

dCache tape pool performance

Niklas Edmundsson
HPC2N, Umeå University

dCache tape pool performance

This presentation is focused on dCache tape
pools as most commonly deployed on the
NDGF Tier1, with TSM as the tape provider and
ENDIT as the connecting glue.

However, most of the issues touched upon
should be of interest for all dCache disk pool
deployments.

Problem statement

 Current NDGF Tier1 dCache tape pools are
having trouble delivering optimal IO
performance during real-life loads.

 Optimal in this case is defined as able to
always utilize tape drives fully, ie if a tape drive
can do 120MB/s but we're seeing 60MB/s than
we're not optimal.

 Main culprit seems to be disk-IO related, but
things such as bad tapes etc also exists.

 Todays main focus will be on disk IO.

Problem statement (2)

 In the future we will see an increased
bandwidth requirement, roughly a factor 2.
Maybe more...

Scalability issues (tape HW)

 LTO tapedrive performance does not seem to
follow previously announced roadmaps
 2006: LTO4 – 800 GB @ 120MB/s
 2010: LTO5 – 1500GB @ 140MB/s
 2012: LTO6 – 2500GB @ 160MB/s
 2015?: LTO7 – 6400GB? @ 315MB/s?

 Means we'll need to use more tapedrives
 Or change tape technology

 2011: IBM TS1140: 4000GB @ 250MB/s
 2011: Oracle T10000C: 5000GB @ 250MB/s

Scalability issues (SW)

 ENDIT currently doesn't do multi-tapedrive
efficiently

 We were hoping for IBM to include efficient
multi-tape retrieve in dsmc, but seems to
require rather large effort to convince them.

 We have a plan in place to work around this.
 Requires exports of volume content lists from TSM

server.
 Will support multiple tapepool machines.

Scalability issues (pool HW)

 Increased tape drive bandwidth means 10GigE
(or LanFree, but we think it's not worth the
hassle)

 Worst-case IO becomes 10GigE dCache in/out
while at the same time streaming at (multiple)
tape speed.
 Remember, not fully using the tape speed will

require more tape drives to compensate.

 Current investigations shows that disk IO
becomes a big bottleneck.

Scalability issues (pool HW) (2)

 Will be expensive to solve the disk IO issue by
going the SSD route.
 Tape pool needs to be able to cope with incoming

data even if tape not available.
 When doing a tape mount: write a good sized chunk

at a time, consider 1h worth of tape IO a minimum.

 Even going for 10k/15kRPM HDDs might be too
expensive.

But look at the benchmarks

XFS ZFS

0

200

400

600

800

1000

1200

1400

1600

1800

32k dd single-stream IO rates

Read, RAID10
Write, RAID10
Read, RAID50
Write, RAID50
Read, ZFS mirror
Write, ZFS mirror
Read, RaidZ1
Write, RaidZ1
Read, RaidZ2
Write, RaidZ2

M
B

/s

But look at the benchmarks (2)

 Problem is, benchmarks like these seldom
resemble real-life load.

 We're actually doing a poor job on having
benchmarks that matches real-life loads.

 Which leads to us architecting solutions either
using a bad method of evaluation or just on a
whim.

 Usually leads to equally questionable results.
 There is a reason that Mattias W requires

Ganglia on all dCache pools.

Evaluating tape pool performance

 Initiated when we realized that Solaris was not
a reasonable future plan (thanks Oracle)

 According to Mattias W, the HPC2N+PDC tape
pools are the only tape pools in the NDGF Tier1
that performs as expected today.

 Probably a result of them running Solaris+ZFS,
but we needed some way of evaluating this.

Eval tape pool - tools

 We needed some way of emulating tape drive
IO
 Hacked a simple script using rsync –bwlimit
 Copies a 1GB data file to/from tmpfs

 seq|xargs to do parallel file creates
 ls -1|sort -R|xargs to do // file reads

Eval tape pool - how?

 It Depends<tm>.
 These first efforts focused on behaviour when

maxing out the performance available
 Find out how many LTO6 ”tapedrives” can be

handled.
 Find out what happens when competing ”opposite”

IO happens, ie 10GigE rate incoming/outgoing IO.
 Lessons learned along the way, so some data

points incomplete

Test hardware

 HP DL380e 668668-421 ”storage server”
 25 SFF HDD slots

 13/12 split, one 4x6G SAS connector each
 25 500G SFF 7kRPM NL SAS HDDs
 One Intel E5-2420 6core 1.9GHz CPU
 36GB RAM
 HP P420/2G FBWC RAID controller
 HP H220 SAS HBA
 HP 530SFP+ 10GigE NIC

Test hardware (2)

 Aggregated disk IO capacity is approx
2000MB/s measured using the SAS HBA and
running one dd for each HDD concurrently.
 Limit here is most likely the 7kRPM SFF HDDs.

 There were always CPU cores idling during
tests.

 In the concurrency tests the competing IO rate
was at most on 10GigE level.

Concurrency disappointment

0 1 2 4 8 16

0

20

40

60

80

100

120

140

160

180

Using HP P420 with 2GB FBWC RAID HBA

R10, XFS write, 6*LTO6
R10, XFS read, 4*LTO6
R10, ZFS write, 6*LTO6
R10, ZFS read, 4*LTO6
R50, XFS write, 6*LTO6
R50, XFS read, 3*LTO6
R50, ZFS write, 6*LTO6
R50, ZFS read, 4*LTO6

Competing opposite IO streams

P
e

r-
st

re
a

m
 M

B
/s

A bit more balance

0 1 2 4 8 16

0

20

40

60

80

100

120

140

160

180

Using HP H220 SAS HBA

ZFS, mirror, read, 4*LTO6
ZFS, mirror, write, 4*LTO6
ZFS, raidz1, read, 3*LTO6
ZFS, raidz1, write, 5*LTO6
ZFS, raidz2, read, 3*LTO6
ZFS, raidz2, write, 4*LTO6

Competing opposite IO streams

P
e

r-
st

re
a

m
 M

B
/s

Single LTO6 stream

Single LTO6 stream rate with one competing write stream

0

10

20

30

40

50

60

70

80

90

ZFS mirror, read
XFS, R50, read
ZFS, R50, read

M
B

/s

Conclusions?

 It Depends<tm>
 The point I'm trying to make is that this is NOT

a trivial problem to solve.
 Although we could go the regular computer-nerd-

route and apply beefier hardware at the problem.
 Easiest if we get funding :-)

 I have more test data than included in these
graphs, hard to present usefully though.

 However, ZFS seems to show better behaviour
wrt fairness and consistent results.

Things to consider

 Throttling dCache when doing tape IO to
reduce the impact of dCache transfers.
 cgroup blkio throttle can't throttle buffered writes

(yet, patches do exist...).
 Linux firewalling/iptables probably not suited for

high-bandwidth throttling? (no recent tests done)
 Solve in network equipment?
 Solve by having GigE connection(s) for dCache

transfers and 10GigE for tape/TSM?

 More disk IO capacity
 Reduces the impact of hitting the wall.

Things to consider (2)

 When upgrading tape drives, tape pools need
to be able to keep up
 Or you can't benefit from increased tape data rate
 Either size for the future or replace when upgrading

 ZFS on Linux
 In stabilization phase
 Performance optimizations to come
 Worth considering
 On Solaris, possible to tune to prefer read or write

load (not tested on HPC2N pools)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

