 MeV/b

Circle: Moeller et al. (1995)
Crosses: Best fits
Dashed: Danielewicz (2004)
Solid: Steiner et al. (2005)

αc → αc

[

1 + 2SsZIA1/3

3Sv

]

×
[

1 + Ss

SvA1/3

]−1
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Finite-Range Thomas-Fermi Model
Based on Seylar-Blanchard and Myers & Swiatecki
[AP, 204, 401 (1990)], but extended to finite temperature
and Wigner-Seitz approximation

W = −
1

h3

∫

d3r1

∫

d3r2f
(r12

a

)

×

∑

t1,t2,t′2=n,p

[
∫ ∫

CLft1ft2d
3pt1d

3pt2 +

∫ ∫

CUft1ft′2d
3pt1d

3pt′2

]

C(L,U) ∝ α(L,U) − β(L,U)(
p12

Po

)2 − σ(L,U)(
2ρ̄

ρo

)2/3

f
(r12

a

)

=
1

4πr12a2
e−r12/a, r12 = |~r1 − ~r2|,

∫

d3r2f
(r12

a

)

= 1

In contrast, Skyrme force Hamiltonian:
HSkyrme = Huniform(n, τ) +

∑

i,j=n,p Qij∇ni · ∇nj
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Energy minimization – Euler equations

FRTF
Integral equations:

µn(r) = constant, µp(r) = constant

NRP

Differential equations:

∑

j=n,p

Qij∇
2nj =

∂Huniform

∂ni

− µi0
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Finite-Range Thomas-Fermi Nuclear Model

Ca40 Fe56

Pb208
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Nuclei in Dense Matter
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